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Preface

Since the first edition of An Introduction to Modern Astrophysics and its abbreviated com-
panion text, An Introduction to Modern Stellar Astrophysics, first appeared in 1996, there
has been an incredible explosion in our knowledge of the heavens. It was just two months
before the printing of the first editions that Michel Mayor and Didier Queloz announced
the discovery of an extrasolar planet around 51 Pegasi, the first planet found orbiting a
main-sequence star. In the next eleven years, the number of known extrasolar planets has
grown to over 193. Not only do these discoveries shed new light on how stars and planetary
systems form, but they also inform us about formation and planetary evolution in our own
Solar System.

In addition, within the past decade important discoveries have been made of objects,
within our Solar System but beyond Pluto, that are similar in size to that diminutive planet.
In fact, one of the newly discovered Kuiper belt objects, currently referred to as 2003 UB313
(until the International Astronomical Union makes an official determination), appears to be
larger than Pluto, challenging our definition of what a planet is and how many planets our
Solar System is home to.

Explorations by robotic spacecraft and landers throughout our Solar System have also
yielded a tremendous amount of new information about our celestial neighborhood. The
armada of orbiters, along with the remarkable rovers, Spirit and Opportunity, have confirmed
that liquid water has existed on the surface of Mars in the past. We have also had robotic
emissaries visit Jupiter and Saturn, touch down on the surfaces of Titan and asteroids, crash
into cometary nuclei, and even return cometary dust to Earth.

Missions such as Swift have enabled us to close in on the solutions to the mysterious
gamma-ray bursts that were such an enigma at the time An Introduction to Modern Astro-
physics first appeared. We now know that one class of gamma-ray bursts is associated with
core-collapse supernovae and that the other class is probably associated with the merger of
two neutron stars, or a neutron star and a black hole, in a binary system.

Remarkably precise observations of the center of our Milky Way Galaxy and other
galaxies, since the publication of the first editions, have revealed that a great many, perhaps
most, spiral and large elliptical galaxies are home to one or more supermassive black holes
at their centers. It also appears likely that galactic mergers help to grow these monsters in
their centers. Furthermore, it now seems almost certain that supermassive black holes are the
central engines responsible for the exotic and remarkably energetic phenomena associated
with radio galaxies, Seyfert galaxies, blazars, and quasars.

The past decade has also witnessed the startling discovery that the expansion of the uni-
verse is not slowing down but, rather, is actually accelerating! This remarkable observation
suggests that we currently live in a dark-energy-dominated universe, in which Einstein’s

From the Preface o f An Introduction to Modern Astrophysic Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 

s, 



cosmological constant (once considered his “greatest blunder”) plays an important role
in our understanding of cosmology. Dark energy was not even imagined in cosmological
models at the time the first editions were published.

Indeed, since the publication of the first editions, cosmology has entered into a new era of
precision measurements. With the release of the remarkable data obtained by the Wilkinson
Microwave Anisotropy Probe (WMAP), previously large uncertainties in the age of the
universe have been reduced to less than 2% (13.7 ± 0.2 Gyr). At the same time, stellar
evolution theory and observations have led to the determination that the ages of the oldest
globular clusters are in full agreement with the upper limit of the age of the universe.

We opened the preface to the first editions with the sentence “There has never been
a more exciting time to study modern astrophysics”; this has certainly been borne out in
the tremendous advances that have occurred over the past decade. It is also clear that this
incredible decade of discovery is only a prelude to further advances to come. Joining the
Hubble Space Telescope in its high-resolution study of the heavens have been the Chandra
X-ray Observatory and the Spitzer Infrared Space Telescope. From the ground, 8-m and
larger telescopes have also joined the search for new information about our remarkable
universe. Tremendously ambitious sky surveys have generated a previously unimagined
wealth of data that provide critically important statistical data sets; the Sloan Digital Sky
Survey, the Two-Micron All Sky Survey, the 2dF redshift survey, the Hubble Deep Fields
and Ultradeep Fields, and others have become indispensable tools for hosts of studies. We
also anticipate the first observations from new observatories and spacecraft, including the
high-altitude (5000 m) Atacama Large Millimeter Array and high-precision astrometric
missions such as Gaia and SIM PlanetQuest. Of course, studies of our own Solar System
also continue; just the day before this preface was written, the Mars Reconnaissance Orbiter
entered orbit around the red planet.

When the first editions were written, even the World Wide Web was in its infancy. Today
it is hard to imagine a world in which virtually any information you might want is only
a search engine and a mouse click away. With enormous data sets available online, along
with fully searchable journal and preprint archives, the ability to access critical information
very rapidly has been truly revolutionary.

Needless to say, a second edition of BOB (the “Big Orange Book,” as An Introduction
to Modern Astrophysics has come to be known by many students) and its associated text
is long overdue. In addition to an abbreviated version focusing on stellar astrophysics (An
Introduction to Modern Stellar Astrophysics), a second abbreviated version (An Introduction
to Modern Galactic Astrophysics and Cosmology) is being published. We are confident that
BOB and its smaller siblings will serve the needs of a range of introductory astrophysics
courses and that they will instill some of the excitement felt by the authors and hosts of
astronomers and astrophysicists worldwide.

We have switched from cgs to SI units in the second edition. Although we are personally
more comfortable quoting luminosities in ergs s−1 rather than watts, our students are not.
We do not want students to feel exasperated by a new system of units during their first
encounter with the concepts of modern astrophysics. However, we have retained the natural
units of parsecs and solar units (M⊙ and L⊙) because they provide a comparative context
for numerical values. An appendix of unit conversions (see back endpapers) is included for
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those who delve into the professional literature and discover the world of angstroms, ergs,
and esu.

Our goal in writing these texts was to open the entire field of modern astrophysics to
you by using only the basic tools of physics. Nothing is more satisfying than appreciating
the drama of the universe through an understanding of its underlying physical principles.
The advantages of a mathematical approach to understanding the heavenly spectacle were
obvious to Plato, as manifested in his Epinomis:

Are you unaware that the true astronomer must be a person of great wisdom?
Hence there will be a need for several sciences. The first and most important
is that which treats of pure numbers. To those who pursue their studies in
the proper way, all geometric constructions, all systems of numbers, all duly
constituted melodic progressions, the single ordered scheme of all celestial
revolutions should disclose themselves. And, believe me, no one will ever
behold that spectacle without the studies we have described, and so be able to
boast that they have won it by an easy route.

Now, 24 centuries later, the application of a little physics and mathematics still leads to
deep insights.

These texts were also born of the frustration we encountered while teaching our junior-
level astrophysics course. Most of the available astronomy texts seemed more descriptive
than mathematical. Students who were learning about Schrödinger’s equation, partition
functions, and multipole expansions in other courses felt handicapped because their astro-
physics text did not take advantage of their physics background. It seemed a double shame to
us because a course in astrophysics offers students the unique opportunity of actually using
the physics they have learned to appreciate many of astronomy’s fascinating phenomena.
Furthermore, as a discipline, astrophysics draws on virtually every aspect of physics. Thus
astrophysics gives students the chance to review and extend their knowledge.

Anyone who has had an introductory calculus-based physics course is ready to under-
stand nearly all the major concepts of modern astrophysics. The amount of modern physics
covered in such a course varies widely, so we have included a chapter on the theory of
special relativity and one on quantum physics which will provide the necessary background
in these areas. Everything else in the text is self-contained and generously cross-referenced,
so you will not lose sight of the chain of reasoning that leads to some of the most astounding
ideas in all of science.1

Although we have attempted to be fairly rigorous, we have tended to favor the sort of
back-of-the-envelope calculation that uses a simple model of the system being studied.
The payoff-to-effort ratio is so high, yielding 80% of the understanding for 20% of the
effort, that these quick calculations should be a part of every astrophysicist’s toolkit. In
fact, while writing this book we were constantly surprised by the number of phenomena
that could be described in this way. Above all, we have tried to be honest with you; we
remained determined not to simplify the material beyond recognition. Stellar interiors,

1Footnotes are used when we don’t want to interrupt the main flow of a paragraph.
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stellar atmospheres, general relativity, and cosmology—all are described with a depth that
is more satisfying than mere hand-waving description.

Computational astrophysics is today as fundamental to the advance in our understanding
of astronomy as observation and traditional theory, and so we have developed numerous
computer problems, as well as several complete codes, that are integrated with the text
material. You can calculate your own planetary orbits, compute observed features of binary
star systems, make your own models of stars, and reproduce the gravitational interactions
between galaxies. These codes favor simplicity over sophistication for pedagogical rea-
sons; you can easily expand on the conceptually transparent codes that we have provided.
Astrophysicists have traditionally led the way in large-scale computation and visualization,
and we have tried to provide a gentle introduction to this blend of science and art.

Instructors can use these texts to create courses tailored to their particular needs by
approaching the content as an astrophysical smorgasbord. By judiciously selecting topics,
we have used BOB to teach a semester-long course in stellar astrophysics. (Of course,
much was omitted from the first 18 chapters, but the text is designed to accommodate such
surgery.) Interested students have then gone on to take an additional course in cosmology.
On the other hand, using the entire text would nicely fill a year-long survey course (and then
some) covering all of modern astrophysics. To facilitate the selection of topics, as well as
identify important topics within sections, we have added subsection headings to the second
editions. Instructors may choose to skim, or even omit, subsections in accordance with their
own as well as their students’ interests—and thereby design a course to their liking.

An extensive website at http://www.aw-bc.com/astrophysics is associated with
these texts. It contains downloadable versions of the computer codes in various languages,
including Fortran, C++, and, in some cases, Java. There are also links to some of the
many important websites in astronomy. In addition, links are provided to public domain
images found in the texts, as well as to line art that can be used for instructor presentations.
Instructors may also obtain a detailed solutions manual directly from the publisher.

Throughout the process of the extensive revisions for the second editions, our editors have
maintained a positive and supportive attitude that has sustained us throughout. Although we
must have sorely tried their patience, Adam R. S. Black, Lothlórien Homet, Ashley Taylor
Anderson, Deb Greco, Stacie Kent, Shannon Tozier, and Carol Sawyer (at Techsetters) have
been truly wonderful to work with.

We have certainly been fortunate in our professional associations throughout the years.
We want to express our gratitude and appreciation to Art Cox, John Cox (1926–1984),
Carl Hansen, Hugh Van Horn, and Lee Anne Willson, whose profound influence on us has
remained and, we hope, shines through the pages ahead.

Our good fortune has been extended to include the many expert reviewers who cast
a merciless eye on our chapters and gave us invaluable advice on how to improve them.
For their careful reading of the first editions, we owe a great debt to Robert Antonucci,
Martin Burkhead, Peter Foukal, David Friend, Carl Hansen, H. Lawrence Helfer, Steven
D. Kawaler, William Keel, J. Ward Moody, Tobias Owen, Judith Pipher, Lawrence Pinsky,
Joseph Silk, J. Allyn Smith, and Rosemary Wyse. Additionally, the extensive revisions to
the second editions have been carefully reviewed by Bryon D. Anderson, Markus J. As-
chwanden, Andrew Blain, Donald J. Bord, Jean-Pierre Caillault, Richard Crowe, Daniel
Dale, Constantine Deliyannis, Kathy DeGioia Eastwood, J. C. Evans, Debra Fischer, Kim
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Griest, Triston Guillot, Fred Hamann, Jason Harlow, Peter Hauschildt, Lynne A. Hillen-
brand, Philip Hughes, William H. Ingham, David Jewitt, Steven D. Kawaler, John Kielkopf,
Jeremy King, John Kolena, Matthew Lister, Donald G. Luttermoser, Geoff Marcy, Norman
Markworth, Pedro Marronetti, C. R. O’Dell, Frederik Paerels, Eric S. Perlman, Bradley
M. Peterson, Slawomir Piatek, Lawrence Pinsky, Martin Pohl, Eric Preston, Irving K. Rob-
bins,Andrew Robinson, Gary D. Schmidt, Steven Stahler, Richard D. Sydora, Paula Szkody,
Henry Throop, Michael T. Vaughn, Dan Watson, Joel Weisberg, Gregory G. Wood, Matt
A. Wood, Kausar Yasmin, Andrew Youdin, Esther Zirbel, E. J. Zita, and others. Over the
past decade, we have received valuable input from users of the first-edition texts that has
shaped many of the revisions and corrections to the second editions. Several generations
of students have provided us with a different and extremely valuable perspective as well.
Unfortunately, no matter how fine the sieve, some mistakes are sure to slip through, and
some arguments and derivations may be less than perfectly clear. The responsibility for the
remaining errors is entirely ours, and we invite you to submit comments and corrections to
us at our e-mail address: modastro@weber.edu.

Unfortunately, the burden of writing has not been confined to the authors but was un-
avoidably shared by family and friends. We wish to thank our parents, Wayne and Marjorie
Carroll, and Dean and Dorothy Ostlie, for raising us to be intellectual explorers of this fas-
cinating universe. Finally, it is to those people who make our universe so wondrous that we
dedicate this book: our wives, Lynn Carroll and Candy Ostlie, and Dale’s terrific children,
Michael and Megan. Without their love, patience, encouragement, and constant support,
this project would never have been completed.

And now it is time to get up into Utah’s beautiful mountains for some skiing, hiking,
mountain biking, fishing, and camping and share those down-to-Earth joys with our families!

Bradley W. Carroll
Dale A. Ostlie
Weber State University
Ogden, UT
modastro@weber.edu
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The Celestial Sphere

1 The Greek Tradition
2 The Copernican Revolution
3 Positions on the Celestial Sphere
4 Physics and Astronomy

1 THE GREEK TRADITION

Human beings have long looked up at the sky and pondered its mysteries. Evidence of the
long struggle to understand its secrets may be seen in remnants of cultures around the world:
the great Stonehenge monument in England, the structures and the writings of the Maya and
Aztecs, and the medicine wheels of the Native Americans. However, our modern scientific
view of the universe traces its beginnings to the ancient Greek tradition of natural philosophy.
Pythagoras (ca. 550 b.c.) first demonstrated the fundamental relationship between numbers
and nature through his study of musical intervals and through his investigation of the
geometry of the right angle. The Greeks continued their study of the universe for hundreds
of years using the natural language of mathematics employed by Pythagoras. The modern
discipline of astronomy depends heavily on a mathematical formulation of its physical
theories, following the process begun by the ancient Greeks.

In an initial investigation of the night sky, perhaps its most obvious feature to a careful
observer is the fact that it is constantly changing. Not only do the stars move steadily from
east to west during the course of a night, but different stars are visible in the evening sky,
depending upon the season. Of course the Moon also changes, both in its position in the
sky and in its phase. More subtle and more complex are the movements of the planets, or
“wandering stars.”

The Geocentric Universe

Plato (ca. 350 b.c.) suggested that to understand the motions of the heavens, one must first
begin with a set of workable assumptions, or hypotheses. It seemed obvious that the stars
of the night sky revolved about a fixed Earth and that the heavens ought to obey the purest
possible form of motion. Plato therefore proposed that celestial bodies should move about
Earth with a uniform (or constant) speed and follow a circular motion with Earth at the
center of that motion. This concept of a geocentric universe was a natural consequence of
the apparently unchanging relationship of the stars to one another in fixed constellations.



Equator (Earth)

Celestial sphereNorth celestial pole

North pole (Earth)

South pole (Earth)

South celestial pole

Celestial equator

FIGURE 1 The celestial sphere. Earth is depicted in the center of the celestial sphere.

If the stars were simply attached to a celestial sphere that rotated about an axis passing
through the North and South poles of Earth and intersecting the celestial sphere at the north
and south celestial poles, respectively (Fig. 1), all of the stars’ known motions could be
described.

Retrograde Motion

The wandering stars posed a somewhat more difficult problem.Aplanet such as Mars moves
slowly from west to east against the fixed background stars and then mysteriously reverses
direction for a period of time before resuming its previous path (Fig. 2). Attempting to
understand this backward, or retrograde, motion became the principal problem in astron-
omy for nearly 2000 years! Eudoxus of Cnidus, a student of Plato’s and an exceptional
mathematician, suggested that each of the wandering stars occupied its own sphere and that
all the spheres were connected through axes oriented at different angles and rotating at var-
ious speeds. Although this theory of a complex system of spheres initially was marginally
successful at explaining retrograde motion, predictions began to deviate significantly from
the observations as more data were obtained.

Hipparchus (ca. 150 b.c.), perhaps the most notable of the Greek astronomers, proposed
a system of circles to explain retrograde motion. By placing a planet on a small, rotating
epicycle that in turn moved on a larger deferent, he was able to reproduce the behavior of
the wandering stars. Furthermore, this system was able to explain the increased brightness
of the planets during their retrograde phases as resulting from changes in their distances
from Earth. Hipparchus also created the first catalog of the stars, developed a magnitude
system for describing the brightness of stars that is still in use today, and contributed to the
development of trigonometry.

During the next two hundred years, the model of planetary motion put forth by Hip-
parchus also proved increasingly unsatisfactory in explaining many of the details of the ob-
servations. Claudius Ptolemy (ca. a.d. 100) introduced refinements to the epicycle/deferent

The Celestial Sphere
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FIGURE 2 The retrograde motion of Mars in 2005. The general, long-term motion of the planet
is eastward relative to the background stars. However, between October 1 and December 10, 2005,
the planet’s motion temporarily becomes westward (retrograde). (Of course the planet’s short-term
daily motion across the sky is always from east to west.) The coordinates of right ascension and
declination are discussed in Fig. 13. Betelgeuse, the bright star in the constellation of Orion, is
visible at (α, δ) = (5h55m, +7◦24′), Aldebaran, in the constellation of Taurus, has coor-dinates
(4h36m, +16◦31′), and the Hyades and Pleiades star clusters (also in Taurus) are visible at
(4h24m, +15◦45′) and (3h44m, +23◦58′), respectively.

!

Planet

Epicycle
Deferent

Equant

Earth

Deferent center

FIGURE 3 The Ptolemaic model of planetary motion.

system by adding equants (Fig. 3), resulting in a constant angular speed of the epicycle
about the deferent (dθ/dt was assumed to be constant). He also moved Earth away from
the deferent center and even allowed for a wobble of the deferent itself. Predictions of the
Ptolemaic model did agree more closely with observations than any previously devised
scheme, but the original philosophical tenets of Plato (uniform and circular motion) were
significantly compromised.

Despite its shortcomings, the Ptolemaic model became almost universally accepted as
the correct explanation of the motion of the wandering stars. When a disagreement between
the model and observations would develop, the model was modified slightly by the addition
of another circle. This process of “fixing” the existing theory led to an increasingly complex
theoretical description of observable phenomena.

The Celestial Sphere



(a) (b)

FIGURE 4 (a) Nicolaus Copernicus (1473–1543). (b) The Copernican model of planetary motion:
Planets travel in circles with the Sun at the center of motion. (Courtesy of Yerkes Observatory.)

2 THE COPERNICAN REVOLUTION

By the sixteenth century the inherent simplicity of the Ptolemaic model was gone. Polish-
born astronomer Nicolaus Copernicus (1473–1543), hoping to return the science to a less
cumbersome, more elegant view of the universe, suggested a heliocentric (Sun-centered)
model of planetary motion (Fig. 4).1 His bold proposal led immediately to a much less
complicated description of the relationships between the planets and the stars. Fearing
severe criticism from the Catholic Church, whose doctrine then declared that Earth was
the center of the universe, Copernicus postponed publication of his ideas until late in life.
De Revolutionibus Orbium Coelestium (On the Revolution of the Celestial Sphere) first
appeared in the year of his death. Faced with a radical new view of the universe, along
with Earth’s location in it, even some supporters of Copernicus argued that the heliocentric
model merely represented a mathematical improvement in calculating planetary positions
but did not actually reflect the true geometry of the universe. In fact, a preface to that effect
was added by Osiander, the priest who acted as the book’s publisher.

Bringing Order to the Planets

One immediate consequence of the Copernican model was the ability to establish the order
of all of the planets from the Sun, along with their relative distances and orbital periods.
The fact that Mercury and Venus are never seen more than 28◦ and 47◦, respectively, east
or west of the Sun clearly establishes that their orbits are located inside the orbit of Earth.
These planets are referred to as inferior planets, and their maximum angular separations
east or west of the Sun are known as greatest eastern elongation and greatest western

1Actually, Aristarchus proposed a heliocentric model of the universe in 280 b.c. At that time, however, there was
no compelling evidence to suggest that Earth itself was in motion.
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FIGURE 5 Orbital configurations of the planets.

elongation, respectively (see Fig. 5). Mars, Jupiter, and Saturn (the most distant planets
known to Copernicus) can be seen as much as 180◦ from the Sun, an alignment known
as opposition. This could only occur if these superior planets have orbits outside Earth’s
orbit. The Copernican model also predicts that only inferior planets can pass in front of the
solar disk (inferior conjunction), as observed.

Retrograde Motion Revisited

The great long-standing problem of astronomy—retrograde motion—was also easily ex-
plained through the Copernican model. Consider the case of a superior planet such as Mars.
Assuming, as Copernicus did, that the farther a planet is from the Sun, the more slowly
it moves in its orbit, Mars will then be overtaken by the faster-moving Earth. As a result,
the apparent position of Mars will shift against the relatively fixed background stars, with
the planet seemingly moving backward near opposition, where it is closest to Earth and at
its brightest (see Fig. 6). Since the orbits of all of the planets are not in the same plane,
retrograde loops will occur. The same analysis works equally well for all other planets,
superior and inferior.

The relative orbital motions of Earth and the other planets mean that the time interval
between successive oppositions or conjunctions can differ significantly from the amount of
time necessary to make one complete orbit relative to the background stars (Fig. 7). The
former time interval (between oppositions) is known as the synodic period (S), and the
latter time interval (measured relative to the background stars) is referred to as the sidereal
period (P ). It is left as an exercise to show that the relationship between the two periods is
given by

1/S =
{

1/P − 1/P⊕ (inferior)

1/P⊕ − 1/P (superior),
(1)

The Celestial Sphere



1

1

7

7

7

6
3
4
5
2

1

2
2

3 3

4
4

5 5
6

6

Mars orbit

Earth orbit

Sun

FIGURE 6 The retrograde motion of Mars as described by the Copernican model. Note that the
lines of sight from Earth to Mars cross for positions 3, 4, and 5. This effect, combined with the slightly
differing planes of the two orbits result in retrograde paths near opposition. Recall the retrograde (or
westward) motion of Mars between October 1, 2005, and December 10, 2005, as illustrated in Fig. 2.
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FIGURE 7 The relationship between the sidereal and synodic periods of Mars. The two periods
do not agree due to the motion of Earth. The numbers represent the elapsed time in sidereal years
since Mars was initially at opposition. Note that Earth completes more than two orbits in a synodic
period of S = 2.135 yr, whereas Mars completes slightly more than one orbit during one synodic
period from opposition to opposition.

when perfectly circular orbits and constant speeds are assumed; P⊕ is the sidereal period
of Earth’s orbit (365.256308 d).

Although the Copernican model did represent a simpler, more elegant model of planetary
motion, it was not successful in predicting positions any more accurately than the Ptolemaic
model. This lack of improvement was due to Copernicus’s inability to relinquish the 2000-
year-old concept that planetary motion required circles, the human notion of perfection. As
a consequence, Copernicus was forced (as were the Greeks) to introduce the concept of
epicycles to “fix” his model.
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Perhaps the quintessential example of a scientific revolution was the revolution begun
by Copernicus. What we think of today as the obvious solution to the problem of planetary
motion—a heliocentric universe—was perceived as a very strange and even rebellious
notion during a time of major upheaval, when Columbus had recently sailed to the “new
world” and Martin Luther had proposed radical revisions in Christianity. Thomas Kuhn
has suggested that an established scientific theory is much more than just a framework for
guiding the study of natural phenomena. The present paradigm (or prevailing scientific
theory) is actually a way of seeing the universe around us. We ask questions, pose new
research problems, and interpret the results of experiments and observations in the context
of the paradigm. Viewing the universe in any other way requires a complete shift from the
current paradigm. To suggest that Earth actually orbits the Sun instead of believing that the
Sun inexorably rises and sets about a fixed Earth is to argue for a change in the very structure
of the universe, a structure that was believed to be correct and beyond question for nearly
2000 years. Not until the complexity of the old Ptolemaic scheme became too unwieldy
could the intellectual environment reach a point where the concept of a heliocentric universe
was even possible.

3 POSITIONS ON THE CELESTIAL SPHERE

The Copernican revolution has shown us that the notion of a geocentric universe is incorrect.
Nevertheless, with the exception of a small number of planetary probes, our observations
of the heavens are still based on a reference frame centered on Earth. The daily (or diurnal)
rotation of Earth, coupled with its annual motion around the Sun and the slow wobble of its
rotation axis, together with relative motions of the stars, planets, and other objects, results
in the constantly changing positions of celestial objects. To catalog the locations of objects
such as the Crab supernova remnant in Taurus or the great spiral galaxy of Andromeda,
coordinates must be specified. Moreover, the coordinate system should not be sensitive to
the short-term manifestations of Earth’s motions; otherwise the specified coordinates would
constantly change.

The Altitude–Azimuth Coordinate System

Viewing objects in the night sky requires only directions to them, not their distances. We
can imagine that all objects are located on a celestial sphere, just as the ancient Greeks
believed. It then becomes sufficient to specify only two coordinates. The most straight-
forward coordinate system one might devise is based on the observer’s local horizon. The
altitude–azimuth (or horizon) coordinate system is based on the measurement of the az-
imuth angle along the horizon together with the altitude angle above the horizon (Fig. 8).
The altitude h is defined as that angle measured from the horizon to the object along a great
circle2 that passes through that object and the point on the celestial sphere directly above
the observer, a point known as the zenith. Equivalently, the zenith distance z is the angle
measured from the zenith to the object, so z + h = 90◦. The azimuth A is simply the angle

2A great circle is the curve resulting from the intersection of a sphere with a plane passing through the center of
that sphere.
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FIGURE 8 The altitude–azimuth coordinate system. h, z, and A are the altitude, zenith distance,
and azimuth, respectively.

measured along the horizon eastward from north to the great circle used for the measure
of altitude. (The meridian is another frequently used great circle; it is defined as passing
through the observer’s zenith and intersecting the horizon due north and south.)

Although simple to define, the altitude–azimuth system is difficult to use in practice.
Coordinates of celestial objects in this system are specific to the local latitude and longitude
of the observer and are difficult to transform to other locations on Earth. Also, since Earth
is rotating, stars appear to move constantly across the sky, meaning that the coordinates of
each object are constantly changing, even for the local observer. Complicating the problem
still further, the stars rise approximately 4 minutes earlier on each successive night, so that
even when viewed from the same location at a specified time, the coordinates change from
day to day.

Daily and Seasonal Changes in the Sky

To understand the problem of these day-to-day changes in altitude–azimuth coordinates, we
must consider the orbital motion of Earth about the Sun (see Fig. 9). As Earth orbits the
Sun, our view of the distant stars is constantly changing. Our line of sight to the Sun sweeps
through the constellations during the seasons; consequently, we see the Sun apparently
move through those constellations along a path referred to as the ecliptic.3 During the
spring the Sun appears to travel across the constellation of Virgo, in the summer it moves
through Orion, during the autumn months it enters Aquarius, and in the winter the Sun is
located near Scorpius. As a consequence, those constellations become obscured in the glare
of daylight, and other constellations appear in our night sky. This seasonal change in the
constellations is directly related to the fact that a given star rises approximately 4 minutes
earlier each day. Since Earth completes one sidereal period in approximately 365.26 days,
it moves slightly less than 1◦ around its orbit in 24 hours. Thus Earth must actually rotate
nearly 361◦ to bring the Sun to the meridian on two successive days (Fig. 10). Because of
the much greater distances to the stars, they do not shift their positions significantly as Earth
orbits the Sun. As a result, placing a star on the meridian on successive nights requires only
a 360◦ rotation. It takes approximately 4 minutes for Earth to rotate the extra 1◦. Therefore a
given star rises 4 minutes earlier each night. Solar time is defined as an average interval of

3The term ecliptic is derived from the observation of eclipses along that path through the heavens.
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FIGURE 9 The plane of Earth’s orbit seen edge-on. The tilt of Earth’s rotation axis relative to
the ecliptic is also shown.
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FIGURE 10 Earth must rotate nearly 361◦ per solar day and only 360◦ per sidereal day.

24 hours between meridian crossings of the Sun, and sidereal time is based on consecutive
meridian crossings of a star.

Seasonal climatic variations are also due to the orbital motion of Earth, coupled with the
approximately 23.5◦ tilt of its rotation axis. As a result of the tilt, the ecliptic moves north
and south of the celestial equator (Fig. 11), which is defined by passing a plane through
Earth at its equator and extending that plane out to the celestial sphere. The sinusoidal
shape of the ecliptic occurs because the Northern Hemisphere alternately points toward
and then away from the Sun during Earth’s annual orbit. Twice during the year the Sun
crosses the celestial equator, once moving northward along the ecliptic and later moving
to the south. In the first case, the point of intersection is called the vernal equinox and
the southern crossing occurs at the autumnal equinox. Spring officially begins when the
center of the Sun is precisely on the vernal equinox; similarly, fall begins when the center
of the Sun crosses the autumnal equinox. The most northern excursion of the Sun along the
ecliptic occurs at the summer solstice, representing the official start of summer, and the
southernmost position of the Sun is defined as the winter solstice.

The seasonal variations in weather are due to the position of the Sun relative to the
celestial equator. During the summer months in the Northern Hemisphere, the Sun’s northern
declination causes it to appear higher in the sky, producing longer days and more intense
sunlight. During the winter months the declination of the Sun is below the celestial equator,
its path above the horizon is shorter, and its rays are less intense (see Fig. 12). The more
direct the Sun’s rays, the more energy per unit area strikes Earth’s surface and the higher
the resulting surface temperature.
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FIGURE 11 The ecliptic is the annual path of the Sun across the celestial sphere and is sinusoidal
about the celestial equator. Summer solstice is at a declination of 23.5◦ and winter solstice is at a
declination of −23.5◦. See Fig. 13 for explanations of right ascension and declination.
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FIGURE 12 (a) The diurnal path of the Sun across the celestial sphere for an observer at latitude
L when the Sun is located at the vernal equinox (March), the summer solstice (June), the autumnal
equinox (September), and the winter solstice (December). NCP and SCP designate the north and south
celestial poles, respectively. The dots represent the location of the Sun at local noon on the approximate
dates indicated. (b) The direction of the Sun’s rays at noon at the summer solstice (approximately
June 21) and at the winter solstice (approximately December 21) for an observer at 40◦ N latitude.

The Equatorial Coordinate System

A coordinate system that results in nearly constant values for the positions of celestial ob-
jects, despite the complexities of diurnal and annual motions, is necessarily less straightfor-
ward than the altitude–azimuth system. The equatorial coordinate system (see Fig. 13)
is based on the latitude–longitude system of Earth but does not participate in the planet’s
rotation. Declination δ is the equivalent of latitude and is measured in degrees north or
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FIGURE 13 The equatorial coordinate system. α, δ, andϒ designate right ascension, declination,
and the position of the vernal equinox, respectively.

south of the celestial equator. Right ascension α is analogous to longitude and is measured
eastward along the celestial equator from the vernal equinox (ϒ) to its intersection with
the object’s hour circle (the great circle passing through the object being considered and
through the north celestial pole). Right ascension is traditionally measured in hours, min-
utes, and seconds; 24 hours of right ascension is equivalent to 360◦, or 1 hour = 15◦. The
rationale for this unit of measure is based on the 24 hours (sidereal time) necessary for an
object to make two successive crossings of the observer’s local meridian. The coordinates
of right ascension and declination are also indicated in Figs. 2 and 11. Since the equa-
torial coordinate system is based on the celestial equator and the vernal equinox, changes
in the latitude and longitude of the observer do not affect the values of right ascension and
declination. Values of α and δ are similarly unaffected by the annual motion of Earth around
the Sun.

The local sidereal time of the observer is defined as the amount of time that has elapsed
since the vernal equinox last traversed the meridian. Local sidereal time is also equivalent to
the hour angle H of the vernal equinox, where hour angle is defined as the angle between
a celestial object and the observer’s meridian, measured in the direction of the object’s
motion around the celestial sphere.

Precession

Despite referencing the equatorial coordinate system to the celestial equator and its inter-
section with the ecliptic (the vernal equinox), precession causes the right ascension and
declination of celestial objects to change, albeit very slowly. Precession is the slow wobble
of Earth’s rotation axis due to our planet’s nonspherical shape and its gravitational inter-
action with the Sun and the Moon. It was Hipparchus who first observed the effects of
precession. Although we will not discuss the physical cause of this phenomenon in detail,
it is completely analogous to the well-known precession of a child’s toy top. Earth’s pre-
cession period is 25,770 years and causes the north celestial pole to make a slow circle
through the heavens. Although Polaris (the North Star) is currently within 1◦ of the north
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celestial pole, in 13,000 years it will be nearly 47◦ away from that point. The same effect
also causes a 50.26′′ yr−1 westward motion of the vernal equinox along the ecliptic.4 An
additional precession effect due to Earth–planet interactions results in an eastward motion
of the vernal equinox of 0.12′′ yr−1.

Because precession alters the position of the vernal equinox along the ecliptic, it is
necessary to refer to a specific epoch (or reference date) when listing the right ascension
and declination of a celestial object. The current values of α and δ may then be calculated,
based on the amount of time elapsed since the reference epoch. The epoch commonly used
today for astronomical catalogs of stars, galaxies, and other celestial phenomena refers to
an object’s position at noon in Greenwich, England (universal time, UT) on January 1,
2000.5 A catalog using this reference date is designated as J2000.0. The prefix, J, in the
designation J2000.0 refers to the Julian calendar, which was introduced by Julius Caesar
in 46 b.c.

Approximate expressions for the changes in the coordinates relative to J2000.0 are

%α = M + N sin α tan δ

%δ = N cosα,

(2)

(3)

where M and N are given by

M = 1.◦2812323T + 0.◦0003879T 2 + 0.◦0000101T 3

N = 0.◦5567530T − 0.◦0001185T 2 − 0.◦0000116T 3

and T is defined as

T = (t − 2000.0)/100 (4)

where t is the current date, specified in fractions of a year.

Example 3.1. Altair, the brightest star in the summer constellation of Aquila, has the
following J2000.0 coordinates: α = 19h50m47.0 ,s δ = +08◦52′06.0′′. Using Eqs. ( 2) and
( 3), we may precess the star’s coordinates to noon Greenwich mean time on July 30, 2005.
Writing the date as t = 2005.575, we have that T = 0.05575. This implies that
M = 0.071430◦ and N = 0.031039◦. From the relations between time and the angular

continued

41 arcminute = 1′ = 1/60 degree; 1 arcsecond = 1′′ = 1/60 arcminute.
5Universal time is also sometimes referred to as Greenwich mean time. Technically there are two forms of
universal time; UT1 is based on Earth’s rotation rate, and UTC (coordinated universal time) is the basis of the
worldwide system of civil time and is measured by atomic clocks. Because Earth’s rotation rate is less regular
than the time kept by atomic clocks, it is necessary to adjust UTC clocks by about one second (a leap second)
roughly every year to year and a half. Among other effects contributing to the difference between UT1 and UTC
is the slowing of Earth’s rotation rate due to tidal effects.
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measure of right ascension,

1h = 15◦

1m = 15′

1s = 15′′

the corrections to the coordinates are

%α = 0.071430◦ + (0.031039◦) sin 297.696◦ tan 8.86833◦

= 0.067142◦ ≃ 16.11s

and

%δ = (0.031039◦) cos 297.696◦

= 0.014426◦ ≃ 51.93′′.

Thus Altair’s precessed coordinates are α = 19h51m03.1s and δ = +08◦52′57.9′′.

Measurements of Time

The civic calendar commonly used in most countries today is the Gregorian calendar. The
Gregorian calendar, introduced by Pope Gregory XIII in 1582, carefully specifies which
years are to be considered leap years. Although leap years are useful for many purposes,
astronomers are generally interested in the number of days (or seconds) between events,
not in worrying about the complexities of leap years. Consequently, astronomers typically
refer to the times when observations were made in terms of the elapsed time since some
specified zero time. The time that is universally used is noon on January 1, 4713 b.c., as
specified by the Julian calendar. This time is designated as JD 0.0, where JD indicates
Julian Date.6 The Julian date of J2000.0 is JD 2451545.0. Times other than noon universal
time are specified as fractions of a day; for example, 6 pm January 1, 2000 UT would be
designated JD 2451545.25. Referring to Julian date, the parameter T defined by Eq. ( 4)
can also be written as

T = (JD − 2451545.0)/36525,

where the constant 36,525 is taken from the Julian year, which is defined to be exactly
365.25 days.

Another commonly-used designation is the Modified Julian Date (MJD), defined as
MJD ≡ JD − 2400000.5, where JD refers to the Julian date. Thus a MJD day begins at
midnight, universal time, rather than at noon.

6The Julian date JD 0.0 was proposed by Joseph Justus Scaliger (1540–1609) in 1583. His choice was based on
the convergence of three calendar cycles; the 28 years required for the Julian calendar dates to fall on the same
days of the week, the 19 years required for the phases of the Moon to nearly fall on the same dates of the year, and
the 15-year Roman tax cycle. 28 × 19 × 15 = 7980 means that the three calendars align once every 7980 years.
JD 0.0 corresponds to the last time the three calendars all started their cycles together.
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Because of the need to measure events very precisely in astronomy, various high-
precision time measurements are used. For instance, Heliocentric Julian Date (HJD) is
the Julian Date of an event as measured from the center of the Sun. In order to determine
the heliocentric Julian date, astronomers must consider the time it would take light to travel
from a celestial object to the center of the Sun rather than to Earth. Terrestrial Time (TT)
is time measured on the surface of Earth, taking into consideration the effects of special and
general relativity as Earth moves around the Sun and rotates on its own axis

Archaeoastronomy

An interesting application of the ideas discussed above is in the interdisciplinary field of
archaeoastronomy, a merger of archaeology and astronomy. Archaeoastronomy is a field
of study that relies heavily on historical adjustments that must be made to the positions of
objects in the sky resulting from precession. It is the goal of archaeoastronomy to study
the astronomy of past cultures, the investigation of which relies heavily on the alignments
of ancient structures with celestial objects. Because of the long periods of time since con-
struction, care must be given to the proper precession of celestial coordinates if any proposed
alignments are to be meaningful. The Great Pyramid at Giza (Fig. 14), one of the “seven
wonders of the world,” is an example of such a structure. Believed to have been erected
about 2600 b.c., the Great Pyramid has long been the subject of speculation. Although many
of the proposals concerning this amazing monument are more than somewhat fanciful, there
can be no doubt about its careful orientation with the four cardinal positions, north, south,
east, and west. The greatest misalignment of any side from a true cardinal direction is no
more than 5 1

2
′
. Equally astounding is the nearly perfect square formed by its base; no two

sides differ in length by more than 20 cm.
Perhaps the most demanding alignments discovered so far are associated with the “air

shafts” leading from the King’s Chamber (the main chamber of the pyramid) to the outside.
These air shafts seem too poorly designed to circulate fresh air into the tomb of Pharaoh, and

To ThubanTo Orion’s belt

FIGURE 14 The astronomical alignments of the Great Pyramid at Giza. (Adaptation of a figure
from Griffith Observatory.)
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it is now thought that they served another function. The Egyptians believed that when their
pharaohs died, their souls would travel to the sky to join Osiris, the god of life, death, and
rebirth. Osiris was associated with the constellation we now know as Orion. Allowing for
over one-sixth of a precession period since the construction of the Great Pyramid, Virginia
Trimble has shown that one of the air shafts pointed directly to Orion’s belt. The other air
shaft pointed toward Thuban, the star that was then closest to the north celestial pole, the
point in the sky about which all else turns.

As a modern scientific culture, we trace our study of astronomy to the ancient Greeks, but
it has become apparent that many cultures carefully studied the sky and its mysterious points
of light. Archaeological structures worldwide apparently exhibit astronomical alignments.
Although some of these alignments may be coincidental, it is clear that many of them were
by design.

The Effects of Motions Through the Heavens

Another effect contributing to the change in equatorial coordinates is due to the intrinsic
velocities of the objects themselves.7 As we have already discussed, the Sun, the Moon,
and the planets exhibit relatively rapid and complex motions through the heavens. The stars
also move with respect to one another. Even though their actual speeds may be very large,
the apparent relative motions of stars are generally very difficult to measure because of their
enormous distances.

Consider the velocity of a star relative to an observer (Fig. 15). The velocity vector

!v!
vr

v

FIGURE 15 The components of velocity. vr is the star’s radial velocity and vθ is the star’s
transverse velocity.

7Parallax an important periodic motion of the stars resulting from the motion of Earth about the Sun.
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may be decomposed into two mutually perpendicular components, one  lying 
along the line of sight and the other perpendicular to it. The line-of-sight com-
ponent is the star’s radial velocity, the second component is the star’svr ;



%d = vθ%t.

If the distance from the observer to the star is r , then the angular change in its position
along the celestial sphere is given by

%θ = %d

r
= vθ

r
%t.

Thus the star’s proper motion, µ, is related to its transverse velocity by

µ ≡ dθ

dt
= vθ

r
. (5)

An Application of Spherical Trigonometry

The laws of spherical trigonometry must be employed in order to find the relationship
between%θ and changes in the equatorial coordinates,%α and%δ, on the celestial sphere.
A spherical triangle such as the one depicted in Fig. 16 is composed of three intersecting
segments of great circles. For a spherical triangle the following relationships hold (with all
sides measured in arc length, e.g., degrees):

Law of sines

sin a

sin A
= sin b

sin B
= sin c

sin C

Law of cosines for sides

cos a = cos b cos c + sin b sin c cos A

Law of cosines for angles

cos A = − cos B cos C + sin B sin C cos a.

Figure 17 shows the motion of a star on the celestial sphere from point A to point B.
The angular distance traveled is %θ . Let point P be located at the north celestial pole so
that the arcs AP , AB, and BP form segments of great circles. The star is then said to be
moving in the direction of the position angle φ (∠PAB), measured from the north celestial
pole. Now, construct a segment of a circle NB such that N is at the same declination as B

and ∠PNB = 90◦. If the coordinates of the star at point A are (α, δ) and its new coordinates
at point B are (α +%α, δ +%δ), then ∠APB = %α, AP = 90◦ − δ, and NP = BP =
90◦ − (δ +%δ). Using the law of sines,

sin (%θ)

sin (%α)
= sin [90◦ − (δ +%δ)]

sin φ
,
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transverse or tangential velocity, vθ , along the celestial sphere. This transverse velocity
appears as a slow, angular change in its equatorial coordinates, known as proper motion
(usually expressed in seconds of arc per year). In a time interval %t , the star will have
moved in a direction perpendicular to the observer’s line of sight a distance
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FIGURE 16 A spherical triangle. Each leg is a segment of a great circle on the surface of a sphere,
and all angles are less than 180◦. a, b, and c are in angular units (e.g., degrees).
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FIGURE 17 The proper motion of a star across the celestial sphere. The star is assumed to be
moving from A to B along the position angle φ.

or

sin (%α) cos (δ +%δ) = sin (%θ) sin φ.

Assuming that the changes in position are much less than one radian, we may use the small-
angle approximations sin ϵ ∼ ϵ and cos ϵ ∼ 1. Employing the appropriate trigonometric
identity and neglecting all terms of second order or higher, the previous equation reduces
to

%α = %θ
sin φ
cos δ

. (6)
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The law of cosines for sides may also be used to find an expression for the change in the
declination:

cos [90◦ − (δ +%δ)] = cos (90◦ − δ) cos (%θ) + sin (90◦ − δ) sin (%θ) cosφ.

Again using small-angle approximations and trigonometric identities, this expression re-
duces to

%δ = %θ cosφ. (7)

(Note that this is the same result that would be obtained if we had used plane trigonometry.
This should be expected, however, since we have assumed that the triangle being considered
has an area much smaller than the total area of the sphere and should therefore appear
essentially flat.) Combining Eqs. ( 6) and ( 7), we arrive at the expression for the angular
distance traveled in terms of the changes in right ascension and declination:

(%θ)2 = (%α cos δ)2 + (%δ)2 . (8)

4 PHYSICS AND ASTRONOMY

The mathematical view of nature first proposed by Pythagoras and the Greeks led ultimately
to the Copernican revolution. The inability of astronomers to accurately fit the observed
positions of the “wandering stars” with mathematical models resulted in a dramatic change
in our perception of Earth’s location in the universe. However, an equally important step
still remained in the development of science: the search for physical causes of observable

As a part of our investigation of the science of astronomy, it will be necessary to study
the details of celestial motions, the nature of light, the structure of the atom, and the shape
of space itself. Rapid advances in astronomy over the past several decades have occurred
because of advances in our understanding of fundamental physics and because of improve-
ments in the tools we use to study the heavens: telescopes and computers.

Essentially every area of physics plays an important role in some aspect of astronomy.
Particle physics and astrophysics merge in the study of the Big Bang; the basic question
of the origin of the zoo of elementary particles, as well as the very nature of the fundamental
forces, is intimately linked to how the universe was formed. Nuclear physics provides
information about the types of reactions that are possible in the interiors of stars, and atomic
physics describes how individual atoms interact with one another and with light, processes
that are basic to a great many astrophysical phenomena. Condensed-matter physics plays a
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phenomena. As we will see the modern study of astronomy relies heavily on an under-
standing of the physical nature of the universe. The application of physics to astronomy, 
astrophysics, has proved very successful in explaining a wide range of observations, in-
cluding strange and exotic objects and events, such as pulsating stars, supernovae, variable 
X-ray sources, black holes, quasars, gamma-ray bursts, and the Big Bang.
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role in the crusts of neutron stars and in the center of Jupiter. Thermodynamics is involved
everywhere from the Big Bang to the interiors of stars. Even electronics plays an important
role in the development of new detectors capable of giving a clearer view of the universe
around us.

With the advent of modern technology and the space age, telescopes have been built to
study the heavens with ever-increasing sensitivity. No longer limited to detecting visible
light, telescopes are now capable of “seeing” gamma rays, X-rays, ultraviolet light, infrared
radiation, and radio signals. Many of these telescopes require operation above Earth’s
atmosphere to carry out their missions. Other types of telescopes, very different in nature,
detect elementary particles instead of light and are often placed below ground to study the
heavens.

Computers have provided us with the power to carry out the enormous number of calcu-
lations necessary to build mathematical models from fundamental physical principles. The
birth of high-speed computing machines has enabled astronomers to calculate the evolution
of a star and compare those calculations with observations; it is also possible to study the
rotation of a galaxy and its interaction with neighboring galaxies. Processes that require
billions of years (significantly longer than any National Science Foundation grant) cannot
possibly be observed directly but may be investigated using the modern supercomputer.

All of these tools and related disciplines are used to look at the heavens with a probing
eye. The study of astronomy is a natural extension of human curiosity in its purest form. Just
as a small child is always asking why this or that is the way it is, the goal of an astronomer
is to attempt to understand the nature of the universe in all of its complexity, simply for the
sake of understanding—the ultimate end of any intellectual adventure. In a very real sense,
the true beauty of the heavens lies not only in observing the stars on a dark night but also
in considering the delicate interplay between the physical processes that cause the stars to
exist at all.

The most incomprehensible thing about the universe is that it is
comprehensible. — Albert Einstein
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PROBLEM SET

1 Derive the relationship between a planet’s synodic period and its sidereal period (Eq. 1).
Consider both inferior and superior planets.

2 Devise methods to determine the relative distances of each of the planets from the Sun given
the information available to Copernicus (observable angles between the planets and the Sun,
orbital conf gurations, and synodic periods).

3 (a) The observed orbital synodic periods of Venus and Mars are 583.9 days and 779.9 days,
respectively. Calculate their sidereal periods.

(b) Which one of the superior planets has the shortest synodic period? Why?

4 List the right ascension and declination of the Sun when it is located at the vernal equinox, the
summer solstice, the autumnal equinox, and the winter solstice.

5 (a) Referring to Fig. 12(a), calculate the altitude of the Sun along the meridian on the f rst
day of summer for an observer at a latitude of 42◦ north.

The Celestial Sphere

1/S =
{

1/P − 1/P⊕ (inferior)

1/P⊕ − 1/P (superior)
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FIGURE 12 (a) The diurnal path of the Sun across the celestial sphere for an observer at latitude
L when the Sun is located at the vernal equinox (March), the summer solstice (June), the autumnal
equinox (September), and the winter solstice (December). NCP and SCP designate the north and south
celestial poles, respectively. The dots represent the location of the Sun at local noon on the approximate
dates indicated.
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(b) What is the maximum altitude of the Sun on the first day of winter at the same latitude?

6 (a) Circumpolar stars are stars that never set below the horizon of the local observer or stars
that are never visible above the horizon. After sketching a diagram similar to  Fig.12(a) ,
calculate the range of declinations for these two groups of stars for an observer at the
latitude L.

(b) At what latitude(s) on Earth will the Sun never set when it is at the summer solstice?

(c) Is there any latitude on Earth where the Sun will never set when it is at the vernal equinox?
If so, where?

7 (a) Determine the Julian date for 16:15 UT on July 14, 2006. (Hint: Be sure to include any leap
years in your calculation.)

(b) What is the corresponding modif ed Julian date?

8 Proxima Centauri (α Centauri C) is the closest star to the Sun and is a part of a triple star system.
It has the epoch J2000.0 coordinates (α, δ) = (14h29m42.95s, −62◦40′46.1′′). The brightest
member of the system, Alpha Centauri (α Centauri A) has J2000.0 coordinates of (α, δ) =
(14h39m36.50s, −60◦50′02.3′′).
(a) What is the angular separation of Proxima Centauri and Alpha Centauri?
(b) If the distance to Proxima Centauri is 4.0 × 1016 m, how far is the star from Alpha Centauri?

9 (a) Using the information in Problem 8, precess the coordinates of Proxima Centauri to epoch
J2010.0.

(b) The proper motion of Proxima Centauri is 3.84′′ yr−1 with the position angle 282◦. Calculate
the change in α and δ due to proper motion between 2000.0 and 2010.0.

(c) Which effect makes the largest contribution to changes in the coordinates of Proxima Cen-
tauri: precession or proper motion?

10 Which values of right ascension would be best for viewing by an observer at a latitude of 40◦

in January?

11 Verify that Eq. ( 7) follows directly from the expression immediately preceding it.

%δ = %θ cosφ.

i
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FIGURE 12 (a) The diurnal path of the Sun across the celestial sphere for an observer at latitude
L when the Sun is located at the vernal equinox (March), the summer solstice (June), the autumnal
equinox (September), and the winter solstice (December). NCP and SCP designate the north and south
celestial poles, respectively. The dots represent the location of the Sun at local noon on the approximate
dates indicated.



Celestial Mechanics

1 Elliptical Orbits
2 Newtonian Mechanics
3 Kepler’s Laws Derived
4 The Virial Theorem

1 ELLIPTICAL ORBITS

Although the inherent simplicity of the Copernican model was aesthetically pleasing, the
idea of a heliocentric universe was not immediately accepted; it lacked the support of
observations capable of unambiguously demonstrating that a geocentric model was wrong.

Tycho Brahe: The Great Naked-Eye Observer

After the death of Copernicus, Tycho Brahe (1546–1601), the foremost naked-eye observer,
carefully followed the motions of the “wandering stars” and other celestial objects. He
carried out his work at the observatory, Uraniborg, on the island of Hveen (a facility provided
for him by King Frederick II of Denmark). To improve the accuracy of his observations,
Tycho used large measuring instruments, such as the quadrant depicted in the mural in
Fig. 1(a). Tycho’s observations were so meticulous that he was able to measure the position
of an object in the heavens to an accuracy of better than 4′, approximately one-eighth the
angular diameter of a full moon. Through the accuracy of his observations he demonstrated
for the first time that comets must be much farther away than the Moon, rather than being
some form of atmospheric phenomenon. Tycho is also credited with observing the supernova
of 1572, which clearly demonstrated that the heavens were not unchanging as Church
doctrine held. (This observation prompted King Frederick to build Uraniborg.) Despite the
great care with which he carried out his work, Tycho was not able to find any clear evidence
of the motion of Earth through the heavens, and he therefore concluded that the Copernican
model must be false.

Kepler’s Laws of Planetary Motion

At Tycho’s invitation, Johannes Kepler (1571–1630), a German mathematician, joined him
later in Prague [Fig. 1(b)]. Unlike Tycho, Kepler was a heliocentrist, and it was his
desire to find a geometrical model of the universe that would be consistent with the best
observations then available, namely Tycho’s.After Tycho’s death, Kepler inherited the mass
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(a) (b)

FIGURE 1 (a) Mural of Tycho Brahe (1546–1601). (b) Johannes Kepler (1571–1630). (Courtesy
of Yerkes Observatory.)

of observations accumulated over the years and began a painstaking analysis of the data. His
initial, almost mystic, idea was that the universe is arranged with five perfect solids, nested
to support the six known naked-eye planets (including Earth) on crystalline spheres, with
the entire system centered on the Sun. After this model proved unsuccessful, he attempted
to devise an accurate set of circular planetary orbits about the Sun, focusing specifically on
Mars. Through his very clever use of offset circles and equants,1 Kepler was able to obtain
excellent agreement with Tycho’s data for all but two of the points available. In particular,
the discrepant points were each off by approximately 8′, or twice the accuracy of Tycho’s
data. Believing that Tycho would not have made observational errors of this magnitude,
Kepler felt forced to dismiss the idea of purely circular motion.

Rejecting the last fundamental assumption of the Ptolemaic model, Kepler began to
consider the possibility that planetary orbits were elliptical in shape rather than circular.
Through this relatively minor mathematical (though monumental philosophical) change,
he was finally able to bring all of Tycho’s observations into agreement with a model for
planetary motion. This paradigm shift also allowed Kepler to discover that the orbital speed
of a planet is not constant but varies in a precise way depending on its location in its orbit.
In 1609 Kepler published the first two of his three laws of planetary motion in the book
Astronomica Nova, or The New Astronomy:

Kepler’s First Law A planet orbits the Sun in an ellipse, with the Sun at one
focus of the ellipse.

Kepler’s Second Law A line connecting a planet to the Sun sweeps out equal
areas in equal time intervals.

1Recall the geocentric use of circles and equants by Ptolemy.
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FIGURE 2 Kepler’s second law states that the area swept out by a line between a planet and the
focus of an ellipse is always the same for a given time interval, regardless of the planet’s position in
its orbit. The dots are evenly spaced in time.

Kepler’s first and second laws are illustrated in Fig. 2, where each dot on the ellipse
represents the position of the planet during evenly spaced time intervals.

Kepler’s third law was published ten years later in the book Harmonica Mundi (The
Harmony of the World). His final law relates the average orbital distance of a planet from
the Sun to its sidereal period:

Kepler’s Third Law The Harmonic Law.

P 2 = a3

where P is the orbital period of the planet, measured in years, and a is the average distance
of the planet from the Sun, in astronomical units, or AU. An astronomical unit is, by
definition, the average distance between Earth and the Sun, 1.496 × 1011 m. The graph of
Kepler’s third law shown in Fig. 3 was prepared using data for each planet in our Solar
Syste .m

In retrospect it is easy to understand why the assumption of uniform and circular motion
first proposed nearly 2000 years earlier was not determined to be wrong much sooner;
in most cases, planetary motion differs little from purely circular motion. In fact, it was
actually fortuitous that Kepler chose to focus on Mars, since the data for that planet were
particularly good and Mars deviates from circular motion more than most of the others.

The Geometry of Elliptical Motion

To appreciate the significance of Kepler’s laws, we must first understand the nature of the
ellipse. An ellipse (see Fig. 4) is defined by that set of points that satisfies the equation

r + r ′ = 2a, (1)

where a is a constant known as the semimajor axis (half the length of the long, or major
axis of the ellipse), and r and r ′ represent the distances to the ellipse from the two focal
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points, F and F ′, respectively. According to Kepler’s first law, a planet orbits the Sun in an
ellipse, with the Sun located at one focus of the ellipse, the principal focus, F (the other
focus is empty space). Notice that if F and F ′ were located at the same point, then r ′ = r

and the previous equation would reduce to r = r ′ = a, the equation for a circle. Thus a
circle is simply a special case of an ellipse. The distance b is known as the semiminor axis.
The eccentricity, e (0 ≤ e < 1), of the ellipse is defined as the distance between the foci
divided by the major axis, 2a, of the ellipse, implying that the distance of either focal point
from the center of the ellipse may be expressed as ae. For a circle, e = 0. The point on the
ellipse that is closest to the principal focus (located on the major axis) is called perihelion;
the point on the opposite end of the major axis and farthest from the principal focus is
known as aphelion.
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A convenient relationship among a, b, and e may be determined geometrically. Consider
one of the two points at either end of the semiminor axis of an ellipse, where r = r ′.
In this case, r = a and, by the Pythagorean theorem, r2 = b2 + a2e2. Substitution leads
immediately to the expression

b2 = a2 (1 − e2) . (2)

Kepler’s second law states that the orbital speed of a planet depends on its location in
that orbit. To describe in detail the orbital behavior of a planet, it is necessary to specify
where that planet is (its position vector) as well as how fast, and in what direction, the
planet is moving (its velocity vector). It is often most convenient to express a planet’s orbit
in polar coordinates, indicating its distance r from the principal focus in terms of an angle θ
measured counterclockwise from the major axis of the ellipse beginning with the direction
toward perihelion (see Fig. 4). Using the Pythagorean theorem, we have

r ′2 = r2 sin2 θ + (2ae + r cos θ)2 ,

which reduces to

r ′2 = r2 + 4ae(ae + r cos θ) .

Using the definition of an ellipse, r + r ′ = 2a, we find that

r = a
(

1 − e2
)

1 + e cos θ
(0 ≤ e < 1). (3)

It is left as an exercise to show that the total area of an ellipse is given by

A = πab. (4)

Example 1.1. Using Eq. ( 3), it is possible to determine the variation in distance of
a planet from the principal focus throughout its orbit. The semimajor axis of Mars’s orbit
is 1.5237 AU (or 2.2794 × 1011 m) and the planet’s orbital eccentricity is 0.0934. When
θ = 0◦, the planet is at perihelion and is at a distance given by

rp = a
(

1 − e2
)

1 + e

= a (1 − e) (5)

= 1.3814 AU.

continued
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Similarly, at aphelion (θ = 180◦), the point where Mars is farthest from the Sun, the distance
is given by

ra = a
(

1 − e2
)

1 − e

= a (1 + e) (6)

= 1.6660 AU.

The variation in Mars’s orbital distance from the Sun between perihelion and aphelion is
approximately 19%.

An ellipse is actually one of a class of curves known as conic sections, found by passing
a plane through a cone (see Fig. 5). Each type of conic section has its own characteristic
range of eccentricities. As already mentioned, a circle is a conic section with e = 0, and an
ellipse has 0 ≤ e < 1. A curve having e = 1 is known as a parabola and is described by
the equation

r = 2p

1 + cos θ
(e = 1), (7)

where p is the distance of closest approach to the parabola’s one focus, at θ = 0. Curves
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e = 1.0
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a = 1.0

Focus
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FIGURE 5 (a) Conic sections. (b) Related orbital paths.
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having eccentricities greater than unity, e > 1, are hyperbolas and have the form

r = a
(

e2 − 1
)

1 + e cos θ
(e > 1). (8)

Each type of conic section is related to a specific form of celestial motion.

2 NEWTONIAN MECHANICS

At the time Kepler was developing his three laws of planetary motion, Galileo Galilei
(1564–1642), perhaps the first of the true experimental physicists, was studying the motion
of objects on Earth [Fig. 6(a)]. It was Galileo who proposed the earliest formulation of the
concept of inertia. He had also developed an understanding of acceleration; in particular, he
realized that objects near the surface of Earth fall with the same acceleration, independent
of their weight. Whether Galileo publicly proved this fact by dropping objects of differing
weights from the Leaning Tower of Pisa is a matter of some debate.

The Observations of Galileo

Galileo is also the father of modern observational astronomy. Shortly after learning about
the 1608 invention of the first crude spyglass, he thought through its design and constructed
his own. Using his new telescope to carefully observe the heavens, Galileo quickly made
a number of important observations in support of the heliocentric model of the universe.
In particular, he discovered that the band of light known as the Milky Way, which runs
from horizon to horizon, is not merely a cloud, as had previously been supposed, but

(a) (b)

FIGURE 6 (a) Galileo Galilei (1564–1642). (b) Isaac Newton (1642–1727). (Courtesy of Yerkes
Observatory.)
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actually contains an enormous number of individual stars not resolvable by the naked eye.
Galileo also observed that the Moon possesses craters and therefore is not a perfect sphere.
Observations of the varying phases of Venus implied that the planet does not shine by its own
power, but must be reflecting sunlight from constantly changing angles relative to the Sun
and Earth while it orbits the Sun. He also discovered that the Sun itself is blemished, having
sunspots that vary in number and location. But perhaps the most damaging observation for
the geocentric model, a model still strongly supported by the Church, was the discovery of
four moons in orbit about Jupiter, indicating the existence of at least one other center of
motion in the universe.

Many of Galileo’s first observations were published in his book Sidereus Nuncius (The
Starry Messenger) in 1610. By 1616 the Church forced him to withdraw his support of the
Copernican model, although he was able to continue his study of astronomy for some years.
In 1632 Galileo published another work, The Dialogue on the Two Chief World Systems, in
which a three-character play was staged. In the play Salviati was the proponent of Galileo’s
views, Simplicio believed in the oldAristotelian view, and Sagredo acted as the neutral third
party who was invariably swayed by Salviati’s arguments. In a strong reaction, Galileo was
called before the Roman Inquisition and his book was heavily censored. The book was then
placed on the Index of banned books, a collection of titles that included works of Copernicus
and Kepler. Galileo was put under house arrest for the remainder of his life, serving out his
term at his home in Florence.

In 1992, after a 13-year study by Vatican experts, Pope John Paul II officially announced
that, because of a “tragic mutual incomprehension,” the Roman Catholic Church had erred
in its condemnation of Galileo some 360 years earlier. By reevaluating its position, the
Church demonstrated that, at least on this issue, there is room for the philosophical views
of both science and religion.

Newton’s Three Laws of Motion

Isaac Newton (1642–1727), arguably the greatest of any scientific mind in history
[Fig. 6(b)], was born on Christmas Day in the year of Galileo’s death. At age 18, Newton
enrolled at Cambridge University and subsequently obtained his bachelor’s degree. In the
two years following the completion of his formal studies, and while living at home in Wool-
sthorpe, in rural England, away from the immediate dangers of the Plague, Newton engaged
in what was likely the most productive period of scientific work ever carried out by one
individual. During that interval, he made significant discoveries and theoretical advances
in understanding motion, astronomy, optics, and mathematics. Although his work was not
published immediately, the Philosophiae Naturalis Principia Mathematica (Mathematical
Principles of Natural Philosophy), now simply known as the Principia, finally appeared
in 1687 and contained much of his work on mechanics, gravitation, and the calculus. The
publication of the Principia came about largely as a result of the urging of Edmond Halley,
who paid for its printing. Another book, Optiks, appeared separately in 1704 and contained
Newton’s ideas about the nature of light and some of his early experiments in optics.
Although many of his ideas concerning the particle nature of light were later shown to be
in error, much of Newton’s other work is still used extensively today.

Newton’s great intellect is evidenced in his solution of the so-called brachistochrone
problem posed by Johann Bernoulli, the Swiss mathematician, as a challenge to his col-
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leagues. The brachistochrone problem amounts to finding the curve along which a bead
could slide over a frictionless wire in the least amount of time while under the influence
only of gravity. The deadline for finding a solution was set at a year and a half. The problem
was presented to Newton late one afternoon; by the next morning he had found the answer
by inventing a new area of mathematics known as the calculus of variations. Although the
solution was published anonymously at Newton’s request, Bernoulli commented, “By the
claw, the lion is revealed.”

Concerning the successes of his own career, Newton wrote:

I do not know what I may appear to the world; but to myself I seem to have
been only like a boy, playing on the seashore, and diverting myself, in now and
then finding a smoother pebble or a prettier shell than ordinary, while the great
ocean of truth lay all undiscovered before me.

Today, classical mechanics is described by Newton’s three laws of motion, along with his
universal law of gravity. Outside of the realms of atomic dimensions, velocities approaching
the speed of light, or extreme gravitational forces, Newtonian physics has proved very
successful in explaining the results of observations and experiments. Those regimes where
Newtonian mechanics have been shown to be unsatisfactory will be discussed in later
chapters.

Newton’s first law of motion may be stated as follows:

Newton’s First Law The Law of Inertia. An object at rest will remain at rest
and an object in motion will remain in motion in a straight line at a constant
speed unless acted upon by an external force.

To establish whether an object is actually moving, a reference frame must be established. In
later chapters we will refer to reference frames that have the special property that the first
law is valid; all such frames are known as inertial reference frames. Noninertial reference
frames are accelerated with respect to inertial frames.

The first law may be restated in terms of the momentum of an object, p = mv, where
m and v are mass and velocity, respectively.2 Thus Newton’s first law may be expressed as
“the momentum of an object remains constant unless it experiences an external force.”3

The second law is actually a definition of the concept of force:

Newton’s Second Law The net force (the sum of all forces) acting on an object
is proportional to the object’s mass and its resultant acceleration.

If an object is experiencing n forces, then the net force is given by

Fnet =
n
∑

i=1

Fi = ma. (9)

2Hereafter, all vectors will be indicated by boldface type. Vectors are quantities described by both a magnitude
and a direction. Some texts use alternate notations for vectors, expressing them either as v⃗ or v⃗.
3The law of inertia is an extension of the original concept developed by Galileo.
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FIGURE 7 Newton’s third law.

However, assuming that the mass is constant and using the definition a ≡ dv/dt , Newton’s
second law may also be expressed as

Fnet = m
dv
dt

= d(mv)

dt
= dp

dt
; (10)

the net force on an object is equal to the time rate of change of its momentum, p. Fnet =
dp/dt actually represents the most general statement of the second law, allowing for a time
variation in the mass of the object such as occurs with rocket propulsion.

The third law of motion is generally expressed as follows:

Newton’s Third Law For every action there is an equal and opposite reaction.

In this law, action and reaction are to be interpreted as forces acting on different objects.
Consider the force exerted on one object (object 1) by a second object (object 2), F12.
Newton’s third law states that the force exerted on object 2 by object 1, F21, must necessarily
be of the same magnitude but in the opposite direction (see Fig. 7). Mathematically, the
third law can be represented as

F12 = −F21.

Newton’s Law of Universal Gravitation

Using his three laws of motion along with Kepler’s third law, Newton was able to find an
expression describing the force that holds planets in their orbits. Consider the special case
of circular orbital motion of a mass m about a much larger mass M (M ≫ m). Allowing
for a system of units other than years and astronomical units, Kepler’s third law may be
written as

P 2 = kr3,

where r is the distance between the two objects and k is a constant of proportionality. Writing
the period of the orbit in terms of the orbit’s circumference and the constant velocity of m

yields

P = 2πr

v
,

and substituting into the prior equation gives

4π2r2

v2
= kr3.
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Rearranging terms and multiplying both sides by m lead to the expression

m
v2

r
= 4π2m

kr2
.

The left-hand side of the equation may be recognized as the centripetal force for circular
motion, so

F = 4π2m

kr2

must be the gravitational force keeping m in its orbit about M . However, Newton’s third
law states that the magnitude of the force exerted on M by m must equal the magnitude of
the force exerted on m by M . Therefore, the form of the equation ought to be symmetric
with respect to exchange of m and M , implying

F = 4π2M

k′r2
.

Expressing this symmetry explicitly and grouping the remaining constants into a new con-
stant, we have

F = 4π2Mm

k′′r2
,

where k = k′′/M and k′ = k′′/m. Finally, introducing a new constant, G ≡ 4π2/k′′, we
arrive at the form of the Law of Universal Gravitation found by Newton,

F = G
Mm

r2
, (11)

where G = 6.673 × 10−11 N m2 kg−2 (the Universal Gravitational Constant).4

Newton’s law of gravity applies to any two objects having mass. In particular, for an
extended object (as opposed to a point mass), the force exerted by that object on another
extended object may be found by integrating over each of their mass distributions.

Example 1. The force exerted by a spherically symmetric object of mass M on a point
mass m may be found by integrating over rings centered along a line connecting the point
mass to the center of the extended object (see Fig. 8). In this way all points on a specific
ring are located at the same distance from m. Furthermore, because of the symmetry of
the ring, the gravitational force vector associated with it is oriented along the ring’s central
axis. Once a general description of the force due to one ring is determined, it is possible to
add up the individual contributions from all such rings throughout the entire volume of the
mass M . The result will be the force on m due to M .

continued

4At the time this text was written, the uncertainty in G was ±0.010 × 10−11 N m2 kg−2.
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FIGURE 8 The gravitational effect of a spherically symmetric mass distribution.

Let r be the distance between the centers of the two masses, M and m. R0 is the radius
of the large mass, and s is the distance from the point mass to a point on the ring. Because
of the symmetry of the problem, only the component of the gravitational force vector along
the line connecting the centers of the two objects needs to be calculated; the perpendicular
components will cancel. If dMring is the mass of the ring being considered, the force exerted
by that ring on m is given by

dFring = G
m dMring

s2
cosφ.

Assuming that the mass density, ρ(R), of the extended object is a function of radius only
and that the volume of the ring of thickness dR is dVring, we find that

dMring = ρ(R) dVring

= ρ(R) 2πR sin θ R dθ dR

= 2πR2ρ(R) sin θ dR dθ .

The cosine is given by

cosφ = r − R cos θ
s

,

where s may be found by the Pythagorean theorem:

s =
√

(r − R cos θ)2 + R2 sin2 θ =
√

r2 − 2rR cos θ + R2.

Substituting into the expression for dFring, summing over all rings located at a distance R

from the center of the mass M (i.e., integrating over all θ from 0 to π for constant R), and
then summing over all resultant shells of radius R from R = 0 to R = R0 give the total
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force of gravity acting on the small mass m along the system’s line of symmetry:

F = Gm

∫ R0

0

∫ π

0

(r − R cos θ)ρ(R)2πR2 sin θ
s3

dθ dR

= 2πGm

∫ R0

0

∫ π

0

rR2ρ(R) sin θ
(

r2 + R2 − 2rR cos θ
)3/2 dθ dR

− 2πGm

∫ R0

0

∫ π

0

R3ρ(R) sin θ cos θ
(

r2 + R2 − 2rR cos θ
)3/2 dθ dR.

The integrations over θ may be carried out by making the change of variable, u ≡ s2 =
r2 + R2 − 2rR cos θ . Then cos θ = (r2 + R2 − u)/2rR and sin θ dθ = du/2rR. After the
appropriate substitutions and integration over the new variable u, the equation for the force
becomes

F = Gm

r2

∫ R0

0
4πR2ρ(R) dR.

Notice that the integrand is just the mass of a shell of thickness dR, having a volume dVshell,
or

dMshell = 4πR2ρ(R) dR = ρ(R) dVshell.

Therefore, the integrand gives the force on m due to a spherically symmetric mass shell of
mass dMshell as

dFshell = Gm dMshell

r2
.

The shell acts gravitationally as if its mass were located entirely at its center. Finally,
integrating over the mass shells, we have that the force exerted on m by an extended,
spherically symmetric mass distribution is directed along the line of symmetry between the
two objects and is given by

F = G
Mm

r2
,

just the equation for the force of gravity between two point masses.

When an object is dropped near the surface of Earth, it accelerates toward the center of
Earth at the rate g = 9.80 m s−2, the local acceleration of gravity. Using Newton’s second
law and his law of gravity, an expression for the acceleration of gravity may be found. If m

is the mass of the falling object, M⊕ and R⊕ are the mass and radius of Earth, respectively,
and h is the height of the object above Earth, then the force of gravity on m due to Earth is
given by

F = G
M⊕m

(R⊕ + h)2 .
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Assuming that m is near Earth’s surface, then h ≪ R⊕ and

F ≃ G
M⊕m

R2
⊕

.

However, F = ma = mg; thus

g = G
M⊕
R2

⊕
. (12)

Substituting the values M⊕ = 5.9736 × 1024 kg and R⊕ = 6.378136 × 106 m gives a value
for g in agreement with the measured value.

The Orbit of the Moon

The famous story that an apple falling on Newton’s head allowed him to immediately
realize that gravity holds the Moon in its orbit is probably somewhat fanciful and inaccurate.
However, he did demonstrate that, along with the acceleration of the falling apple, gravity
was responsible for the motion of Earth’s closest neighbor.

Example 2.2. Assuming for simplicity that the Moon’s orbit is exactly circular, we
can calculate the centripetal acceleration of the Moon rapidly. Recall that the centripetal
acceleration of an object moving in a perfect circle is given by

ac = v2

r
.

In this case, r is the distance from the center of Earth to the center of the Moon, r =
3.84401 × 108 m, and v is the Moon’s orbital velocity, given by

v = 2πr

P
,

where P = 27.3 days = 2.36 × 106 s is the sidereal orbital period of the Moon. Finding
v = 1.02 km s−1 gives a value for the centripetal acceleration of

ac = 0.0027 m s−2.

The acceleration of the Moon caused by Earth’s gravitational pull may also be calculated
directly from

ag = G
M⊕
r2

= 0.0027 m s−2,

in agreement with the value for the centripetal acceleration.
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Work and Energy

In astrophysics, as in any area of physics, it is often very helpful to have some understand-
ing of the energetics of specific physical phenomena in order to determine whether these
processes are important in certain systems. Some models may be ruled out immediately
if they are incapable of producing the amount of energy observed. Energy arguments also
often result in simpler solutions to particular problems. For example, in the evolution of a
planetary atmosphere, the possibility of a particular component of the atmosphere escaping
must be considered. Such a consideration is based on a calculation of the escape speed of
the gas particles.

The amount of energy (the work) necessary to raise an object of mass m a height h

against a gravitational force is equal to the change in the potential energy of the system.
Generally, the change in potential energy resulting from a change in position between two
points is given by

Uf − Ui = %U = −
∫ rf

ri

F · dr, (13)

where F is the force vector, ri and rf are the initial and final position vectors, respectively,
and dr is the infinitesimal change in the position vector for some general coordinate system
(see Fig. 9). If the gravitational force on m is due to a mass M located at the origin, then
F is directed inward toward M , dr is directed outward, F · dr = −F dr , and the change in
potential energy becomes

%U =
∫ rf

ri

G
Mm

r2
dr.

Evaluating the integral, we have

Uf − Ui = −GMm

(

1
rf

− 1
ri

)

.

M

x

y

m

z

rf

ri

dr

F

FIGURE 9 Gravitational potential energy. The amount of work done depends on the direction of
motion relative to the direction of the force vector.
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Since only relative changes in potential energy are physically meaningful, a reference
position where the potential energy is defined as being identically zero may be chosen. If,
for a specific gravitational system, it is assumed that the potential energy goes to zero at
infinity, letting rf approach infinity (rf → ∞) and dropping the subscripts for simplicity
give

U = −G
Mm

r
. (14)

Of course, the process can be reversed: The force may be found by differentiating the
gravitational potential energy. For forces that depend only on r ,

F = −∂U
∂r

. (15)

In a general three-dimensional description, F = −∇U , where ∇U represents the gradient
of U . In rectangular coordinates this becomes

F = −∂U
∂x

î − ∂U

∂y
ĵ − ∂U

∂z
k̂.

Work must be performed on a massive object if its speed, |v|, is to be changed. This can
be seen by rewriting the work integral, first in terms of time, then speed:

W ≡ −%U

=
∫ rf

ri

F · dr

=
∫ tf

ti

dp
dt

· (v dt)

=
∫ tf

ti

m
dv
dt

· (v dt)

=
∫ tf

ti

m

(

v · dv
dt

)

dt

=
∫ tf

ti

m
d
( 1

2v2
)

dt
dt

=
∫ vf

vi

m d

(

1
2
v2
)

= 1
2
mv2

f − 1
2
mv2

i .
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We may now identify the quantity

K = 1
2
mv2 (16)

as the kinetic energy of the object. Thus work done on the particle results in an equiva-
lent change in the particle’s kinetic energy. This statement is simply one example of the
conservation of energy, a concept that is encountered frequently in all areas of physics.

Consider a particle of mass m that has an initial velocity v and is at a distance r from
the center of a larger mass M , such as Earth. How fast must the mass be moving upward to
completely escape the pull of gravity? To calculate the escape speed, energy conservation
may be used directly. The total initial mechanical energy of the particle (both kinetic and
potential) is given by

E = 1
2
mv2 − G

Mm

r
.

Assume that, in the critical case, the final velocity of the mass will be zero at a position
infinitely far from M , implying that both the kinetic and potential energy will become zero.
Clearly, by conservation of energy, the total energy of the particle must be identically zero
at all times. Thus

1
2
mv2 = G

Mm

r
,

which may be solved immediately for the initial speed of m to give

vesc =
√

2GM/r. (17)

Notice that the mass of the escaping object does not enter into the final expression for the
escape speed. Near the surface of Earth, vesc = 11.2 km s−1.

3 KEPLER’S LAWS DERIVED

Although Kepler did finally determine that the geometry of planetary motion was in the more
general form of an ellipse rather than circular motion, he was unable to explain the nature
of the force that kept the planets moving in their precise patterns. Not only was Newton
successful in quantifying that force, he was also able to generalize Kepler’s work, deriving
the empirical laws of planetary motion from the gravitational force law. The derivation of
Kepler’s laws represented a crucial step in the development of modern astrophysics.

The Center-of-Mass Reference Frame

However, before proceeding onward to derive Kepler’s laws, it will be useful to examine
more closely the dynamics of orbital motion. An interacting two-body problem, such as
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FIGURE 10 A general Cartesian coordinate system indicating the positions of m1, m2, and the
center of mass (located at M).

binary orbits, or the more general many-body problem (often called the N -body problem),
is most easily done in the reference frame of the center of mass.

Figure 10 shows two objects of masses m1 and m2 at positions r′
1 and r′

2, respectively,
with the displacement vector from r′

1 to r′
2 given by

r = r′
2 − r′

1.

Define a position vector R to be a weighted average of the position vectors of the individual
masses,

R ≡ m1r′
1 + m2r′

2

m1 + m2
. (18)

Of course, this definition can be immediately generalized to the case of n objects,

R ≡
∑n

i=1 mir′
i

∑n
i=1 mi

.

Rewriting the equation, we have

n
∑

i=1

miR =
n
∑

i=1

mir′
i .

Then, if we define M to be the total mass of the system, M ≡ ∑n
i=1 mi , the previous equation

becomes

MR =
n
∑

i=1

mir′
i .

Assuming that the individual masses do not change, differentiating both sides with respect
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to time gives

M
dR
dt

=
n
∑

i=1

mi

dr′
i

dt

or

MV =
n
∑

i=1

miv′
i .

The right-hand side is the sum of the linear momenta of every particle in the system,
so the total linear momentum of the system may be treated as though all of the mass were
located at R, moving with a velocity V. Thus R is the position of the center of mass of the
system, and V is the center-of-mass velocity. Letting P ≡ MV be the linear momentum of
the center of mass and p′

i ≡ miv′
i be the linear momentum of an individual particle i, and

again differentiating both sides with respect to time, yields

dP
dt

=
n
∑

i=1

dp′
i

dt
.

If we assume that all of the forces acting on individual particles in the system are due to
other particles contained within the system, Newton’s third law requires that the total force
must be zero. This constraint exists because of the equal magnitudes and opposite directions
of action–reaction pairs. Of course, the momentum of individual masses may change. Using
center-of-mass quantities, we find that the total (or net) force on the system is

F = dP
dt

= M
d2R
dt2

= 0.

Therefore, the center of mass will not accelerate if no external forces exist. This implies
that a reference frame associated with the center of mass must be an inertial reference frame
and that the N -body problem may be simplified by choosing a coordinate system for which
the center of mass is at rest at R = 0.

If we choose a center-of-mass reference frame for a binary system, depicted in Fig. 11
(R = 0), Eq. ( 18) becomes

m1r1 + m2r2

m1 + m2
= 0, (19)

where the primes have been dropped, indicating center-of-mass coordinates. Both r1 and
r2 may now be rewritten in terms of the displacement vector, r. Substituting r2 = r1 + r
gives

r1 = − m2

m1 + m2
r (20)

r2 = m1

m1 + m2
r. (21)
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FIGURE 11 The center-of-mass reference frame for a binary orbit, with the center of mass fixed
at the origin of the coordinate system.

Next, define the reduced mass to be

µ ≡ m1m2

m1 + m2
. (22)

Then r1 and r2 become

r1 = − µ

m1
r

r2 = µ

m2
r.

(23)

(24)

The convenience of the center-of-mass reference frame becomes evident when the total
energy and orbital angular momentum of the system are considered. Including the necessary
kinetic energy and gravitational potential energy terms, the total energy may be expressed
as

E = 1
2
m1 |v1|2 + 1

2
m2 |v2|2 − G

m1m2

|r2 − r1|
.

Substituting the relations for r1 and r2, along with the expression for the total mass of the
system and the definition for the reduced mass, gives

E = 1
2
µv2 − G

Mµ

r
, (25)

where v = |v| and v ≡ dr/dt . We have also used the notation r = |r2 − r1|. The total
energy of the system is equal to the kinetic energy of the reduced mass, plus the potential
energy of the reduced mass moving about a mass M , assumed to be located and fixed at
the origin. The distance between µ and M is equal to the separation between the objects of
masses m1 and m2.

Similarly, the total orbital angular momentum,

L = m1r1 × v1 + m2r2 × v2
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FIGURE 12 A binary orbit may be reduced to the equivalent problem of calculating the motion
of the reduced mass, µ, about the total mass, M , located at the origin.

becomes

L = µr × v = r × p, (26)

where p ≡ µv. The total orbital angular momentum equals the angular momentum of the
reduced mass only. In general, the two-body problem may be treated as an equivalent one-
body problem with the reduced mass µ moving about a fixed mass M at a distance r (see
Fig. 12).

The Derivation of Kepler’s First Law

To obtain Kepler’s laws, we begin by considering the effect of gravitation on the orbital
angular momentum of a planet. Using center-of-mass coordinates and evaluating the time
derivative of the orbital angular momentum of the reduced mass (Eq. 26) give

dL
dt

= dr
dt

× p + r × dp
dt

= v × p + r × F,

the second expression arising from the definition of velocity and Newton’s second law.
Notice that because v and p are in the same direction, their cross product is identically zero.
Similarly, since F is a central force directed inward along r, the cross product of r and F is
also zero. The result is an important general statement concerning angular momentum:

dL
dt

= 0, (27)

the angular momentum of a system is a constant for a central force law. Equation ( 26)
further shows that the position vector r is always perpendicular to the constant angular
momentum vector L, meaning that the orbit of the reduced mass lies in a plane perpendicular
to L.

Using the radial unit vector r̂ (so r = r r̂), we can write the angular momentum vector
in an alternative form as

L = µr × v

= µr r̂ × d

dt
(r r̂)
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= µr r̂ ×
(

dr

dt
r̂ + r

d

dt
r̂
)

= µr2r̂ × d

dt
r̂.

(The last result comes from the fact that r̂ × r̂ = 0.) In vector form, the acceleration of the
reduced mass due to the gravitational force exerted by M is

a = −GM

r2
r̂.

Taking the vector cross product of the acceleration of the reduced mass with its own orbital
angular momentum gives

a × L = −GM

r2
r̂ ×

(

µr2r̂ × d

dt
r̂
)

= −GMµ r̂ ×
(

r̂ × d

dt
r̂
)

.

Applying the vector identity A × (B × C) = (A · C)B − (A · B)C results in

a × L = −GMµ

[(

r̂ · d

dt
r̂
)

r̂ −
(

r̂ · r̂
) d

dt
r̂
]

.

Because r̂ is a unit vector, r̂ · r̂ = 1 and

d

dt
(r̂ · r̂) = 2 r̂ · d

dt
r̂ = 0.

As a result,

a × L = GMµ
d

dt
r̂

or, by referring to Eq. ( 27),

d

dt
(v × L) = d

dt
(GMµ r̂).

Integrating with respect to time then yields

v × L = GMµ r̂ + D, (28)

where D is a constant vector. Because v × L and r̂ both lie in the orbital plane, so must
D. Furthermore, the magnitude of the left-hand side will be greatest at perihelion when the
velocity of the reduced mass is a maximum. Moreover, the magnitude of the right-hand
side is greatest when r̂ and D point in the same direction. Therefore, D is directed toward
perihelion. As shown below, the magnitude of D determines the eccentricity of the orbit.

We next take the vector dot product of Eq. ( 28) with the position vector r = r r̂:

r · (v × L) = GMµr r̂ · r̂ + r · D.
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Invoking the vector identity A · (B × C) = (A × B) · C gives

(r × v) · L = GMµr + rD cos θ .

Finally, recalling the definition of angular momentum (Eq. 26), we obtain

L2

µ
= GMµr

(

1 + D cos θ
GMµ

)

,

where θ is the angle of the reduced mass as measured from the direction to perihelion.
Defining e ≡ D/GMµ and solving for r , we find

Kepler’s First Law (revisited)

r = L2/µ2

GM(1 + e cos θ)
. (29)

This is exactly the equation of a conic section, as may be seen by comparing Eq. ( 29)
with Eqs. ( 3), ( 7), and ( 8) for an ellipse, parabola, and hyperbola, respectively. The
path of the reduced mass about the center of mass under the influence of gravity (or any
other inverse-square force) is a conic section. Elliptical orbits result from an attractive r−2

central-force law such as gravity when the total energy of the system is less than zero (a
bound system), parabolic trajectories are obtained when the energy is identically zero, and
hyperbolic paths result from an unbounded system with an energy that is greater than zero.

When Eq. ( 29) is translated back to a physical reference frame on the sky, we find
that Kepler’s first law for bound planetary orbits may be stated as: Both objects in a binary
orbit move about the center of mass in ellipses, with the center of mass occupying one
focus of each ellipse. Newton was able to demonstrate the elliptical behavior of planetary
motion and found that Kepler’s first law must be generalized somewhat: The center of mass
of the system, rather than the exact center of the Sun, is actually located at the focus of
the ellipse. For our Solar System, such a mistake is understandable, since the largest of
the planets, Jupiter, has only 1/1000 the mass of the Sun. This places the center of mass
of the Sun–Jupiter system near the surface of the Sun. Having used the naked-eye data of
Tycho, Kepler can be forgiven for not realizing his error.

For the case of closed planetary orbits, comparing Eqs. ( 3) and ( 29) shows that the
total orbital angular momentum of the system is

L = µ

√

GMa
(

1 − e2
)

. (30)

Note that L is a maximum for purely circular motion (e = 0) and goes to zero as the
eccentricity approaches unity, as expected.

The Derivation of Kepler’s Second Law

To derive Kepler’s second law, which relates the area of a section of an ellipse to a time
interval, we begin by considering the infinitesimal area element in polar coordinates, as
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FIGURE 13 The infinitesimal area element in polar coordinates.

shown in Fig. 13:

dA = dr (r dθ) = r dr dθ .

If we integrate from the principal focus of the ellipse to a specific distance, r , the area swept
out by an infinitesimal change in θ becomes

dA = 1
2
r2 dθ .

Therefore, the time rate of change in area swept out by a line joining a point on the ellipse
to the focus becomes

dA

dt
= 1

2
r2 dθ

dt
. (31)

Now the orbital velocity, v, may be expressed in two components, one directed along r and
the other perpendicular to r. Letting r̂ and θ̂ be the unit vectors along r and its normal,
respectively, v may be written as (see Fig. 14)

v = vr + vθ = dr

dt
r̂ + r

dθ

dt
θ̂.

Substituting vθ into Eq. ( 31) gives

dA

dt
= 1

2
rvθ .

Since r and vθ are perpendicular,

rvθ = |r × v| =
∣

∣

∣

∣

L
µ

∣

∣

∣

∣

= L

µ
.

Finally, the time derivative of the area becomes

Kepler’s Second Law (revisited)

dA

dt
= 1

2
L

µ
. (32)

Celestial Mechanics



!

F

r

v!

v
vr

FIGURE 14 The velocity vector for elliptical motion in polar coordinates.

It has already been shown that the orbital angular momentum is a constant, so the time rate
of change of the area swept out by a line connecting a planet to the focus of an ellipse is
a constant, one-half of the orbital angular momentum per unit mass. This is just Kepler’s
second law.

Expressions for the speed of the reduced mass at perihelion (θ = 0) and aphelion (θ =
π/2) may be easily obtained from Eq. ( 29). Since at both perihelion and aphelion, r and v
are perpendicular, the magnitude of the angular momentum at these points simply becomes

L = µrv.

Eq. ( 29) at perihelion may thus be written as

rp = (µrpvp)2/µ2

GM(1 + e)
,

whereas at aphelion

ra = (µrava)
2/µ2

GM(1 − e)
.

Recalling from Example .1 that rp = a(1 − e) at perihelion and ra = a(1 + e) at aphe-
lion, we immediately obtain

v2
p = GM(1 + e)

rp

= GM

a

(

1 + e

1 − e

)

(33)

at perihelion and

v2
a = GM(1 − e)

ra

= GM

a

(

1 − e

1 + e

)

. (34)

at aphelion.
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The total orbital energy may be found as well:

E = 1
2
µv2

p − G
Mµ

rp

.

Making the appropriate substitutions, and after some rearrangement,

E = −G
Mµ

2a
= −G

m1m2

2a
. (35)

The total energy of a binary orbit depends only on the semimajor axis a and is exactly
one-half the time-averaged potential energy of the system,

E = 1
2

⟨U⟩ ,

where ⟨U⟩ denotes an average over one orbital period.5 This is one example of the virial
theorem, a general property of gravitationally bound systems. The virial theorem will be
discussed in detail in Section 4.

A useful expression for the velocity of the reduced mass (or the relative velocity of m1

and m2) may be found directly by using the conservation of energy and equating the total
orbital energy to the sum of the kinetic and potential energies:

−G
Mµ

2a
= 1

2
µv2 − G

Mµ

r
.

Using the identity M = m1 + m2, this simplifies to give

v2 = G (m1 + m2)

(

2
r

− 1
a

)

. (36)

This expression could also have been obtained directly by adding the vector components
of orbital velocity. Calculating vr , vθ , and v2 will be left as exercises.

The Derivation of Kepler’s Third Law

We are finally in a position to derive the last of Kepler’s laws. Integrating the mathematical
expression for Kepler’s second law (Eq. 32) over one orbital period, P , gives the result

A = 1
2

L

µ
P.

Here the mass m orbiting about a much larger fixed mass M has been replaced by the more
general reduced mass µ orbiting about the center of mass. Substituting the area of an ellipse,

5The proof that ⟨U⟩ = −GMµ/a is left as an exercise. Note that the time average, ⟨1/r⟩, is equal to 1/a, but
⟨r⟩ ̸= a.
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A = πab, squaring the equation, and rearranging, we obtain the expression

P 2 = 4π2a2b2µ2

L2
.

Finally, using Eq. ( 2) and the expression for the total orbital angular momentum (Eq. 30),
the last equation simplifies to become

Kepler’s Third Law (revisited)

P 2 = 4π2

G (m1 + m2)
a3. (37)

This is the general form of Kepler’s third law. Not only did Newton demonstrate the re-
lationship between the semimajor axis of an elliptical orbit and the orbital period, he also
found a term not discovered empirically by Kepler, the square of the orbital period is in-
versely proportional to the total mass of the system. Once again Kepler can be forgiven
for not noticing the effect. Tycho’s data were for our Solar System only, and because the
Sun’s mass M⊙ is so much greater than the mass of any of the planets, M⊙ + mplanet ≃ M⊙.
Expressing P in years and a in astronomical units gives a value of unity for the collection
of constants (including the Sun’s mass).6

The importance to astronomy of Newton’s form of Kepler’s third law cannot be over-
stated. This law provides the most direct way of obtaining masses of celestial objects, a
critical parameter in understanding a wide range of phenomena. Kepler’s laws, as derived
by Newton, apply equally well to planets orbiting the Sun, moons orbiting planets, stars
in orbit about one another, and galaxy–galaxy orbits. Knowledge of the period of an orbit
and the semimajor axis of the ellipse yields the total mass of the system. If relative dis-
tances to the center of mass are also known, the individual masses may be determined using
Eq. ( 19).

Example 3.1. The orbital sidereal period of Io, one of the four Galilean moons of Jupiter,
is 1.77 days = 1.53 × 105 s and the semimajor axis of its orbit is 4.22 × 108 m. Assuming
that the mass of Io is insignificant compared to that of Jupiter, the mass of the planet may
be estimated using Kepler’s third law:

MJupiter = 4π2

G

a3

P 2
= 1.90 × 1027 kg = 318 M⊕.

discussed in this chapter.
mass that is orbiting about a much larger star (or it may be thought of as calculating the
motion of the reduced mass about the total mass). Data generated by Orbit were used to
produce Fig. 2.

6In 1621 Kepler was able to demonstrate that the four Galilean moons also obeyed his third law in the form
P 2 = ka3, where the constant k differed from unity. He did not attribute the fact that k ̸= 1 to mass, however.

is a simple computer program that makes use of many of the ideas
t will calculate, as a function of time, the location of a small
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4 THE VIRIAL THEOREM

In the last section we found that the total energy of the binary orbit was just one-half of
the time-averaged gravitational potential energy (Eq. 35), or E = ⟨U⟩ /2. Since the total
energy of the system is negative, the system is necessarily bound. For gravitationally bound
systems in equilibrium, it can be shown that the total energy is always one-half of the
time-averaged potential energy; this is known as the virial theorem.

To prove the virial theorem, begin by considering the quantity

Q ≡
∑

i

pi · ri ,

where pi and ri are the linear momentum and position vectors for particle i in some inertial
reference frame, and the sum is taken to be over all particles in the system. The time
derivative of Q is

dQ

dt
=
∑

i

(

dpi

dt
· ri + pi ·

dri

dt

)

. (38)

Now, the left-hand side of the expression is just

dQ

dt
= d

dt

∑

i

mi

dri

dt
· ri = d

dt

∑

i

1
2

d

dt

(

mir
2
i

)

= 1
2

d2I

dt2
,

where

I =
∑

i

mir
2
i

is the moment of inertia of the collection of particles. Substituting back into Eq. ( 38),

1
2

d2I

dt2
−
∑

i

pi ·
dri

dt
=
∑

i

dpi

dt
· ri . (39)

The second term on the left-hand side is just

−
∑

i

pi ·
dri

dt
= −

∑

i

mivi · vi = −2
∑

i

1
2
miv

2
i = −2K,

twice the negative of the total kinetic energy of the system. If we use Newton’s second law,
Eq. ( 39) becomes

1
2

d2I

dt2
− 2K =

∑

i

Fi · ri . (40)

The right-hand side of this expression is known as the virial of Clausius, named after the
physicist who first found this important energy relation.
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If Fij represents the force of interaction between two particles in the system (actually
the force on i due to j ), then, considering all of the possible forces acting on i,

∑

i

Fi · ri =
∑

i

⎛

⎜

⎝

∑

j
j ̸=i

Fij

⎞

⎟

⎠
· ri .

Rewriting the position vector of particle i as ri = 1
2 (ri + rj ) + 1

2 (ri − rj ), we find

∑

i

Fi · ri = 1
2

∑

i

⎛

⎜

⎝

∑

j
j ̸=i

Fij

⎞

⎟

⎠
·
(

ri + rj

)

+ 1
2

∑

i

⎛

⎜

⎝

∑

j
j ̸=i

Fij

⎞

⎟

⎠
·
(

ri − rj

)

.

From Newton’s third law, Fij = −Fji , implying that the first term on the right-hand side is
zero, by symmetry. Thus the virial of Clausius may be expressed as

∑

i

Fi · ri = 1
2

∑

i

∑

j
j ̸=i

Fij ·
(

ri − rj

)

. (41)

If it is assumed that the only contribution to the force is the result of the gravitational
interaction between massive particles included in the system, then Fij is

Fij = G
mimj

r2
ij

r̂ij ,

where rij = |rj − ri | is the separation between particles i and j , and r̂ij is the unit vector
directed from i to j :

r̂ij ≡ rj − ri

rij

.

Substituting the gravitational force into Eq. ( 41) gives

∑

i

Fi · ri = −1
2

∑

i

∑

j
j ̸=i

G
mimj

r3
ij

(

rj − ri

)2

= −1
2

∑

i

∑

j
j ̸=i

G
mimj

rij

. (42)

The quantity

−G
mimj

rij

is just the potential energy Uij between particles i and j . Note, however, that

−G
mjmi

rji
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also represents the same potential energy term and is included in the double sum as well,
so the right-hand side of Eq. ( 42) includes the potential interaction between each pair of
particles twice. Considering the factor of 1/2, Eq. ( 42) simply becomes

∑

i

Fi · ri = −1
2

∑

i

∑

j
j ̸=i

G
mimj

rij

= 1
2

∑

i

∑

j
j ̸=i

Uij = U, (43)

the total potential energy of the system of particles. Finally, substituting into Eq. ( 40) and
taking the average with respect to time give

1
2

〈

d2I

dt2

〉

− 2 ⟨K⟩ = ⟨U⟩ . (44)

The average of d2I/dt2 over some time interval τ is just
〈

d2I

dt2

〉

= 1
τ

∫ τ

0

d2I

dt2
dt (45)

= 1
τ

(

dI

dt

∣

∣

∣

∣

τ

− dI

dt

∣

∣

∣

∣

0

)

.

If the system is periodic, as in the case for orbital motion, then

dI

dt

∣

∣

∣

∣

τ

= dI

dt

∣

∣

∣

∣

0

and the average over one period will be zero. Even if the system being considered is not
strictly periodic, the average will still approach zero when evaluated over a sufficiently
long period of time (i.e., τ → ∞), assuming of course that dI/dt is bounded. This would
describe, for example, a system that has reached an equilibrium or steady-state configuration.
In either case, we now have

〈

d2I/dt2
〉

= 0, so

−2 ⟨K⟩ = ⟨U⟩ . (46)

This result is one form of the virial theorem. The theorem may also be expressed in terms
of the total energy of the system by using the relation ⟨E⟩ = ⟨K⟩ + ⟨U⟩. Thus

⟨E⟩ = 1
2

⟨U⟩ , (47)

just what we found for the binary orbit problem.
The virial theorem applies to a wide variety of systems, from an ideal gas to a cluster

of galaxies. For instance, consider the case of a static star. In equilibrium a star must obey
the virial theorem, implying that its total energy is negative, one-half of the total potential
energy. Assuming that the star formed as a result of the gravitational collapse of a large
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cloud (a nebula), the potential energy of the system must have changed from an initial value
of nearly zero to its negative static value. This implies that the star must have lost energy in
the process, meaning that gravitational energy must have been radiated into space during
the collapse. Applications of the virial theorem will be described in more detail in later
chapters.
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The Continuous Spectrum of Light

1 Stellar Parallax
2 The Magnitude Scale
3 The Wave Nature of Light
4 Blackbody Radiation
5 The Quantization of Energy
6 The Color Index

1 STELLAR PARALLAX

Measuring the intrinsic brightness of stars is inextricably linked with determining their
distances. This chapter on the light emitted by stars therefore begins with the problem of
finding the distance to astronomical objects, one of the most important and most difficult
tasks faced by astronomers. Kepler’s laws in their original form describe the relative sizes
of the planets’ orbits in terms of astronomical units; their actual dimensions were unknown
to Kepler and his contemporaries. The true scale of the Solar System was first revealed
in 1761 when the distance to Venus was measured as it crossed the disk of the Sun in
a rare transit during inferior conjunction. The method used was trigonometric parallax,
the familiar surveyor’s technique of triangulation. On Earth, the distance to the peak of
a remote mountain can be determined by measuring that peak’s angular position from
two observation points separated by a known baseline distance. Simple trigonometry then
supplies the distance to the peak; see Fig. 1. Similarly, the distances to the planets can be
measured from two widely separated observation sites on Earth.

Finding the distance even to the nearest stars requires a longer baseline than Earth’s
diameter. As Earth orbits the Sun, two observations of the same star made 6 months apart
employ a baseline equal to the diameter of Earth’s orbit. These measurements reveal that a
nearby star exhibits an annual back-and-forth change in its position against the stationary

d = 1 AU
tan p

≃ 1
p

AU,

From Chapter  of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.

3
by 

background of much more distant stars. 
of its own motion through space. However, this proper motion, seen from Earth, is not pe-
riodic and so can be distinguished from the star’s periodic displacement caused by Earth’s 
orbital motion.  As shown in Fig. 2, a measurement of the parallax angle p (one-half of 
the maximum change in angular position) allows the calculation of the distance d to the 
star.

A star may also change its position as a consequence 



2B
d p

FIGURE 1 Trigonometric parallax: d = B/ tan p.

d p
Sun

Earth

FIGURE 2 Stellar parallax: d = 1/p′′ pc.

where the small-angle approximation tan p ≃ p has been employed for the parallax angle
p measured in radians. Using 1 radian = 57.2957795◦ = 206264.806′′ to convert p to p′′

in units of arcseconds produces

d ≃ 206,265
p′′ AU.

Defining a new unit of distance, the parsec (parallax-second, abbreviated pc), as 1 pc =
2.06264806 × 105 AU = 3.0856776 × 1016 m leads to

d = 1
p′′ pc. (1)

By definition, when the parallax angle p = 1′′, the distance to the star is 1 pc. Thus 1 parsec
is the distance from which the radius of Earth’s orbit, 1AU, subtends an angle of 1′′.Another
unit of distance often encountered is the light-year (abbreviated ly), the distance traveled
by light through a vacuum in one Julian year: 1 ly = 9.460730472 × 1015 m. One parsec
is equivalent to 3.2615638 ly.
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Even Proxima Centauri, the nearest star other than the Sun, has a parallax angle of less
than 1′′. (Proxima Centauri is a member of the triple star system α Centauri, and has a
parallax angle of 0.77′′. If Earth’s orbit around the Sun were represented by a dime, then
Proxima Centauri would be located 2.4 km away!) In fact, this cyclic change in a star’s
position is so difficult to detect that it was not until 1838 that it was first measured, by
Friedrich Wilhelm Bessel (1784–1846), a German mathematician and astronomer.1

Example 1.1. In 1838, after 4 years of observing 61 Cygni, Bessel announced his mea-
surement of a parallax angle of 0.316′′ for that star. This corresponds to a distance of

d = 1
p′′ pc = 1

0.316
pc = 3.16 pc = 10.3 ly,

within 10% of the modern value 3.48 pc. 61 Cygni is one of the Sun’s nearest neighbors.

From 1989 to 1993, the European Space Agency’s (ESA’s) Hipparcos Space Astrometry
Mission operated high above Earth’s distorting atmosphere.2 The spacecraft was able to
measure parallax angles with accuracies approaching 0.001′′ for over 118,000 stars, cor-
responding to a distance of 1000 pc ≡ 1 kpc (kiloparsec). Along with the high-precision
Hipparcos experiment aboard the spacecraft, the lower-precision Tycho experiment pro-
duced a catalog of more than 1 million stars with parallaxes down to 0.02′′ – 0.03′′. The
two catalogs were published in 1997 and are available on CD-ROMs and the World Wide
Web. Despite the impressive accuracy of the Hipparcos mission, the distances that were
obtained are still quite small compared to the 8-kpc distance to the center of our Milky Way
Galaxy, so stellar trigonometric parallax is currently useful only for surveying the local
neighborhood of the Sun.

However, within the next decade, NASA plans to launch the Space Interferometry Mis-
sion (SIM PlanetQuest). This observatory will be able to determine positions, distances,
and proper motions of stars with parallax angles as small as 4 microarcseconds (0.000004′′),
leading to the direct determination of distances of objects up to 250 kpc away, assuming that
the objects are bright enough. In addition, ESA will launch the Gaia mission within the next
decade as well, which will catalog the brightest 1 billion stars with parallax angles as small
as 10 microarcseconds. With the anticipated levels of accuracy, these missions will be able
to catalog stars and other objects across the Milky Way Galaxy and even in nearby galaxies.
Clearly these ambitious projects will provide an amazing wealth of new information about
the three-dimensional structure of our Galaxy and the nature of its constituents.

1Tycho Brahe had searched for stellar parallax 250 years earlier, but his instruments were too imprecise to find it.
Tycho concluded that Earth does not move through space, and he was thus unable to accept Copernicus’s model
of a heliocentric Solar System.
2Astrometry is the subdiscipline of astronomy that is concerned with the three-dimensional positions of celestial
objects.
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2 THE MAGNITUDE SCALE

Nearly all of the information astronomers have received about the universe beyond our
Solar System has come from the careful study of the light emitted by stars, galaxies, and
interstellar clouds of gas and dust. Our modern understanding of the universe has been made
possible by the quantitative measurement of the intensity and polarization of light in every
part of the electromagnetic spectrum.

Apparent Magnitude

The Greek astronomer Hipparchus was one of the first sky watchers to catalog the stars
that he saw. In addition to compiling a list of the positions of some 850 stars, Hipparchus
invented a numerical scale to describe how bright each star appeared in the sky. He assigned
an apparent magnitude m = 1 to the brightest stars in the sky, and he gave the dimmest
stars visible to the naked eye an apparent magnitude of m = 6. Note that a smaller apparent
magnitude means a brighter-appearing star.

Since Hipparchus’s time, astronomers have extended and refined his apparent magnitude
scale. In the nineteenth century, it was thought that the human eye responded to the difference
in the logarithms of the brightness of two luminous objects. This theory led to a scale in
which a difference of 1 magnitude between two stars implies a constant ratio between their
brightnesses. By the modern definition, a difference of 5 magnitudes corresponds exactly
to a factor of 100 in brightness, so a difference of 1 magnitude corresponds exactly to a
brightness ratio of 1001/5 ≃ 2.512. Thus a first-magnitude star appears 2.512 times brighter
than a second-magnitude star, 2.5122 = 6.310 times brighter than a third-magnitude star,
and 100 times brighter than a sixth-magnitude star.

Using sensitive detectors, astronomers can measure the apparent magnitude of an object
with an accuracy of ±0.01 magnitude, and differences in magnitudes with an accuracy of
±0.002 magnitude. Hipparchus’s scale has been extended in both directions, from m =
−26.83 for the Sun to approximately m = 30 for the faintest object detectable.3 The total
range of nearly 57 magnitudes corresponds to over 10057/5 = (102)11.4 ≃ 1023 for the ratio
of the apparent brightness of the Sun to that of the faintest star or galaxy yet observed.

Flux, Luminosity, and the Inverse Square Law

The “brightness” of a star is actually measured in terms of the radiant flux F received from
the star. The radiant flux is the total amount of light energy of all wavelengths that crosses
a unit area oriented perpendicular to the direction of the light’s travel per unit time; that is,
it is the number of joules of starlight energy per second (i.e., the number of watts) received
by one square meter of a detector aimed at the star. Of course, the radiant flux received
from an object depends on both its intrinsic luminosity (energy emitted per second) and its
distance from the observer. The same star, if located farther from Earth, would appear less
bright in the sky.

3The magnitudes discussed in this section are actually bolometric magnitudes, measured over all wavelengths of
light; see Section 6 for a discussion of magnitudes measured by detectors over a finite wavelength region.
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Imagine a star of luminosity L surrounded by a huge spherical shell of radius r . Then,
assuming that no light is absorbed during its journey out to the shell, the radiant flux, F ,
measured at distance r is related to the star’s luminosity by

F = L

4πr2
, (2)

the denominator being simply the area of the sphere. Since L does not depend on r , the
radiant flux is inversely proportional to the square of the distance from the star. This is the
well-known inverse square law for light.4

Example 2.1. The luminosity of the Sun is L⊙ = 3.839 × 1026 W. At a distance of
1 AU = 1.496 × 1011 m, Earth receives a radiant flux above its absorbing atmosphere of

F = L

4πr2
= 1365 W m−2.

This value of the solar flux is known as the solar irradiance, sometimes also called the
solar constant. At a distance of 10 pc = 2.063 × 106 AU, an observer would measure the
radiant flux to be only 1/(2.063 × 106)2 as large. That is, the radiant flux from the Sun
would be 3.208 × 10−10 W m−2 at a distance of 10 pc.

Absolute Magnitude

Using the inverse square law, astronomers can assign an absolute magnitude, M , to each
star. This is defined to be the apparent magnitude a star would have if it were located at a
distance of 10 pc. Recall that a difference of 5 magnitudes between the apparent magnitudes
of two stars corresponds to the smaller-magnitude star being 100 times brighter than the
larger-magnitude star. This allows us to specify their flux ratio as

F2

F1
= 100(m1−m2)/5. (3)

Taking the logarithm of both sides leads to the alternative form:

m1 − m2 = −2.5 log10

(

F1

F2

)

. (4)

The Distance Modulus

The connection between a star’s apparent and absolute magnitudes and its distance may be
found by combining Eqs. (2) and (3):

100(m−M)/5 = F10

F
=
(

d

10 pc

)2

,

4If the star is moving with a speed near that of light, the inverse square law must be modified slightly.
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where F10 is the flux that would be received if the star were at a distance of 10 pc, and d is
the star’s distance, measured in parsecs. Solving for d gives

d = 10(m−M+5)/5 pc. (5)

The quantity m − M is therefore a measure of the distance to a star and is called the star’s
distance modulus:

m − M = 5 log10(d) − 5 = 5 log10

(

d

10 pc

)

. (6)

Example 2. . The apparent magnitude of the Sun is mSun = −26.83, and its distance is
1 AU = 4.848 × 10−6 pc. Equation (6) shows that the absolute magnitude of the Sun is

MSun = mSun − 5 log10(d) + 5 = +4.74,

as already given. The Sun’s distance modulus is thus mSun − MSun = −31.57.5

For two stars at the same distance, Eq. ( 2) shows that the ratio of their radiant fluxes
is equal to the ratio of their luminosities. Thus Eq. ( 3) for absolute magnitudes becomes

100(M1−M2)/5 = L2

L1
. (7)

Letting one of these stars be the Sun reveals the direct relation between a star’s absolute
magnitude and its luminosity:

M = MSun − 2.5 log10

(

L

L⊙

)

, (8)

where the absolute magnitude and luminosity of the Sun are MSun = +4.74 and L⊙ =
3.839 × 1026 W, respectively. It is left as an exercise for you to show that a star’s apparent
magnitude m is related to the radiant flux F received from the star by

m = MSun − 2.5 log10

(

F

F10,⊙

)

, (9)

where F10,⊙ is the radiant flux received from the Sun at a distance of 10 pc (see Exam-
ple 2.1).

The inverse square law for light, Eq. ( 2), relates the intrinsic properties of a star
(luminosity L and absolute magnitude M) to the quantities measured at a distance from

5The magnitudes m and M for the Sun have a “Sun” subscript (instead of “⊙”) to avoid confusion with M⊙, the
standard symbol for the Sun’s mass.
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that star (radiant flux F and apparent magnitude m). At first glance, it may seem that
astronomers must start with the measurable quantities F and m and then use the distance
to the star (if known) to determine the star’s intrinsic properties. However, if the star
belongs to an important class of objects known as pulsating variable stars, its intrinsic
luminosity L and absolute magnitude M can be determined without any knowledge of its
distance. Equation ( 5) then gives the distance to the variable star.

the universe.

3 THE WAVE NATURE OF LIGHT

Much of the history of physics is concerned with the evolution of our ideas about the nature
of light.

The Speed of Light

The speed of light was first measured with some accuracy in 1675, by the Danish astronomer
Ole Roemer (1644–1710). Roemer observed the moons of Jupiter as they passed into the
giant planet’s shadow, and he was able to calculate when future eclipses of the moons should
occur by using Kepler’s laws. However, Roemer discovered that when Earth was moving
closer to Jupiter, the eclipses occurred earlier than expected. Similarly, when Earth was
moving away from Jupiter, the eclipses occurred behind schedule. Roemer realized that
the discrepancy was caused by the differing amounts of time it took for light to travel the
changing distance between the two planets, and he concluded that 22 minutes was required
for light to cross the diameter of Earth’s orbit.6 The resulting value of 2.2 × 108 m s−1 was
close to the modern value of the speed of light. In 1983 the speed of light in vacuo was
formally defined to be c = 2.99792458 × 108 m s−1, and the unit of length (the meter) is
now derived from this value.7

Young’s Double-Slit Experiment

Even the fundamental nature of light has long been debated. Isaac Newton, for example,
believed that light must consist of a rectilinear stream of particles, because only such a
stream could account for the sharpness of shadows. Christian Huygens (1629–1695), a
contemporary of Newton, advanced the idea that light must consist of waves. According
to Huygens, light is described by the usual quantities appropriate for a wave. The distance
between two successive wave crests is the wavelength λ, and the number of waves per
second that pass a point in space is the frequency ν of the wave. Then the speed of the light
wave is given by

c = λν. (10)

6We now know that it takes light about 16.5 minutes to travel 2 AU.
7In 1905Albert Einstein realized that the speed of light is a universal constant of nature whose value is independent
of the observe . This realization plays a central role in his Special Theory of Relativity.

These stars act as beacons that illuminate the fundamental distance scale of

r
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FIGURE 4 Superposition principle for light waves. (a) Constructive interference. (b) Destructive
interference.

Both the particle and wave models could explain the familiar phenomena of the reflection
and refraction of light. However, the particle model prevailed, primarily on the strength
of Newton’s reputation, until the wave nature of light was conclusively demonstrated by
Thomas Young’s (1773–1829) famous double-slit experiment.

In a double-slit experiment, monochromatic light of wavelength λ from a single source
passes through two narrow, parallel slits that are separated by a distance d . The light then
falls upon a screen a distance L beyond the two slits (see Fig. 3). The series of light
and dark interference fringes that Young observed on the screen could be explained only
by a wave model of light. As the light waves pass through the narrow slits,8 they spread
out (diffract) radially in a succession of crests and troughs. Light obeys a superposition
principle, so when two waves meet, they add algebraically; see Fig. 4. At the screen, if a
wave crest from one slit meets a wave crest from the other slit, a bright fringe or maximum is
produced by the resulting constructive interference. But if a wave crest from one slit meets
a wave trough from the other slit, they cancel each other, and a dark fringe or minimum
results from this destructive interference.

The interference pattern observed thus depends on the difference in the lengths of the
paths traveled by the light waves from the two slits to the screen. As shown in Fig. 3,
if L ≫ d, then to a good approximation this path difference is d sin θ . The light waves
will arrive at the screen in phase if the path difference is equal to an integral number of
wavelengths. On the other hand, the light waves will arrive 180◦ out of phase if the path
difference is equal to an odd integral number of half-wavelengths. So for L ≫ d , the angular

8Actually, Young used pinholes in his original experiment.
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positions of the bright and dark fringes for double-slit interference are given by

d sin θ =
{

nλ (n = 0, 1, 2, … for bright fringes)
(

n − 1
2

)

λ (n = 1, 2, 3, … for dark fringes).
(11)

In either case, n is called the order of the maximum or minimum. From the measured
positions of the light and dark fringes on the screen, Young was able to determine the
wavelength of the light. At the short-wavelength end, Young found that violet light has
a wavelength of approximately 400 nm, while at the long-wavelength end, red light has
a wavelength of only 700 nm.9 The diffraction of light goes unnoticed under everyday
conditions for these short wavelengths, thus explaining Newton’s sharp shadows.

Maxwell’s Electromagnetic Wave Theory

The nature of these waves of light remained elusive until the early 1860s, when the Scottish
mathematical physicist James Clerk Maxwell (1831–1879) succeeded in condensing every-
thing known about electric and magnetic fields into the four equations that today bear his
name. Maxwell found that his equations could be manipulated to produce wave equations
for the electric and magnetic field vectors E and B. These wave equations predicted the
existence of electromagnetic waves that travel through a vacuum with speed v = 1/

√
ϵ0µ0,

where ϵ0 and µ0 are fundamental constants associated with the electric and magnetic fields,
respectively. Upon inserting the values of ϵ0 and µ0, Maxwell was amazed to discover
that electromagnetic waves travel at the speed of light. Furthermore, these equations im-
plied that electromagnetic waves are transverse waves, with the oscillatory electric and
magnetic fields perpendicular to each other and to the direction of the wave’s propagation
(see Fig. 5); such waves could exhibit the polarization10 known to occur for light. Max-
well wrote that “we can scarcely avoid the inference that light consists in the transverse
modulations of the same medium which is the cause of electric and magnetic phenomena.”

Maxwell did not live to see the experimental verification of his prediction of electro-
magnetic waves. Ten years after Maxwell’s death, the German physicist Heinrich Hertz
(1857–1894) succeeded in producing radio waves in his laboratory. Hertz determined that
these electromagnetic waves do indeed travel at the speed of light, and he confirmed their
reflection, refraction, and polarization properties. In 1889, Hertz wrote:

What is light? Since the time of Young and Fresnel we know that it is wave
motion.We know the velocity of the waves, we know their lengths, and we know
that they are transverse; in short, our knowledge of the geometrical conditions
of the motion is complete. A doubt about these things is no longer possible; a
refutation of these views is inconceivable to the physicist. The wave theory of
light is, from the point of view of human beings, certainty.

9Another commonly used measure of the wavelength of light is the angstrom; 1 Å = 0.1 nm. In these units, violet
light has a wavelength of 4000 Å and red light has a wavelength of 7000 Å.
10The electromagnetic wave shown in Fig. 5 is plane-polarized, with its electric and magnetic fields oscillating
in planes. Because E and B are always perpendicular, their respective planes of polarization are perpendicular as
well.
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FIGURE 5 Electromagnetic wave.

TABLE 1 The Electromagnetic Spectrum.

Region Wavelength
Gamma ray λ < 1 nm
X-ray 1 nm < λ < 10 nm
Ultraviolet 10 nm < λ < 400 nm
Visible 400 nm < λ < 700 nm
Infrared 700 nm < λ < 1 mm
Microwave 1 mm < λ < 10 cm
Radio 10 cm < λ

The Electromagnetic Spectrum

Today, astronomers utilize light from every part of the electromagnetic spectrum. The total
spectrum of light consists of electromagnetic waves of all wavelengths, ranging from very
short-wavelength gamma rays to very long-wavelength radio waves. Table 1 shows how
the electromagnetic spectrum has been arbitrarily divided into various wavelength regions.

The Poynting Vector and Radiation Pressure

Like all waves, electromagnetic waves carry both energy and momentum in the direction
of propagation. The rate at which energy is carried by a light wave is described by the
Poynting vector,11

S = 1
µ0

E × B,

where S has units of W m−2. The Poynting vector points in the direction of the electro-
magnetic wave’s propagation and has a magnitude equal to the amount of energy per unit
time that crosses a unit area oriented perpendicular to the direction of the propagation of

11The Poynting vector is named after John Henry Poynting (1852–1914), the physicist who first described it.
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FIGURE 6 Radiation pressure force. The surface area A is seen edge on.

the wave. Because the magnitudes of the fields E and B vary harmonically with time, the
quantity of practical interest is the time-averaged value of the Poynting vector over one cy-
cle of the electromagnetic wave. In a vacuum the magnitude of the time-averaged Poynting
vector, ⟨S⟩, is

⟨S⟩ = 1
2µ0

E0B0, (12)

where E0 and B0 are the maximum magnitudes (amplitudes) of the electric and magnetic
fields, respectively. (For an electromagnetic wave in a vacuum, E0 and B0 are related by
E0 = cB0.) The time-averaged Poynting vector thus provides a description of the radiant
flux in terms of the electric and magnetic fields of the light waves. However, it should be
remembered that the radiant flux discussed in Section 2 involves the amount of energy
received at all wavelengths from a star, whereas E0 and B0 describe an electromagnetic
wave of a specified wavelength.

Because an electromagnetic wave carries momentum, it can exert a force on a surface
hit by the light. The resulting radiation pressure depends on whether the light is reflected
from or absorbed by the surface. Referring to Fig. 6, if the light is completely absorbed,
then the force due to radiation pressure is in the direction of the light’s propagation and has
magnitude

Frad = ⟨S⟩A
c

cos θ (absorption), (13)

where θ is the angle of incidence of the light as measured from the direction perpendicular
to the surface of area A. Alternatively, if the light is completely reflected, then the radiation
pressure force must act in a direction perpendicular to the surface; the reflected light cannot
exert a force parallel to the surface. Then the magnitude of the force is

Frad = 2⟨S⟩A
c

cos2 θ (reflection). (14)

Radiation pressure has a negligible effect on physical systems under everyday conditions.
However, radiation pressure may play a dominant role in determining some aspects of the
behavior of extremely luminous objects such as early main-sequence stars, red supergiants,
and accreting compact stars. It may also have a significant effect on the small particles of
dust found throughout the interstellar medium.
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4 BLACKBODY RADIATION

Anyone who has looked at the constellation of Orion on a clear winter night has noticed the
strikingly different colors of red Betelgeuse (in Orion’s northeast shoulder) and blue-white
Rigel (in the southwest leg); see Fig. 7. These colors betray the difference in the surface
temperatures of the two stars. Betelgeuse has a surface temperature of roughly 3600 K,
significantly cooler than the 13,000-K surface of Rigel.12

The Connection between Color and Temperature

The connection between the color of light emitted by a hot object and its temperature was
first noticed in 1792 by the English maker of fine porcelain Thomas Wedgewood. All of
his ovens became red-hot at the same temperature, independent of their size, shape, and
construction. Subsequent investigations by many physicists revealed that any object with
a temperature above absolute zero emits light of all wavelengths with varying degrees of
efficiency; an ideal emitter is an object that absorbs all of the light energy incident upon
it and reradiates this energy with the characteristic spectrum shown in Fig. 8. Because
an ideal emitter reflects no light, it is known as a blackbody, and the radiation it emits
is called blackbody radiation. Stars and planets are blackbodies, at least to a rough first
approximation.

Figure 8 shows that a blackbody of temperature T emits a continuous spectrum with
some energy at all wavelengths and that this blackbody spectrum peaks at a wavelength
λmax, which becomes shorter with increasing temperature. The relation between λmax and
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FIGURE 7 The constellation of Orion.

12Both of these stars are pulsating variables, so the values quoted are average temperatures. Estimates of the
surface temperature of Betelgeuse actually range quite widely, from about 3100 K to 3900 K. Similarly,
estimates of the surface temperature of Rigel range from 8000 K to 13,000 K.
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T is known as Wien’s displacement law:13

λmaxT = 0.002897755 m K. (15)

Example 4.1. Betelgeuse has a surface temperature of 3600 K. If we treat Betelgeuse
as a blackbody, Wien’s displacement law shows that its continuous spectrum peaks at a
wavelength of

λmax ≃ 0.0029 m K
3600 K

= 8.05 × 10−7 m = 805 nm,

which is in the infrared region of the electromagnetic spectrum. Rigel, with a surface
temperature of 13,000 K, has a continuous spectrum that peaks at a wavelength of

λmax ≃ 0.0029 m K
13,000 K

= 2.23 × 10−7 m = 223 nm,

in the ultraviolet region.

The Stefan–Boltzmann Equation

Figure 8 also shows that as the temperature of a blackbody increases, it emits more
energy per second at all wavelengths. Experiments performed by the Austrian physicist

13In 1911, the German physicist Wilhelm Wien (1864–1928) received the Nobel Prize in 1911 for his theoretical
contributions to understanding the blackbody spectrum.
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Josef Stefan (1835–1893) in 1879 showed that the luminosity, L, of a blackbody of area A

and temperature T (in kelvins) is given by

L = AσT 4. (16)

Five years later another Austrian physicist, Ludwig Boltzmann (1844–1906), derived this
equation, now called the Stefan–Boltzmann equation, using the laws of thermodynamics
and Maxwell’s formula for radiation pressure. The Stefan–Boltzmann constant, σ , has the
value

σ = 5.670400 × 10−8 W m−2 K−4.

For a spherical star of radius R and surface area A = 4πR2, the Stefan–Boltzmann equation
takes the form

L = 4πR2σT 4
e . (17)

Since stars are not perfect blackbodies, we use this equation to define the effective temper-
ature Te of a star’s surface. Combining this with the inverse square law, Eq. ( 2), shows
that at the surface of the star (r = R), the surface flux is

Fsurf = σT 4
e . (18)

Example 4.2. The luminosity of the Sun is L⊙ = 3.839 × 1026 W and its radius is
R⊙ = 6.95508 × 108 m. The effective temperature of the Sun’s surface is then

T⊙ =
(

L⊙
4πR2

⊙σ

)
1
4

= 5777 K.

The radiant flux at the solar surface is

Fsurf = σT 4
⊙ = 6.316 × 107 W m−2.

According to Wien’s displacement law, the Sun’s continuous spectrum peaks at a wave-
length of

λmax ≃ 0.0029 m K
5777 K

= 5.016 × 10−7 m = 501.6 nm.

This wavelength falls in the green region (491 nm < λ < 575 nm) of the spectrum of
visible light. However, the Sun emits a continuum of wavelengths both shorter and longer
than λmax, and the human eye perceives the Sun’s color as yellow. Because the Sun emits
most of its energy at visible wavelengths (see Fig. 8), and because Earth’s atmosphere is
transparent at these wavelengths, the evolutionary process of natural selection has produced
a human eye sensitive to this wavelength region of the electromagnetic spectrum.

Rounding off λmax and T⊙ to the values of 500 nm and 5800 K, respectively, permits
Wien’s displacement law to be written in the approximate form

λmaxT ≈ (500 nm)(5800 K). (19)
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The Eve of a New World View

This section draws to a close at the end of the nineteenth century. The physicists and
astronomers of the time believed that all of the principles that govern the physical world
had finally been discovered. Their scientific world view, the Newtonian paradigm, was the
culmination of the heroic, golden age of classical physics that had flourished for over three
hundred years. The construction of this paradigm began with the brilliant observations of
Galileo and the subtle insights of Newton. Its architecture was framed by Newton’s laws,
supported by the twin pillars of the conservation of energy and momentum and illuminated
by Maxwell’s electromagnetic waves. Its legacy was a deterministic description of a universe
that ran like clockwork, with wheels turning inside of wheels, all of its gears perfectly
meshed. Physics was in danger of becoming a victim of its own success. There were no
challenges remaining. All of the great discoveries apparently had been made, and the only
task remaining for men and women of science at the end of the nineteenth century was
filling in the details.

However, as the twentieth century opened, it became increasingly apparent that a crisis
was brewing. Physicists were frustrated by their inability to answer some of the simplest
questions concerning light. What is the medium through which light waves travel the vast
distances between the stars, and what is Earth’s speed through this medium? What deter-
mines the continuous spectrum of blackbody radiation and the characteristic, discrete colors
of tubes filled with hot glowing gases? Astronomers were tantalized by hints of a treasure
of knowledge just beyond their grasp.

It took a physicist of the stature of Albert Einstein to topple the Newtonian paradigm
and bring about two revolutions in physics. One transformed our ideas about space and
time, and the other changed our basic concepts of matter and energy. The rigid clockwork
universe of the golden era was found to be an illusion and was replaced by a random
universe governed by the laws of probability and statistics. The following four lines aptly
summarize the situation. The first two lines were written by the English poetAlexander Pope
(1688–1744), a contemporary of Newton; the last two, by Sir J. C. Squire (1884–1958),
were penned in 1926.

Nature and Nature’s laws lay hid in night:
God said, Let Newton be! and all was light.

It did not last: the Devil howling “Ho!
Let Einstein be!” restored the status quo.

5 THE QUANTIZATION OF ENERGY

One of the problems haunting physicists at the end of the nineteenth century was their
inability to derive from fundamental physical principles the blackbody radiation curve de-
picted in Fig. 8. Lord Rayleigh14 (1842–1919) had attempted to arrive at the expression by
applying Maxwell’s equations of classical electromagnetic theory together with the results

14Lord Rayleigh, as he is commonly known, was born John William Strutt but succeeded to the title of third Baron
Rayleigh of Terling Place, Witham, in the county of Essex, when he was thirty years old.
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from thermal physics. His strategy was to consider a cavity of temperature T filled with
blackbody radiation. This may be thought of as a hot oven filled with standing waves of
electromagnetic radiation. If L is the distance between the oven’s walls, then the permitted
wavelengths of the radiation are λ = 2L, L, 2L/3, 2L/4, 2L/5, . . . , extending forever to in-
creasingly shorter wavelengths.15 According to classical physics, each of these wavelengths
should receive an amount of energy equal to kT , where k = 1.3806503 × 10−23 J K−1 is
Boltzmann’s constant, familiar from the ideal gas law PV = NkT . The result of Rayleigh’s
derivation gave

Bλ(T ) ≃ 2ckT

λ4
, (valid only if λ is long) (20)

which agrees well with the long-wavelength tail of the blackbody radiation curve. However,
a severe problem with Rayleigh’s result was recognized immediately; his solution for Bλ(T )

grows without limit as λ → 0. The source of the problem is that according to classical
physics, an infinite number of infinitesimally short wavelengths implied that an unlimited
amount of blackbody radiation energy was contained in the oven, a theoretical result so
absurd it was dubbed the “ultraviolet catastrophe.” Equation ( 20) is known today as the
Rayleigh–Jeans law.16

Wien was also working on developing the correct mathematical expression for the black-
body radiation curve. Guided by the Stefan–Boltzmann law (Eq. 16) and classical thermal
physics, Wien was able to develop an empirical law that described the curve at short wave-
lengths but failed at longer wavelengths:

Bλ(T ) ≃ aλ−5e−b/λT , (valid only if λ is short) (21)

where a and b were constants chosen to provide the best fit to the experimental data.

Planck’s Function for the Blackbody Radiation Curve

By late 1900 the German physicist Max Planck (1858–1947) had discovered that a modi-
fication of Wien’s expression could be made to fit the blackbody spectra shown in Fig. 8
while simultaneously replicating the long-wavelength success of the Rayleigh–Jeans law
and avoiding the ultraviolet catastrophe:

Bλ(T ) = a/λ5

eb/λT − 1
,

In order to determine the constants a and b while circumventing the ultraviolet catas-
trophe, Planck employed a clever mathematical trick. He assumed that a standing electro-
magnetic wave of wavelength λ and frequency ν = c/λ could not acquire just any arbitrary
amount of energy. Instead, the wave could have only specific allowed energy values that

15This is analogous to standing waves on a string of length L that is held fixed at both ends. The permitted
wavelengths are the same as those of the standing electromagnetic waves.
16James Jeans (1877–1946), a British astronomer, found a numerical error in Rayleigh’s original work; the corrected
result now bears the names of both men.
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were integral multiples of a minimum wave energy.17 This minimum energy, a quantum of
energy, is given by hν or hc/λ, where h is a constant. Thus the energy of an electromagnetic
wave is nhν or nhc/λ, where n (an integer) is the number of quanta in the wave. Given this
assumption of quantized wave energy with a minimum energy proportional to the frequency
of the wave, the entire oven could not contain enough energy to supply even one quantum
of energy for the short-wavelength, high-frequency waves. Thus the ultraviolet catastrophe
would be avoided. Planck hoped that at the end of his derivation, the constant h could be
set to zero; certainly, an artificial constant should not remain in his final result for Bλ(T ).

Planck’s stratagem worked! His formula, now known as the Planck function, agreed
wonderfully with experiment, but only if the constant h remained in the equation:18

Bλ(T ) = 2hc2/λ5

ehc/λkT − 1
. (22)

Planck’s constant has the value h = 6.62606876 × 10−34 J s.

The Planck Function and Astrophysics

Finally armed with the correct expression for the blackbody spectrum, we can apply Planck’s
function to astrophysical systems. In spherical coordinates, the amount of radiant energy per
unit time having wavelengths between λ and λ+ dλ emitted by a blackbody of temperature
T and surface area dA into a solid angle d( ≡ sin θ dθ dφ is given by

Bλ(T ) dλ dA cos θ d( = Bλ(T ) dλ dA cos θ sin θ dθ dφ; (23)

see Fig. 9.19 The units of Bλ are therefore W m−3 sr−1. Unfortunately, these units can
be misleading. You should note that “W m−3” indicates power (energy per unit time) per
unit area per unit wavelength interval, W m−2 m−1, not energy per unit time per unit
volume. To help avoid confusion, the units of the wavelength interval dλ are sometimes
expressed in nanometers rather than meters, so the units of the Planck function become
W m−2 nm−1 sr−1, as in Fig. 8.20

At times it is more convenient to deal with frequency intervals dν than with wavelength
intervals dλ. In this case the Planck function has the form

Bν(T ) = 2hν3/c2

ehν/kT − 1
. (24)

17Actually, Planck restricted the possible energies of hypothetical electromagnetic oscillators in the oven walls
that emit the electromagnetic radiation.
18It is left for you to show that the Planck function reduces to the Rayleigh–Jeans law at long wavelengths
(Problem 10) and to Wien’s expression at short wavelengths (Problem 11).
19Note that dA cos θ is the area dA projected onto a plane perpendicular to the direction in which the radiation is
traveling. . .
20The value of the Planck function thus depends on the units of the wavelength interval. The conversion of dλ

from meters to nanometers means that the values of Bλ obtained by evaluating Eq. ( 22) must be divided by 109.
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Thus, in spherical coordinates,

Bν dν dA cos θ d( = Bν dν dA cos θ sin θ dθ dφ

is the amount of energy per unit time of blackbody radiation having frequency between ν
and ν + dν emitted by a blackbody of temperature T and surface area dA into a solid angle
d( = sin θ dθ dφ.

The Planck function can be used to make the connection between the observed properties
of a star (radiant flux, apparent magnitude) and its intrinsic properties (radius, temperature).
Consider a model star consisting of a spherical blackbody of radius R and temperature T .
Assuming that each small patch of surface area dA emits blackbody radiation isotropically
(equally in all directions) over the outward hemisphere, the energy per second having
wavelengths between λ and λ+ dλ emitted by the star is

Lλ dλ =
∫ 2π

φ=0

∫ π/2

θ=0

∫

A

Bλ dλ dA cos θ sin θ dθ dφ. (25)

The angular integration yields a factor of π , and the integral over the area of the sphere
produces a factor of 4πR2. The result is

Lλ dλ = 4π2R2Bλ dλ (26)

= 8π2R2hc2/λ5

ehc/λkT − 1
dλ. (27)

Lλ dλ is known as the monochromatic luminosity. Comparing the Stefan–Boltzmann
equation ( 17) with the result of integrating Eq. ( 26) over all wavelengths shows that

∫ ∞

0
Bλ(T ) dλ = σT 4

π
. (28)
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In Problem 14, you will use Eq. ( 27) to express the Stefan–Boltzmann constant, σ , in
terms of the fundamental constants c, h, and k. The monochromatic luminosity is related
to the monochromatic flux, Fλ dλ, by the inverse square law for light, Eq. ( 2):

Fλ dλ = Lλ

4πr2
dλ = 2πhc2/λ5

ehc/λkT − 1

(

R

r

)2

dλ, (29)

where r is the distance to the model star. Thus Fλ dλ is the number of joules of starlight
energy with wavelengths between λ and λ+ dλ that arrive per second at one square meter
of a detector aimed at the model star, assuming that no light has been absorbed or scattered
during its journey from the star to the detector. Of course, Earth’s atmosphere absorbs some
starlight, but measurements of fluxes and apparent magnitudes can be corrected to account
for this absorption The values of these quantities usually quoted for stars are
in fact corrected values and would be the results of measurements above Earth’s absorbing
atmosphere.

6 THE COLOR INDEX

The apparent and absolute magnitudes discussed in Section 2, measured over all wave-
lengths of light emitted by a star, are known as bolometric magnitudes and are denoted by
mbol and Mbol, respectively.21 In practice, however, detectors measure the radiant flux of a
star only within a certain wavelength region defined by the sensitivity of the detector.

UBV Wavelength Filters

The color of a star may be precisely determined by using filters that transmit the star’s light
only within certain narrow wavelength bands. In the standard UBV system, a star’s apparent
magnitude is measured through three filters and is designated by three capital letters:

• U , the star’s ultraviolet magnitude, is measured through a filter centered at 365 nm
with an effective bandwidth of 68 nm.

• B, the star’s blue magnitude, is measured through a filter centered at 440 nm with an
effective bandwidth of 98 nm.

• V , the star’s visual magnitude, is measured through a filter centered at 550 nm with
an effective bandwidth of 89 nm.

Color Indices and the Bolometric Correction

Using Eq. ( 6), a star’s absolute color magnitudes MU , MB , and MV may be determined if
its distance d is known.22 Astar’s U − B color index is the difference between its ultraviolet

21A bolometer is an instrument that measures the increase in temperature caused by the radiant flux it receives at
all wavelengths.
22Note that although apparent magnitude is not denoted by a subscripted “m” in the UBV system, the absolute
magnitude is denoted by a subscripted “M .”

.
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and blue magnitudes, and a star’s B − V color index is the difference between its blue and
visual magnitudes:

U − B = MU − MB

and

B − V = MB − MV .

Stellar magnitudes decrease with increasing brightness; consequently, a star with a smaller
B − V color index is bluer than a star with a larger value of B − V . Because a color index
is the difference between two magnitudes, Eq. ( 6) shows that it is independent of the star’s
distance. The difference between a star’s bolometric magnitude and its visual magnitude is
its bolometric correction BC:

BC = mbol − V = Mbol − MV . (30)

Example 6.1. Sirius, the brightest-appearing star in the sky, has U , B, and V apparent
magnitudes of U = −1.47, B = −1.43, and V = −1.44. Thus for Sirius,

U − B = −1.47 − (−1.43) = −0.04

and

B − V = −1.43 − (−1.44) = 0.01.

Sirius is brightest at ultraviolet wavelengths, as expected for a star with an effective tem-
perature of Te = 9970 K. For this surface temperature,

λmax = 0.0029 m K
9970 K

= 291 nm,

which is in the ultraviolet portion of the electromagnetic spectrum. The bolometric correc-
tion for Sirius is BC = −0.09, so its apparent bolometric magnitude is

mbol = V + BC = −1.44 + (−0.09) = −1.53.

The relation between apparent magnitude and radiant flux, Eq. ( 4), can be used to
derive expressions for the ultraviolet, blue, and visual magnitudes measured (above Earth’s
atmosphere) for a star. A sensitivity function S(λ) is used to describe the fraction of the
star’s flux that is detected at wavelength λ. S depends on the reflectivity of the telescope
mirrors, the bandwidth of the U , B, and V filters, and the response of the photometer. Thus,
for example, a star’s ultraviolet magnitude U is given by

U = −2.5 log10

(
∫ ∞

0
FλSU dλ

)

+ CU, (31)

where CU is a constant. Similar expressions are used for a star’s apparent magnitude within
other wavelength bands. The constants C in the equations for U , B, and V differ for each
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of these wavelength regions and are chosen so that the star Vega (α Lyrae) has a magnitude
of zero as seen through each filter.23 This is a completely arbitrary choice and does not
imply that Vega would appear equally bright when viewed through the U , B, and V filters.
However, the resulting values for the visual magnitudes of stars are about the same as those
recorded by Hipparchus two thousand years ago.24

A different method is used to determine the constant Cbol in the expression for the
bolometric magnitude, measured over all wavelengths of light emitted by a star. For a
perfect bolometer, capable of detecting 100 percent of the light arriving from a star, we set
S(λ) ≡ 1:

mbol = −2.5 log10

(
∫ ∞

0
Fλ dλ

)

+ Cbol. (32)

The value for Cbol originated in the wish of astronomers that the value of the bolometric
correction

BC = mbol − V

be negative for all stars (since a star’s radiant flux over all wavelengths is greater than
its flux in any specified wavelength band) while still being as close to zero as possible.
After a value of Cbol was agreed upon, it was discovered that some supergiant stars have
positive bolometric corrections. Nevertheless, astronomers have chosen to continue using
this unphysical method of measuring magnitudes.25 It is left as an exercise for you to
evaluate the constant Cbol by using the value of mbol assigned to the Sun: mSun = −26.83.

The color indices U − B and B − V are immediately seen to be

U − B = −2.5 log10

(

∫

FλSU dλ
∫

FλSB dλ

)

+ CU−B, (33)

where CU−B ≡ CU − CB . A similar relation holds for B − V . From Eq. ( 29), note that
although the apparent magnitudes depend on the radius R of the model star and its distance
r , the color indices do not, because the factor of (R/r)2 cancels in Eq. ( 33). Thus the
color index is a measure solely of the temperature of a model blackbody star.

Example 6.2. A certain hot star has a surface temperature of 42,000 K and color indices
U − B = −1.19 and B − V = −0.33. The large negative value of U − B indicates that
this star appears brightest at ultraviolet wavelengths, as can be confirmed with Wien’s
displacement law, Eq. (19). The spectrum of a 42,000-K blackbody peaks at

λmax = 0.0029 m K
42,000 K

= 69 nm,

continued

23Actually, the average magnitude of several stars is used for this calibration.
24See Chapter 1 of Böhm-Vitense (1989b) for a further discussion of the vagaries of the magnitude system used
by astronomers.
25Some authors, such as Böhm-Vitense (1989a, 1989b), prefer to define the bolometric correction as BC =
V − mbol, so their values of BC are usually positive.
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923, 1965.)

in the ultraviolet region of the electromagnetic spectrum. This wavelength is much shorter
than the wavelengths transmitted by the U , B, and V filters (see Fig. 10), so we will be
dealing with the smoothly declining long-wavelength “tail” of the Planck function Bλ(T ).

We can use the values of the color indices to estimate the constant CU−B in Eq. ( 33),
and CB−V in a similar equation for the color index B − V . In this estimate, we will use a
step function to represent the sensitivity function: S(λ) = 1 inside the filter’s bandwidth,
and S(λ) = 0 otherwise. The integrals in Eq. ( 33) may then be approximated by the value
of the Planck function Bλ at the center of the filter bandwidth, multiplied by that bandwidth.
Thus, for the wavelengths and bandwidths *λ listed previously,

U − B = −2.5 log10

(

B365*λU

B440*λB

)

+ CU−B

−1.19 = −0.32 + CU−B

CU−B = −0.87,

and

B − V = −2.5 log10

(

B440*λB

B550*λV

)

+ CB−V

−0.33 = −0.98 + CB−V

CB−V = 0.65.

It is left as an exercise for you to use these values of CU−B and CB−V to estimate the
color indices for a model blackbody Sun with a surface temperature of 5777 K. Although
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the resulting value of B − V = +0.57 is in fair agreement with the measured value of
B − V = +0.650 for the Sun, the estimate of U − B = −0.22 is quite different from the
measured value of U − B = +0.195.

The Color–Color Diagram

Figure 11 is a color–color diagram showing the relation between the U − B and B − V

color indices for main-sequence stars.26 Astronomers face the difficult task of connecting
a star’s position on a color–color diagram with the physical properties of the star itself. If
stars actually behaved as blackbodies, the color–color diagram would be the straight dashed
line shown in Fig. 11. However, stars are not true blackbodies.

ome light is absorbed as it travels through a star’s atmosphere, and the
amount of light absorbed depends on both the wavelength of the light and the temperature
of the star. Other factors also play a role, causing the color indices of main-sequence and
supergiant stars of the same temperature to be slightly different. The color–color diagram
in Fig. 11 shows that the agreement between actual stars and model blackbody stars is
best for very hot stars.
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FIGURE 11 Color–color diagram for main-sequence stars. The dashed line is for a blackbody.

26

in their centers. Approximately 80% to 90% of all stars are main-sequence stars. The letter labels in Fig. 11 are
spectral types.

S

Main-sequence stars are powered by the nuclear fusion of hydrogen nuclei
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PROBLEM SET

1 In 1672, an international effort was made to measure the parallax angle of Mars at the time of
opposition, when it was closest to Earth; see the below  figure.

(a) Consider two observers who are separated by a baseline equal to Earth’s diameter. If the
difference in their measurements of Mars’s angular position is 33.6′′, what is the distance
between Earth and Mars at the time of opposition? Express your answer both in units of m
and in AU.

(b) If the distance to Mars is to be measured to within 10%, how closely must the clocks used by
the two observers be synchronized? Hint: Ignore the rotation of Earth. The average orbital
velocities of Earth and Mars are 29.79 km s−1 and 24.13 km s−1, respectively.
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The retrograde motion of Mars as described by the Copernican model. Note that the
lines of sight from Earth to Mars cross for positions 3, 4, and 5. This effect, combined with the slightly
differing planes of the two orbits result in retrograde paths near opposition.

2 At what distance from a 100-W light bulb is the radiant flux equal to the solar irradiance?

3 The parallax angle for Sirius is 0.379′′.

(a) Find the distance to Sirius in units of (i) parsecs; (ii) light-years; (iii) AU; (iv) m.

(b) Determine the distance modulus for Sirius.

4 Using the information in Example 6.1 and Problem 3, determine the absolute bolometric
magnitude of Sirius and compare it with that of the Sun. What is the ratio of Sirius’s luminosity
to that of the Sun?

5 (a) The Hipparcos Space Astrometry Mission was able to measure parallax angles down to
nearly 0.001′′. To get a sense of that level of resolution, how far from a dime would you need
to be to observe it subtending an angle of 0.001′′? (The diameter of a dime is approximately
1.9 cm.)

From Chapter 3 o f An Introduction to Modern Astrophysic Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 
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6 Derive the relation

m = MSun − 2.5 log10

(

F

F10,⊙

)

.

7 A 1.2 × 104 kg spacecraft is launched from Earth and is to be accelerated radially away from the
Sun using a circular solar sail. The initial acceleration of the spacecraft is to be 1g. Assuming a
flat sail, determine the radius of the sail if it is

(a) black, so it absorbs the Sun’s light.

(b) shiny, so it reflects the Sun’s light.

Hint: The spacecraft, like Earth, is orbiting the Sun. Should you include the Sun’s gravity in
your calculation?

8 The average person has 1.4 m2 of skin at a skin temperature of roughly 306 K (92◦F). Consider
the average person to be an ideal radiator standing in a room at a temperature of 293 K (68◦F).

(a) Calculate the energy per second radiated by the average person in the form of blackbody
radiation. Express your answer in watts.

(b) Determine the peak wavelength λmax of the blackbody radiation emitted by the average
person. In what region of the electromagnetic spectrum is this wavelength found?

(c) A blackbody also absorbs energy from its environment, in this case from the 293-K room.
The equation describing the absorption is the same as the equation describing the emission
of blackbody radiation, Eq. ( 16). Calculate the energy per second absorbed by the average
person, expressed in watts.

(d) Calculate the net energy per second lost by the average person via blackbody radiation.

9 Consider a model of the star Dschubba (δ Sco), the center star in the head of the constellation
Scorpius.Assume that Dschubba is a spherical blackbody with a surface temperature of 28,000 K
and a radius of 5.16 × 109 m. Let this model star be located at a distance of 123 pc from Earth.
Determine the following for the star:

(a) Luminosity.

L = AσT 4. (16)

(b) Absolute bolometric magnitude.

(c) Apparent bolometric magnitude.

(d) Distance modulus.

(e) Radiant flux at the star’s surface.

(f) Radiant flux at Earth’s surface (compare this with the solar irradiance).

(g) Peak wavelength λmax.

10 (a) Show that the Rayleigh–Jeans law (Eq. 20) is an approximation of the Planck function
Bλ in the limit of λ ≫ hc/kT . (The first-order expansion ex ≈ 1 + x for x ≪ 1 will be
useful.) Notice that Planck’s constant is not present in your answer. The Rayleigh–Jeans
law is a classical result, so the “ultraviolet catastrophe” at short wavelengths, produced by
the λ4 in the denominator, cannot be avoided.

(b) Assume that grass grows at the rate of 5 cm per week.

i. How much does grass grow in one second?

ii. How far from the grass would you need to be to see it grow at an angular rate of
0.000004′′ (4 microarcseconds) per second? Four microarcseconds is the estimated
angular resolution of SIM, NASA’s planned astrometric mission.
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(b) Plot the Planck function Bλ and the Rayleigh–Jeans law for the Sun (T⊙ = 5777 K) on the
same graph. At roughly what wavelength is the Rayleigh–Jeans value twice as large as the
Planck function?

11 Show that Wien’s expression for blackbody radiation (Eq. 21) follows directly from Planck’s
function at short wavelengths.

12 Derive Wien’s displacement law, Eq. ( 15), by setting dBλ/dλ = 0. Hint: You will encounter
an equation that must be solved numerically, not algebraically.

13 (a) Use Eq. ( 24) to find an expression for the frequency νmax at which the Planck function Bν

attains its maximum value. (Warning: νmax ̸= c/λmax.)

(b) What is the value of νmax for the Sun?

(c) Find the wavelength of a light wave having frequency νmax. In what region of the electro-
magnetic spectrum is this wavelength found?

14 (a) Integrate Eq. ( 27) over all wavelengths to obtain an expression for the total luminosity of
a blackbody model star. Hint:

∫ ∞

0

u3 du

eu − 1
= π 4

15
.

(b) Compare your result with the Stefan–Boltzmann equation ( 17), and show that the Stefan–
Boltzmann constant σ is given by

σ = 2π5k4

15c2h3
.

(c) Calculate the value of σ from this expression.

15 Use the data in Appendix: Stellar Data, to answer the following questions.

(a) Calculate the absolute and apparent visual magnitudes, MV and V , for the Sun.

(b) Determine the magnitudes MB , B, MU , and U for the Sun.

Bλ(T ) ≃ aλ−5e−b/λT , (valid only if λ is short) (21)

λmaxT = 0.002897755 m K. (15)

Bν(T ) = 2hν3/c2

ehν/kT − 1
. (24)

= 8π2R2hc2/λ5

ehc/λkT − 1
dλ. (27)

L = 4πR2σT 4
e . (17)

Bλ(T ) ≃ 2ckT

λ4
, (valid only if λ is long) (20)
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[i.e., ignore the constant C in Eq. ( 31)]. Assume that
that S(λ) = 0 outside the filter bandwidth.

17 Evaluate the constant Cbol in Eq. (3.32) by using mSun = −26.83.

18 Use the values of the constants CU−B and CB−V found in Example 6.2
to estimate the color indices U − B and B − V for the Sun.

19 Shaula (λ Scorpii) is a bright (V = 1.62) blue-white subgiant star located at the tip of the
scorpion’s tail. Its surface temperature is about 22,000 K.
(a) Use the values of the constants CU−B and CB−V found in Example 6.2

indices U − B and B − V for Shaula. Compare
U−B = −0.90 and B − V = −0.23.

(b) The Hipparcos Space Astrometry Mission measured the parallax angle for Shaula to be
0.00464′′. Determine the absolute visual magnitude of the star.

(Shaula is a pulsating star, belonging to the class of Beta Cephei variables. As
its magnitude varies between V = 1.59 and V = 1.65 with a period of 5 hours 8 minutes, its
color indices also change slightly.)

16 Use the filter bandwidths for the UBV system in  section 6 of The Continuous Spectrum of  
9600 K for Vega to determine through which filter Vega

(c) Locate the Sun and Sirius on the color–color diagram in Fig. 11. Refer to Example 6.1
for the data on Sirius.
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FIGURE 11 Color–color diagram for main-sequence stars. The dashed line is for a blackbody.
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U = −2.5 log10

(
∫ ∞

0
FλSU dλ

)

+ CU, (31)
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The Theory of Special Relativity

1 The Failure of the Galilean Transformations
2 The Lorentz Transformations
3 Time and Space in Special Relativity
4 Relativistic Momentum and Energy

1 THE FAILURE OF THE GALILEAN TRANSFORMATIONS

A wave is a disturbance that travels through a medium. Water waves are disturbances
traveling through water, and sound waves are disturbances traveling through air. James
Clerk Maxwell predicted that light consists of “modulations of the same medium which is
the cause of electric and magnetic phenomena,” but what was the medium through which
light waves traveled? At the time, physicists believed that light waves moved through a
medium called the luminiferous ether. This idea of an all-pervading ether had its roots in
the science of early Greece. In addition to the four earthly elements of earth, air, fire, and
water, the Greeks believed that the heavens were composed of a fifth perfect element: the
ether. Maxwell echoed their ancient belief when he wrote:

There can be no doubt that the interplanetary and interstellar spaces are not
empty, but are occupied by a material substance or body, which is certainly the
largest, and probably the most uniform body of which we have any knowledge.

This modern reincarnation of the ether had been proposed for the sole purpose of transporting
light waves; an object moving through the ether would experience no mechanical resistance,
so Earth’s velocity through the ether could not be directly measured.

The Galilean Transformations

In fact, no mechanical experiment is capable of determining the absolute velocity of an ob-
server. It is impossible to tell whether you are at rest or in uniform motion (not accelerating).
This general principle was recognized very early. Galileo described a laboratory completely
enclosed below the deck of a smoothly sailing ship and argued that no experiment

this uniformly moving laboratory could measure the ship’s velocity. To
see why, consider two inertial reference frames, S and S ′. n inertial reference
frame may be thought of as a laboratory in which Newton’s first law is valid: An object at
rest will remain at rest, and an object in motion will remain in motion in a straight line at

A
done  in



Clock

Meter stick

FIGURE 1 Inertial reference frame.

constant speed, unless acted upon by an external force. As shown in Fig. 1, the laboratory
consists of (in principle) an infinite collection of meter sticks and synchronized clocks that
can record the position and time of any event that occurs in the laboratory, at the location of
that event; this removes the time delay involved in relaying information about an event to
a distant recording device. With no loss of generality, the frame S ′ can be taken as moving
in the positive x-direction (relative to the frame S) with constant velocity u, as shown in
Fig. 2.1 Furthermore, the clocks in the two frames can be started when the origins of the
coordinate systems, O and O ′, coincide at time t = t ′ = 0.

Observers in the two frames S and S ′ measure the same moving object, recording its
positions (x, y, z) and (x ′, y ′, z′) at time t and t ′, respectively. An appeal to common sense
and intuition leads to the conclusion that these measurements are related by the Galilean
transformation equations:

x ′ = x − ut (1)

y ′ = y (2)

z′ = z (3)

t ′ = t. (4)

1This does not imply that the frame S is at rest and that S′ is moving. S′ could be at rest while S moves in the
negative x′-direction, or both frames could be moving. The point of the following argument is that there is no way
to tell; only the relative velocity u is meaningful.
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Taking time derivatives with respect to either t or t ′ (since they are always equal) shows
how the components of the object’s velocity v and v′ measured in the two frames are related:

v′
x = vx − u

v′
y = vy

v′
z = vz,

or, in vector form,

v′ = v − u. (5)

Since u is constant, another time derivative shows that the same acceleration is obtained
for the object as measured in both reference frames:

a′ = a.

Thus F = ma = ma′ for the object of mass m; Newton’s laws are obeyed in both reference
frames. Whether a laboratory is located in the hold of Galileo’s ship or anywhere else in
the universe, no mechanical experiment can be done to measure the laboratory’s absolute
velocity.

The Michelson–Morley Experiment

Maxwell’s discovery that electromagnetic waves move through the ether with a speed of
c ≃ 3 × 108 m s−1 seemed to open the possibility of detecting Earth’s absolute motion
through the ether by measuring the speed of light from Earth’s frame of reference and
comparing it with Maxwell’s theoretical value of c. In 1887 two Americans, the physicist
Albert A. Michelson (1852–1931) and his chemist colleague Edward W. Morley (1838–
1923), performed a classic experiment that attempted this measurement of Earth’s absolute
velocity. Although Earth orbits the Sun at approximately 30 km s−1, the results of the
Michelson–Morley experiment were consistent with a velocity of Earth through the ether
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of zero!2 Furthermore, as Earth spins on its axis and orbits the Sun, a laboratory’s speed
through the ether should be constantly changing. The constantly shifting “ether wind”
should easily be detected. However, all of the many physicists who have since repeated
the Michelson–Morley experiment with increasing precision have reported the same null
result. Everyone measures exactly the same value for the speed of light, regardless of the
velocity of the laboratory on Earth or the velocity of the source of the light.

On the other hand, Eq. ( 5) implies that two observers moving with a relative veloc-
ity u should obtain different values for the speed of light. The contradiction between the
commonsense expectation of Eq. ( 5) and the experimentally determined constancy of
the speed of light means that this equation, and the equations from which it was derived
(the Galilean transformation equations, 1– 4), cannot be correct. Although the Galilean
transformations adequately describe the familiar low-speed world of everyday life where
v/c ≪ 1, they are in sharp disagreement with the results of experiments involving velocities
near the speed of light. A crisis in the Newtonian paradigm was developing.

2 THE LORENTZ TRANSFORMATIONS

The young Albert Einstein (1875–1955; see Fig. 3) enjoyed discussing a puzzle with his
friends: What would you see if you looked in a mirror while moving at the speed of light?
Would you see your image in the mirror, or not? This was the beginning of Einstein’s search
for a simple, consistent picture of the universe, a quest that would culminate in his theories

FIGURE 3 Albert Einstein (1875–1955). (Courtesy of Yerkes Observatory.)

2Strictly speaking, a laboratory on Earth is not in an inertial frame of reference, because Earth both spins on its axis
and accelerates as it orbits the Sun. However, these noninertial effects are unimportant for the Michelson–Morley
experiment.
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of relativity. After much reflection, Einstein finally rejected the notion of an all-pervading
ether.

Einstein’s Postulates

In 1905 Einstein introduced his two postulates of special relativity3 in a remarkable paper,
“On the Electrodynamics of Moving Bodies.”

The phenomena of electrodynamics as well as of mechanics possess no prop-
erties corresponding to the idea of absolute rest. They suggest rather that …
the same laws of electrodynamics and optics will be valid for all frames of
reference for which the equations of mechanics hold good. We will raise this
conjecture (the purport of which will hereafter be called the “Principle of Rela-
tivity”) to the status of a postulate, and also introduce another postulate, which
is only apparently irreconcilable to the former, namely, that light is always
propagated in empty space with a definite speed c which is independent of the
state of motion of the emitting body.

In other words, Einstein’s postulates are

The Principle of Relativity The laws of physics are the same in all inertial
reference frames.

The Constancy of the Speed of Light Light moves through a vacuum at a
constant speed c that is independent of the motion of the light source.

The Derivation of the Lorentz Transformations

Einstein then went on to derive the equations that lie at the heart of his theory of special
relativity, the Lorentz transformations.4 For the two inertial reference frames shown in
Fig. 2, the most general set of linear transformation equations between the space and time
coordinates (x, y, z, t) and (x ′, y ′, z′, t ′) of the same event measured from S and S ′ are

x ′ = a11x + a12y + a13z + a14t (6)

y ′ = a21x + a22y + a23z + a24t (7)

z′ = a31x + a32y + a33z + a34t (8)

t ′ = a41x + a42y + a43z + a44t. (9)

If the transformation equations were not linear, then the length of a moving object or the
time interval between two events would depend on the choice of origin for the frames S

and S ′. This is unacceptable, since the laws of physics cannot depend on the numerical
coordinates of an arbitrarily chosen coordinate system.

3The theory of special relativity deals only with inertial reference frames, whereas the general theory includes
accelerating frames.
4These equations were first derived by Hendrik A. Lorentz (1853–1928) of the Netherlands but were applied to a
different situation involving a reference frame at absolute rest with respect to the ether.
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The coefficients aij can be determined by using Einstein’s two postulates and some
simple symmetry arguments. Einstein’s first postulate, the Principle of Relativity, implies
that lengths perpendicular to u, the velocity of frame S relative to S ′, are unchanged. To
see this, imagine that each frame has a meter stick oriented along the y- and y ′-axes, with
one end of each meter stick located at the origin of its respective frame; see Fig. 4. Paint
brushes are mounted perpendicular at both ends of each meter stick, and the frames are
separated by a sheet of glass that extends to infinity in the x–y plane. Each brush paints a
line on the glass sheet as the two frames pass each other. Let’s say that frame S uses blue
paint, and frame S ′ uses red paint. If an observer in frame S measures the meter stick in
frame S ′ to be shorter than his own meter stick, he will see the red lines painted inside his
blue lines on the glass. But by the Principle of Relativity, an observer in frame S ′ would
measure the meter stick in frame S as being shorter than her own meter stick and would
see the blue lines painted inside her red lines. Both color lines cannot lie inside the other;
the only conclusion is that blue and red lines must overlap. The lengths of the meter sticks,
perpendicular to u, are unchanged. Thus y ′ = y and z′ = z, so that a22 = a33 = 1, whereas
a21, a23, a24, a31, a32, and a34 are all zero.

Another simplification comes from requiring that Eq. ( 9) give the same result if y is
replaced by −y or z is replaced by −z. This must be true because rotational symmetry about
the axis parallel to the relative velocity u implies that a time measurement cannot depend
on the side of the x-axis on which an event occurs. Thus a42 = a43 = 0.

Finally, consider the motion of the origin O ′ of frame S ′. Since the frames’ clocks are
assumed to be synchronized at t = t ′ = 0 when the origins O and O ′ coincide, the x-
coordinate of O ′ is given by x = ut in frame S and by x ′ = 0 in frame S ′. Thus Eq. ( 6)
becomes

0 = a11ut + a12y + a13z + a14t,
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which implies that a12 = a13 = 0 and a11u = −a14. Collecting the results found thus far
reveals that Eqs. ( 6– 9) have been reduced to

x ′ = a11(x − ut) (10)

y ′ = y (11)

z′ = z (12)

t ′ = a41x + a44t. (13)

At this point, these equations would be consistent with the commonsense Galilean transfor-
mation equations ( 1– 4) if a11 = a44 = 1 and a41 = 0. However, only one of Einstein’s
postulates has been employed in the derivation thus far: the Principle of Relativity cham-
pioned by Galileo himself.

Now the argument introduces the second of Einstein’s postulates: Everyone measures
exactly the same value for the speed of light. Suppose that when the origins O and O ′

coincide at time t = t ′ = 0, a flashbulb is set off at the common origins. At a later time t ,
an observer in frame S will measure a spherical wavefront of light with radius ct , moving
away from the origin O with speed c and satisfying

x2 + y2 + z2 = (ct)2. (14)

Similarly, at a time t ′, an observer in frame S ′ will measure a spherical wavefront of light
with radius ct ′, moving away from the origin O ′ with speed c and satisfying

x ′2 + y ′2 + z′2 =
(

ct ′
)2

. (15)

Inserting Eqs. ( 10– 13) into Eq. ( 15) and comparing the result with Eq. ( 14) reveal that
a11 = a44 = 1

/
√

1 − u2/c2 and a41 = −ua11/c
2. Thus the Lorentz transformation equa-

tions linking the space and time coordinates (x, y, z, t) and (x ′, y ′, z′, t ′) of the same event
measured from S and S ′ are

x ′ = x − ut
√

1 − u2/c2

y ′ = y

z′ = z

t ′ = t − ux/c2

√

1 − u2/c2
.

(16)

(17)

(18)

(19)

Whenever the Lorentz transformations are used, you should be certain that the situation is
consistent with the geometry of Fig. 2, where the inertial reference frame S ′ is moving in
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the positive x-direction with velocity u relative to the frame S. The ubiquitous factor of

γ ≡ 1
√

1 − u2/c2
, (20)

called the Lorentz factor, may be used to estimate the importance of relativistic effects.
Roughly speaking, relativity differs from Newtonian mechanics by 1% (γ = 1.01) when
u/c ≃ 1/7 and by 10% when u/c ≃ 5/12; see Fig. 5. In the low-speed Newtonian world,
the Lorentz transformations reduce to the Galilean transformation equations ( 1– 4). A
similar requirement holds for all relativistic formulas; they must agree with the Newtonian
equations in the low-speed limit of u/c → 0.

The inverse Lorentz transformations can be derived algebraically, or they can be obtained
more easily by switching primed and unprimed quantities and by replacing u with −u. (Be
sure you understand the physical basis for these substitutions.) Either way, the inverse
transformations are found to be

x = x ′ + ut ′
√

1 − u2/c2
(21)

y = y ′ (22)

z = z′ (23)

t = t ′ + ux ′/c2

√

1 − u2/c2
. (24)
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Four-Dimensional Spacetime

The Lorentz transformation equations form the core of the theory of special relativity, and
they have many surprising and unusual implications. The most obvious surprise is the
intertwining roles of spatial and temporal coordinates in the transformations. In the words
of Einstein’s professor, Hermann Minkowski (1864–1909), “Henceforth space by itself,
and time by itself, are doomed to fade away into mere shadows, and only a kind of union
between the two will preserve an independent reality.” The drama of the physical world
unfolds on the stage of a four-dimensional spacetime, where events are identified by their
spacetime coordinates (x, y, z, t).

3 TIME AND SPACE IN SPECIAL RELATIVITY

Suppose an observer in frame S measures two flashbulbs going off at the same time t but
at different x-coordinates x1 and x2. Then an observer in frame S ′ would measure the time
interval t ′1 − t ′2 between the flashbulbs going off to be (see Eq. 9)

t ′1 − t ′2 = (x2 − x1) u/c2

√

1 − u2/c2
. (25)

According to the observer in frame S ′, if x1 ̸= x2, then the flashbulbs do not go off at the
same time! Events that occur simultaneously in one inertial reference frame do not occur
simultaneously in all other inertial reference frames. There is no such thing as two events
that occur at different locations happening absolutely at the same time. Equation ( 25)
shows that if x1 < x2, then t ′1 − t ′2 > 0 for positive u; flashbulb 1 is measured to go off after
flashbulb 2. An observer moving at the same speed in the opposite direction (u changed
to −u) will come to the opposite conclusion: Flashbulb 2 goes off after flashbulb 1. The
situation is symmetric; an observer in frame S ′ will conclude that the flashbulb he or she
passes first goes off after the other flashbulb. It is tempting to ask, “Which observer is
really correct?” However, this question is meaningless and is equivalent to asking, “Which
observer is really moving?” Neither question has an answer because “really” has no meaning
in this situation. There is no absolute simultaneity, just as there is no absolute motion. Each
observer’s measurement is correct, as made from his or her own frame of reference.

The implications of this downfall of universal simultaneity are far-reaching. The ab-
sence of a universal simultaneity means that clocks in relative motion will not stay syn-
chronized. Newton’s idea of an absolute universal time that “of itself and from its own
nature flows equably without regard to anything external” has been overthrown. Different
observers in relative motion will measure different time intervals between the same two
events!

Proper Time and Time Dilation

Imagine that a strobe light located at rest relative to frame S ′ produces a flash of light every
"t ′ seconds; see Fig. 6. If one flash is emitted at time t ′1, then the next flash will be emitted
at time t ′2 = t ′1 +"t ′, as measured by a clock in frame S ′. Using Eq. ( 24) with x ′

1 = x ′
2,

1
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FIGURE 6 A strobe light at rest (x ′ = constant) in frame S ′.

the time interval "t ≡ t2 − t1 between the same two flashes measured by a clock in frame
S is

t2 − t1 = (t ′2 − t ′1) + (x ′
2 − x ′

1) u/c2

√

1 − u2/c2

or

"t = "t ′
√

1 − u2/c2
. (26)

Because the clock in frame S ′ is at rest relative to the strobe light, "t ′ will be called
"t rest. Frame S ′ is called the clock’s rest frame. Similarly, because the clock in frame S is
moving relative to the strobe light, "t will be called "tmoving. Thus Eq. ( 26) becomes

"tmoving = "t rest
√

1 − u2/c2
. (27)

This equation shows the effect of time dilation on a moving clock. It says that the
time interval between two events is measured differently by different observers in relative
motion. The shortest time interval is measured by a clock at rest relative to the two events.
This clock measures the proper time between the two events. Any other clock moving
relative to the two events will measure a longer time interval between them.

The effect of time dilation is often described by the phrase “moving clocks run slower”
without explicitly identifying the two events involved. This easily leads to confusion, since
the moving and rest subscripts in Eq. ( 27) mean “moving” or “at rest” relative to the two
events. To gain insight into this phrase, imagine that you are holding clock C while it ticks
once each second and, at the same time, are measuring the ticks of an identical clock C ′

moving relative to you. The two events to be measured are consecutive ticks of clock C ′.
Since clock C ′ is at rest relative to itself, it measures a time "t rest = 1 s between its own
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ticks. However, using your clock C, you measure a time

"tmoving = "trest
√

1 − u2/c2
= 1 s
√

1 − u2/c2
> 1 s

between the ticks of clock C ′. Because you measure clock C ′ to be ticking slower than once
per second, you conclude that clock C ′, which is moving relative to you, is running more
slowly than your clock C. Very accurate atomic clocks have been flown around the world
on jet airliners and have confirmed that moving clocks do indeed run slower, in agreement
with relativity.5

Proper Length and Length Contraction

Both time dilation and the downfall of simultaneity contradict Newton’s belief in absolute
time. Instead, the time measured between two events differs for different observers in
relative motion. Newton also believed that “absolute space, in its own nature, without
relation to anything external, remains always similar and immovable.” However, the Lorentz
transformation equations require that different observers in relative motion will measure
space differently as well.

Imagine that a rod lies along the x ′-axis of frame S ′, at rest relative to that frame; S ′ is
the rod’s rest frame (see Fig. 7). Let the left end of the rod have coordinate x ′

1, and let the
right end of the rod have coordinate x ′

2. Then the length of the rod as measured in frame S ′

is L′ = x ′
2 − x ′

1. What is the length of the rod measured from S? Because the rod is moving
relative to S, care must be taken to measure the x-coordinates x1 and x2 of the ends of
the rod at the same time. Then Eq. ( 16), with t1 = t2, shows that the length L = x2 − x1

measured in S may be found from

x ′
2 − x ′

1 = (x2 − x1) − u(t2 − t1)
√

1 − u2/c2

z

x x'

z'

O

u

O'

y y'

S S'

L' = x'2 – x'1
x'1 x'2

FIGURE 7 A rod at rest in frame S ′.

5See Hafele and Keating (1972a, 1972b) for the details of this test of time dilation.
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or

L′ = L
√

1 − u2/c2
. (28)

Because the rod is at rest relative to S ′, L′ will be called Lrest. Similarly, because the rod is
moving relative to S, L will be called Lmoving. Thus Eq. ( 28) becomes

Lmoving = Lrest

√

1 − u2/c2. (29)

This equation shows the effect of length contraction on a moving rod. It says that length
or distance is measured differently by two observers in relative motion. If a rod is moving
relative to an observer, that observer will measure a shorter rod than will an observer at
rest relative to it. The longest length, called the rod’s proper length, is measured in the
rod’s rest frame. Only lengths or distances parallel to the direction of the relative motion
are affected by length contraction; distances perpendicular to the direction of the relative
motion are unchanged (cf. Eqs. 17– 18).

Time Dilation and Length Contraction Are Complementary

Time dilation and length contraction are not independent effects of Einstien’s new way of
looking at the universe. Rather, they are complementary; the magnitude of either effect
depends on the motion of the event being observed relative to the observer.

Example 3.1. Cosmic rays from space collide with the nuclei of atoms in Earth’s upper
atmosphere, producing elementary particles called muons. Muons are unstable and decay
after an average lifetime τ = 2.20 µs, as measured in a laboratory where the muons are at
rest. That is, the number of muons in a given sample should decrease with time according
to N(t) = N0 e−t/τ , where N0 is the number of muons originally in the sample at time
t = 0. At the top of Mt. Washington in New Hampshire, a detector counted 563 muons hr−1

moving downward at a speed u = 0.9952c. At sea level, 1907 m below the first detector,
another detector counted 408 muons hr−1.6

The muons take (1907 m)/(0.9952c) = 6.39 µs to travel from the top of Mt. Washington
to sea level. Thus it might be expected that the number of muons detected per hour at sea
level would have been

N = N0 e−t/τ = (563 muons hr−1) e−(6.39 µs)/(2.20 µs) = 31 muons hr−1.

This is much less than the 408 muons hr−1 actually measured at sea level! How did the
muons live long enough to reach the lower detector? The problem with the preceding
calculation is that the lifetime of 2.20 µs is measured in the muon’s rest frame as"t rest, but
the experimenter’s clocks on Mt. Washington and below are moving relative to the muons.

continued

6Details of this experiment can be found in Frisch and Smith (1963).
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FIGURE 8 Muons moving downward past Mt. Washington. (a) Mountain frame. (b) Muon frame.

They measure the muon’s lifetime to be

"tmoving = "t rest
√

1 − u2/c2
= 2.20 µs
√

1 − (0.9952)2
= 22.5 µs,

more than ten times a muon’s lifetime when measured in its own rest frame. The moving
muons’clocks run slower, so more of them survive long enough to reach sea level. Repeating
the preceding calculation using the muon lifetime as measured by the experimenters gives

N = N0 e−t/τ = (563 muons hr−1) e−(6.39 µs)/(22.5 µs) = 424 muons hr−1.

When the effects of time dilation are included, the theoretical prediction is in excellent
agreement with the experimental result.

From a muon’s rest frame, its lifetime is only 2.20 µs. How would an observer riding
along with the muons, as shown in Fig. 8, explain their ability to reach sea level? The
observer would measure a severely length-contracted Mt. Washington (in the direction of
the relative motion only). The distance traveled by the muons would not be Lrest = 1907 m
but, rather, would be

Lmoving = Lrest

√

1 − u2/c2 = (1907 m)
√

1 − (0.9952)2 = 186.6 m.

Thus it would take (186.6 m)/(0.9952c) = 0.625 µs for the muons to travel the length-
contracted distance to the detector at sea level, as measured by an observer in the muons’
rest frame. That observer would then calculate the number of muons reaching the lower
detector to be

N = N0 e−t/τ = (563 muons hr−1) e−(0.625 µs)/(2.20 µs) = 424 muons hr−1,

in agreement with the previous result. This shows that an effect due to time dilation as
measured in one frame may instead be attributed to length contraction as measured in
another frame.
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The effects of time dilation and length contraction are both symmetric between two
observers in relative motion. Imagine two identical spaceships that move in opposite direc-
tions, passing each other at some relativistic speed. Observers aboard each spaceship will
measure the other ship’s length as being shorter than their own, and the other ship’s clocks
as running slower. Both observers are right, having made correct measurements from their
respective frames of reference.

You should not think of these effects as being due to some sort of “optical illusion” caused
by light taking different amounts of time to reach an observer from different parts of a moving
object. The language used in the preceding discussions has involved the measurement of
an event’s spacetime coordinates (x, y, z, t) using meter sticks and clocks located at that
event, so there is no time delay. Of course, no actual laboratory has an infinite collection
of meter sticks and clocks, and the time delays caused by finite light-travel times must be
taken into consideration. This will be important in determining the relativistic Doppler shift
formula, which follows.

The Relativistic Doppler Shift

In 1842 the Austrian physicist Christian Doppler showed that as a source of sound moves
through a medium (such as air), the wavelength is compressed in the forward direction and
expanded in the backward direction. This change in wavelength of any type of wave caused
by the motion of the source or the observer is called a Doppler shift. Doppler deduced that
the difference between the wavelength λobs observed for a moving source of sound and the
wavelength λrest measured in the laboratory for a reference source at rest is related to the
radial velocity vr (the component of the velocity directly toward or away from the observer
of the source through the medium by

λobs − λrest

λrest
= "λ

λrest
= vr

vs

, (30)

where vs is the speed of sound in the medium. However, this expression cannot be pre-
cisely correct for light. Experimental results such as those of Michelson and Morley led
Einstein to abandon the ether concept, and they demonstrated that no medium is involved
in the propagation of light waves. The Doppler shift for light is a qualitatively different
phenomenon from its counterpart for sound waves.

Consider a distant source of light that emits a light signal at time trest,1 and another signal
at time trest,2 = trest,1 +"trest as measured by a clock at rest relative to the source. If this
light source is moving relative to an observer with velocity u, as shown in Fig. 9, then the
time between receiving the light signals at the observer’s location will depend on both the
effect of time dilation and the different distances traveled by the signals from the source to
the observer. (The light source is assumed to be sufficiently far away that the signals travel
along parallel paths to the observer.) Using Eq. ( 27), we find that the time between the
emission of the light signals as measured in the observer’s frame is "trest

/
√

1 − u2/c2. In
this time, the observer determines that the distance to the light source has changed by an
amount u"trest cos θ

/
√

1 − u2/c2. Thus the time interval "tobs between the arrival of the

The Theory of Special Relativity



u
"

uDtrest

÷1 – u2/c2

uDtrest cos "

1
st  si

gn
al

2
nd  si

gn
al

To
 o

bs
er

ve
r ÷1 – u2/c2

FIGURE 9 Relativistic Doppler shift.

two light signals at the observer’s location is

"tobs = "trest
√

1 − u2/c2
[1 + (u/c) cos θ ]. (31)

If "trest is taken to be the time between the emission of the light wave crests, and if "tobs

is the time between their arrival, then the frequencies of the light wave are νrest = 1/"trest

and νobs = 1/"tobs. The equation describing the relativistic Doppler shift is thus

νobs = νrest

√

1 − u2/c2

1 + (u/c) cos θ
= νrest

√

1 − u2/c2

1 + vr/c
, (32)

where vr = u cos θ is the radial velocity of the light source. If the light source is moving
directly away from the observer (θ = 0◦, vr = u) or toward the observer (θ = 180◦, vr =
−u), then the relativistic Doppler shift reduces to

νobs = νrest

√

1 − vr/c

1 + vr/c
(radial motion). (33)

There is also a transverse Doppler shift for motion perpendicular to the observer’s line of
sight (θ = 90◦, vr = 0). This transverse shift is entirely due to the effect of time dilation.
Note that, unlike formulas describing the Doppler shift for sound, Eqs. ( 32) and ( 33)
do not distinguish between the velocity of the source and the velocity of the observer. Only
the relative velocity is important.

When astronomers observe a star or galaxy moving away from or toward Earth, the wave-
length of the light they receive is shifted toward longer or shorter wavelengths, respectively.
If the source of light is moving away from the observer (vr > 0), then λobs > λrest. This
shift to a longer wavelength is called a redshift. Similarly, if the source is moving toward
the observer (vr < 0), then there is a shift to a shorter wavelength, a blueshift.7 Because

7Doppler himself maintained that all stars would be white if they were at rest and that the different colors of
the stars were due to their Doppler shifts. However, the stars move much too slowly for their Doppler shifts to
significantly change their colors.
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most of the objects in the universe outside of our own Milky Way Galaxy are moving away
from us, redshifts are commonly measured by astronomers. A redshift parameter z is used
to describe the change in wavelength; it is defined as

z ≡ λobs − λrest

λrest
= "λ

λrest
. (34)

The observed wavelength λobs is obtained from Eq. (33) and c = λν,

λobs = λrest

√

1 + vr/c

1 − vr/c
(radial motion), (35)

and the redshift parameter becomes

z =
√

1 + vr/c

1 − vr/c
− 1 (radial motion). (36)

In general, Eq. (34), together with λ = c/ν, shows that

z + 1 = "tobs

"t rest
. (37)

This expression indicates that if the luminosity of an astrophysical source with redshift
parameter z > 0 (receding) is observed to vary during a time "tobs, then the change in
luminosity occurred over a shorter time "trest = "tobs/(z + 1) in the rest frame of the
source.

Example 3.2. In its rest frame, the quasar SDSS 1030+0524 produces a hydrogen emis-
sion line of wavelength λrest = 121.6 nm. On Earth, this emission line is observed to have
a wavelength of λobs = 885.2 nm. The redshift parameter for this quasar is thus

z = λobs − λrest

λrest
= 6.28.

Using Eq. (36), we may calculate the speed of recession of the quasar:

z =
√

1 + vr/c

1 − vr/c
− 1

vr

c
= (z + 1)2 − 1

(z + 1)2 + 1
(38)

= 0.963.

continued
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Quasar SDSS 1030+0524 appears to be moving away from us at more than 96% of the speed
of light! However, objects that are enormously distant from us, such as quasars, have large
apparent recessional speeds due to the overall expansion of the universe. In these cases the
increase in the observed wavelength is actually due to the expansion of space itself (which
stretches the wavelength of light) rather than being due to the motion of the object through
space! This cosmological redshift is a consequence of the Big Bang.

This quasar was discovered as a product of the massive Sloan Digital Sky Survey; see
Becker, et al. (2001) for further information about this object.

Suppose the speed u of the light source is small compared to that of light (u/c ≪ 1).
Using the expansion (to first order)

(1 + vr/c)
±1/2 ≃ 1 ± vr

2c
,

together with Eqs. (34) and (35) for radial motion, then shows that for low speeds,

z = "λ

λrest
≃ vr

c
, (39)

where vr > 0 for a receding source ("λ > 0) and vr < 0 for an approaching source ("λ <

0). Although this equation is similar to Eq. ( 30), you should bear in mind that Eq. ( 39)
is an approximation, valid only for low speeds. Misapplying this equation to the relativistic
quasar SDSS 1030+0524 discussed in Example 3.2 would lead to the erroneous conclusion
that the quasar is moving away from us at 6.28 times the speed of light!

The Relativistic Velocity Transformation

Because space and time intervals are measured differently by different observers in relative
motion, velocities must be transformed as well. The equations describing the relativistic
transformation of velocities may be easily found from the Lorentz transformation equations
( 16– 19) by writing them as differentials. Then dividing the dx ′, dy ′, and dz′ equations
by the dt ′ equation gives the relativistic velocity transformations:

v′
x = vx − u

1 − uvx/c2

v′
y = vy

√

1 − u2/c2

1 − uvx/c2

v′
z = vz

√

1 − u2/c2

1 − uvx/c2
.

(40)

(41)

(42)

As with the inverse Lorentz transformations, the inverse velocity transformations may be
obtained by switching primed and unprimed quantities and by replacing u with −u. It is left
as an exercise to show that these equations do satisfy the second of Einstein’s postulates:
Light travels through a vacuum at a constant speed that is independent of the motion of the
light source. From Eqs. ( 40– 42), if v has a magnitude of c, so does v′ (see Problem 12).
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Example 3.3. As measured in the reference frame S ′, a light source is at rest and radiates
light equally in all directions. In particular, half of the light is emitted into the forward
(positive x ′) hemisphere. Is this situation any different when viewed from frame S, which
measures the light source traveling in the positive x-direction with a relativistic speed u?

Consider a light ray whose velocity components measured in S ′ are v′
x = 0, v′

y = c, and
v′

z = 0. This ray travels along the boundary between the forward and backward hemispheres
of light as measured in S ′. However, as measured in frame S, this light ray has the velocity
components given by the inverse transformations of Eqs. (40–42):

vx = v′
x + u

1 + uv′
x/c

2
= u

vy =
v′

y

√

1 − u2/c2

1 + uv′
x/c

2
= c

√

1 − u2/c2

vz = v′
z

√

1 − u2/c2

1 + uv′
x/c

2
= 0.

As measured in frame S, the light ray is not traveling perpendicular to the x-axis; see
Fig. 10.

In fact, for u/c close to 1, the angle θ measured between the light ray and the x-axis may
be found from sin θ = vy/v, where

v =
√

v2
x + v2

y + v2
z = c

is the speed of the light ray measured in frame S. Thus

sin θ = vy

v
=
√

1 − u2/c2 = γ−1, (43)

"

sin " = !–1

y y'

x x'

(a) S (b) S'

FIGURE 10 Relativistic headlight effect. (a) Frame S. (b) Frame S ′.

continued
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where γ is the Lorentz factor defined by Eq. ( 20). For relativistic speeds u ≈ c, implying
thatγ is very large, so sin θ (and hence θ ) becomes very small.All of the light emitted into the
forward hemisphere, as measured in S ′, is concentrated into a narrow cone in the direction
of the light source’s motion when measured in frame S. Called the headlight effect, this
result plays an important role in many areas of astrophysics. For example, as relativistic
electrons spiral around magnetic field lines, they emit light in the form of synchrotron
radiation. The radiation is concentrated in the direction of the electron’s motion and is
strongly plane-polarized. Synchrotron radiation is an important electromagnetic radiation
process in the Sun, Jupiter’s magnetosphere, pulsars, and active galaxies.

4 RELATIVISTIC MOMENTUM AND ENERGY

Up to this point, only relativistic kinematics has been considered. Einstein’s theory of
special relativity also requires new definitions for the concepts of momentum and energy.
The ideas of conservation of linear momentum and energy are two of the cornerstones of
physics. According to the Principle of Relativity, if momentum is conserved in one inertial
frame of reference, then it must be conserved in all inertial frames. At the end of this
section, it is shown that this requirement leads to a definition of the relativistic momentum
vector p:

p = mv
√

1 − v2/c2
= γmv, (44)

whereγ is the Lorentz factor defined by Eq. ( 20). Warning: Some authors prefer to separate
the “m” and the “v” in this formula by defining a “relativistic mass,” m

/
√

1 − v2/c2. There
is no compelling reason for this separation, and it can be misleading. In this text, the mass
m of a particle is taken to be the same value in all inertial reference frames; it is invariant
under a Lorentz transformation, and so there is no reason to qualify the term as a “rest mass.”
Thus the mass of a moving particle does not increase with increasing speed, although its
momentum approaches infinity as v → c. Also note that the “v” in the denominator is the
magnitude of the particle’s velocity relative to the observer, not the relative velocity u

between two arbitrary frames of reference.

The Derivation of E = mc2

Using Eq. ( 44) and the relation between kinetic energy we can derive an expression
for the relativistic kinetic energy. The starting point is Newton’s second law, F =dp/dt ,
applied to a particle of mass m that is initially at rest.8 Consider a force of magnitudeF
that acts on the particle in the x-direction. The particle’s final kinetic energy K
equals the total work done by the force on the particle as it travels from its initial

8It is left as an exercise to show that F = ma is not correct, since at relativistic speeds the force and the acceleration
need not be in the same direction!

,
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position xi to its final position xf :

K =
∫ xf

xi

F dx =
∫ xf

xi

dp

dt
dx =

∫ pf

pi

dx

dt
dp =

∫ pf

pi

v dp,

where pi and pf are the initial and final momenta of the particle, respectively. Integrating
the last expression by parts and using the initial condition pi = 0 give

K = pf vf −
∫ vf

0
p dv

=
mv2

f
√

1 − v2
f /c2

−
∫ vf

0

mv
√

1 − v2/c2
dv

=
mv2

f
√

1 − v2
f /c2

+ mc2
(

√

1 − v2
f /c2 − 1

)

.

If we drop the f subscript, the expression for the relativistic kinetic energy becomes

K = mc2

(

1
√

1 − v2/c2
− 1

)

= mc2(γ − 1). (45)

Although it is not apparent that this formula for the kinetic energy reduces to either of the
familiar forms K = 1

2mv2 or K = p2/2m in the low-speed Newtonian limit, both forms
must be true if Eq. (45) is to be correct. The proofs will be left as exercises.

The right-hand side of this expression for the kinetic energy consists of the difference
between two energy terms. The first is identified as the total relativistic energy E,

E = mc2

√

1 − v2/c2
= γmc2. (46)

The second term is an energy that does not depend on the speed of the particle; the particle
has this energy even when it is at rest. The term mc2 is called the rest energy of the particle:

Erest = mc2. (47)

The particle’s kinetic energy is its total energy minus its rest energy. When the energy of a
particle is given as (for example) 40 MeV, the implicit meaning is that the particle’s kinetic
energy is 40 MeV; the rest energy is not included. Finally, there is a very useful expression
relating a particle’s total energy E, the magnitude of its momentum p, and its rest energy
mc2. It states that

E2 = p2c2 + m2c4. (48)
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such as photons.

For a system of n particles, the total energy Esys of the system is the sum of the total
energies Ei of the individual particles: Esys = ∑n

i=1 Ei . Similarly, the vector momentum
psys of the system is the sum of the momenta pi of the individual particles: psys = ∑n

i=1 pi . If
the momentum of the system of particles is conserved, then the total energy is also conserved,
even for inelastic collisions in which the kinetic energy of the system, Ksys = ∑n

i=1 Ki , is
reduced. The kinetic energy lost in the inelastic collisions goes into increasing the rest
energy, and hence the mass, of the particles. This increase in rest energy allows the total
energy of the system to be conserved. Mass and energy are two sides of the same coin; one
can be transformed into the other.

Example 4.1. In a one-dimensional completely inelastic collision, two identical parti-
cles of mass m and speed v approach each other, collide head-on, and merge to form a single
particle of mass M . The initial energy of the system of particles is

Esys,i = 2mc2

√

1 − v2/c2
.

Since the initial momenta of the particles are equal in magnitude and opposite in direction,
the momentum of the system psys = 0 before and after the collision. Thus after the collision,
the particle is at rest and its final energy is

Esys,f = Mc2.

Equating the initial and final energies of the system shows that the mass M of the conglom-
erate particle is

M = 2m
√

1 − v2/c2
.

Thus the particle mass has increased by an amount

"m = M − 2m = 2m
√

1 − v2/c2
− 2m = 2m

(

1
√

1 − v2/c2
− 1

)

.

The origin of this mass increase may be found by comparing the initial and final values of
the kinetic energy. The initial kinetic energy of the system is

Ksys,i = 2mc2

(

1
√

1 − v2/c2
− 1

)

and the final kinetic energy Ksys,f = 0. Dividing the kinetic energy lost in this inelastic
collision by c2 equals the particle mass increase, "m.

This equation is valid even for particles that have no mass,
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The Derivation of Relativistic Momentum (Eq. 44)

To justify Eq. ( 44) for the relativistic momentum, we will consider a glancing elastic
collision between two identical particles of mass m. This collision will be observed from
three carefully chosen inertial reference frames, as shown in Fig. 11. When measured in
an inertial reference frame S ′′, the two particles A and B have velocities and momenta that
are equal in magnitude and opposite in direction, both before and after the collision. As a
result, the total momentum must be zero both before and after the collision; momentum
is conserved. This collision can also be measured from two other reference frames, S and
S ′. From Fig. 11, if S moves in the negative x ′′-direction with a velocity equal to the
x ′′-component of particle A in S ′′, then as measured from frame S, the velocity of particle
A has only a y-component. Similarly, if S ′ moves in the positive x ′′-direction with a velocity
equal to the x ′′-component of particle B in S ′′, then as measured from frame S ′, the velocity
of particle B has only a y-component. Actually, the figures for frames S and S ′ would be
identical if the figures for one of these frames were rotated by 180◦ and the A and B labels
were reversed. This means that the change in the y-component of particle A’s momentum
as measured in frame S is the same as the change in the y ′-component of particle B’s
momentum as measured in the frame S ′, except for a change in sign (due to the 180◦

rotation):"pA,y = −"p′
B,y . On the other hand, momentum must be conserved in frames S

and S ′, just as it is in frame S ′′. This means that, measured in frame S ′, the sum of the changes
in the y ′-components of particle A’s and B’s momenta must be zero: "p′

A,y +"p′
B,y = 0.

Combining these results gives

"p′
A,y = "pA,y. (49)

Time

y y'' y'

y y'' y'

y y'' y'

x x'' x'

x x'' x'

x x'' x'

A

B B B

A A

(a) S (b) S'' (c) S'

FIGURE 11 An elastic collision measured in frames (a) S, (b) S ′′, and (c) S ′. As observed from
frame S ′′, frame S moves in the negative x ′′-direction, along with particle A, and frame S ′ moves in
the positive x ′′-direction, along with particle B. For each reference frame, a vertical sequence of three
figures shows the situation before (top), during, and after the collision.
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So far, the argument has been independent of a specific formula for the relativistic
momentum vector p. Let’s assume that the relativistic momentum vector has the form
p = f mv, where f is a relativistic factor that depends on the magnitude of the particle’s
velocity, but not its direction. As the particle’s speed v → 0, it is required that the factor
f → 1 to obtain agreement with the Newtonian result.9

A second assumption allows the relativistic factor f to be determined: The y- and y ′-
components of each particle’s velocity are chosen to be arbitrarily small compared to the
speed of light. Thus the y- and y ′-components of particle A’s velocity in frames S and S ′

are extremely small, and the x ′-component of particle A’s velocity in frame S ′ is taken to
be relativistic. Since

v′
A =

√

v′ 2
A,x + v′ 2

A,y ≈ c

in frame S ′, the relativistic factor f ′ for particle A in frame S ′ is not equal to 1, whereas
in frame S, f is arbitrarily close to unity. If vA,y is the final y-component of particle A’s
velocity, and similarly for v′

A,y , then Eq. (49) becomes

2f ′ mv′
A,y = 2mvA,y. (50)

The relative velocityuof framesS andS ′ is needed to relatev′
A,y andvA,y using Eq. ( 41).

Because vA,x = 0 in frame S, Eq. ( 40) shows that u = −v′
A,x ; that is, the relative velocity

u of frame S ′ relative to frame S is just the negative of the x ′-component of particle A’s
velocity in frame S ′. Furthermore, because the y ′-component of particle A’s velocity is
arbitrarily small, we can set v′

A,x = v′
A, the magnitude of particle A’s velocity as measured

in frame S ′, and so use u = −v′
A. Inserting this into Eq. ( 41) with vA,x = 0 gives

v′
A,y = vA,y

√

1 − v′ 2
A /c2.

Finally, inserting this relation between v′
A,y and vA,y into Eq. ( 50) and canceling terms

reveals the relativistic factor f to be

f = 1
√

1 − v′ 2
A /c2

,

as measured in frame S ′. Dropping the prime superscript and the A subscript (which merely
identify the reference frame and particle involved) gives

f = 1
√

1 − v2/c2
.

The formula for the relativistic momentum vector p = f mv is thus

p = mv
√

1 − v2/c2
= γmv.

9There is no requirement that relativistic formulas appear similar to their low-speed Newtonian counterparts (cf.
Eq. 45). However, this simple argument produces the correct result.
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PROBLEM SET

1 Use Eqs. ( 14) and ( 15) to derive the Lorentz transformation equations from Eqs. ( 10– 13).

2 Because there is no such thing as absolute simultaneity, two observers in relative motion may
disagree on which of two events A and B occurred first. Suppose, however, that an observer in
reference frame S measures that event A occurred first and caused event B. For example, event
A might be pushing a light switch, and event B might be a light bulb turning on. Prove that
an observer in another frame S ′ cannot measure event B (the effect) occurring before event A

(the cause). The temporal order of cause and effect is preserved by the Lorentz transformation
equations. Hint: For event A to cause event B, information must have traveled from A to B,
and the fastest that anything can travel is the speed of light.

3 Consider the special light clock shown in Fig. 12. The light clock is at rest in frame S ′ and
consists of two perfectly reflecting mirrors separated by a vertical distance d. As measured by
an observer in frame S ′, a light pulse bounces vertically back and forth between the two mirrors;
the time interval between the pulse leaving and subsequently returning to the bottom mirror is
"t ′. However, an observer in frame S sees a moving clock and determines that the time interval

The Theory of Special Relativity
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FIGURE 12 (a) A light clock that is moving in frame S, and (b) at rest in frame S ′.

between the light pulse leaving and returning to the bottom mirror is"t . Use the fact that both
observers must measure that the light pulse moves with speed c, plus some simple geometry, to
derive the time-dilation equation (27).

x ′ = a11(x − ut) (10)

y ′ = y (11)

z′ = z (12)

t ′ = a41x + a44t. (13)

x2 + y2 + z2 = (ct)2. (14)

x ′2 + y ′2 + z′2 =
(

ct ′
)2

. (15)

From Chapter 4 of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 by
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.

,



4 Arod moving relative to an observer is measured to have its length Lmoving contracted to one-half
of its length when measured at rest. Find the value of u/c for the rod’s rest frame relative to the
observer’s frame of reference.

5 An observer P stands on a train station platform as a high-speed train passes by at u/c = 0.8.
The observer P , who measures the platform to be 60 m long, notices that the front and back
ends of the train line up exactly with the ends of the platform at the same time.
(a) How long does it take the train to pass P as he stands on the platform, as measured by his

watch?
(b) According to a rider T on the train, how long is the train?
(c) According to a rider T on the train, what is the length of the train station platform?
(d) According to a rider T on the train, how much time does it take for the train to pass observer

P standing on the train station platform?
(e) According to a rider T on the train, the ends of the train will not simultaneously line up

with the ends of the platform. What time interval does T measure between when the front
end of the train lines up with the front end of the platform, and when the back end of the
train lines up with the back end of the platform?

6 An astronaut in a starship travels to α Centauri, a distance of approximately 4 ly as measured
from Earth, at a speed of u/c = 0.8.
(a) How long does the trip to α Centauri take, as measured by a clock on Earth?
(b) How long does the trip to α Centauri take, as measured by the starship pilot?
(c) What is the distance between Earth and α Centauri, as measured by the starship pilot?
(d) A radio signal is sent from Earth to the starship every 6 months, as measured by a clock on

Earth. What is the time interval between reception of one of these signals and reception of
the next signal aboard the starship?

(e) A radio signal is sent from the starship to Earth every 6 months, as measured by a clock
aboard the starship. What is the time interval between reception of one of these signals and
reception of the next signal on Earth?

(f) If the wavelength of the radio signal sent from Earth is λ = 15 cm, to what wavelength
must the starship’s receiver be tuned?

7 Upon reachingαCentauri, the starship in Problem 6 immediately reverses direction and travels
back to Earth at a speed of u/c = 0.8. (Assume that the turnaround itself takes zero time.) Both
Earth and the starship continue to emit radio signals at 6-month intervals, as measured by their
respective clocks. Make a table for the entire trip showing at what times Earth receives the
signals from the starship. Do the same for the times when the starship receives the signals from
Earth. Thus an Earth observer and the starship pilot will agree that the pilot has aged 4 years
less than the Earth observer during the round-trip voyage to α Centauri.

8 In its rest frame, quasar Q2203+29 produces a hydrogen emission line of wavelength 121.6 nm.
Astronomers on Earth measure a wavelength of 656.8 nm for this line. Determine the redshift
parameter and the apparent speed of recession for this quasar. (For more information about this
quasar, see McCarthy et al. 1988.)

9 Quasar 3C 446 is violently variable; its luminosity at optical wavelengths has been observed to
change by a factor of 40 in as little as 10 days. Using the redshift parameter z = 1.404 measured
for 3C 446, determine the time for the luminosity variation as measured in the quasar’s rest
frame. (For more details, see Bregman et al. 1988.)

"tmoving = "t rest
√

1 − u2/c2
. (27)
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10 Use the Lorentz transformation equations ( 16– 19) to derive the velocity transformation
equations ( 40– 42).

11 The spacetime interval, "s, between two events with coordinates

(x1, y1, z1, t1) and (x2, y2, z2, t2)

is defined by

("s)2 ≡ (c"t)2 − ("x)2 − ("y)2 − ("z)2.

(a) Use the Lorentz transformation equations ( 16– 19) to show that "s has the same value
in all reference frames. The spacetime interval is said to be invariant under a Lorentz
transformation.

x ′ = x − ut
√

1 − u2/c2

y ′ = y

z′ = z

t ′ = t − ux/c2

√

1 − u2/c2
.

(16)

(17)

(18)

(19)

v′
x = vx − u

1 − uvx/c2

v′
y = vy

√

1 − u2/c2

1 − uvx/c2

v′
z = vz

√

1 − u2/c2

1 − uvx/c2
.

(40)

(41)

(42)

x ′ = x − ut
√

1 − u2/c2

y ′ = y

z′ = z

t ′ = t − ux/c2

√

1 − u2/c2
.

(16)

(17)

(18)

(19)

(b) If ("s)2 > 0, then the interval is timelike. Show that in this case,

"τ ≡ "s

c

is the proper time between the two events. Assuming that t1 < t2, could the first event
possibly have caused the second event?

(c) If ("s)2 = 0, then the interval is lightlike or null. Show that only light could have traveled
between the two events. Could the first event possibly have caused the second event?
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(a) Show that

v =
√

v2
x + v2

y + v2
z = c.

(b) Use the velocity transformation equations to show that, as measured in reference frame S ′,

v′ =
√

v′ 2
x + v′ 2

y + v′ 2
z = c,

and so confirm that the speed of light has the constant value c in all frames of reference.

13 Starship A moves away from Earth with a speed of vA/c = 0.8. Starship B moves away from
Earth in the opposite direction with a speed of vB/c = 0.6. What is the speed of starship A as
measured by starship B? What is the speed of starship B as measured by starship A?

14 Use Newton’s second law, F = dp/dt , and the formula for relativistic momentum, Eq. ( 44),
to show that the acceleration vector a = dv/dt produced by a force F acting on a particle of
mass m is

a = F
γm

− v
γmc2

(F · v) ,

where F · v is the vector dot product between the force F and the particle velocity v. Thus the
acceleration depends on the particle’s velocity and is not in general in the same direction as the
force.

15 Suppose a constant force of magnitude F acts on a particle of mass m initially at rest.
(a) Integrate the formula for the acceleration found in Problem 14 to show that the speed of

the particle after time t is given by

v

c
= (F/m)t
√

(F/m)2t2 + c2
.

(b) Rearrange this equation to express the time t as a function of v/c. If the particle’s initial
acceleration at time t = 0 is a = g = 9.80 m s−2, how much time is required for the particle
to reach a speed of v/c = 0.9? v/c = 0.99? v/c = 0.999? v/c = 0.9999? v/c = 1?

16 Find the value of v/c when a particle’s kinetic energy equals its rest energy.

17 Prove that in the low-speed Newtonian limit of v/c ≪ 1, Eq. ( 45) does reduce to the familiar
form K = 1

2 mv2.

p = mv
√

1 − v2/c2
= γmv (44)

(d) If ("s)2 < 0, then the interval is spacelike. What is the physical significance of
√

−("s)2?
Could the first event possibly have caused the second event?

12 General expressions for the components of a light ray’s velocity as measured in reference frame
S are

vx = c sin θ cosφ

vy = c sin θ sin φ

vz = c cos θ,

where θ and φ are the angular coordinates in a spherical coordinate system.
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18 Show that the relativistic kinetic energy of a particle can be written as

K = p2

(1 + γ )m
,

where p is the magnitude of the particle’s relativistic momentum. This demonstrates that in the
low-speed Newtonian limit of v/c ≪ 1, K = p2/2m (as expected).

19 Derive Eq. ( 48).

K = mc2

(

1
√

1 − v2/c2
− 1

)

= mc2(γ − 1). (45)

E2 = p2c2 + m2c4. (48)
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The Interaction of Light
and Matter

1 Spectral Lines
2 Photons
3 The Bohr Model of the Atom
4 Quantum Mechanics and Wave–Particle Duality

1 SPECTRAL LINES

In 1835 a French philosopher, Auguste Comte (1798–1857), considered the limits of human
knowledge. In his book Positive Philosophy, Comte wrote of the stars, “We see how we
may determine their forms, their distances, their bulk, their motions, but we can never know
anything of their chemical or mineralogical structure.” Thirty-three years earlier, however,
William Wollaston (1766–1828), like Newton before him, passed sunlight through a prism
to produce a rainbow-like spectrum. He discovered that a number of dark spectral lines
were superimposed on the continuous spectrum where the Sun’s light had been absorbed
at certain discrete wavelengths. By 1814, the German optician Joseph von Fraunhofer
(1787–1826) had cataloged 475 of these dark lines (today called Fraunhofer lines) in the
solar spectrum. While measuring the wavelengths of these lines, Fraunhofer made the first
observation capable of proving Comte wrong. Fraunhofer determined that the wavelength
of one prominent dark line in the Sun’s spectrum corresponds to the wavelength of the
yellow light emitted when salt is sprinkled in a flame. The new science of spectroscopy was
born with the identification of this sodium line.

Kirchhoff’s Laws

The foundations of spectroscopy were established by Robert Bunsen (1811–1899), a Ger-
man chemist, and by Gustav Kirchhoff (1824–1887), a Prussian theoretical physicist. Bun-
sen’s burner produced a colorless flame that was ideal for studying the spectra of heated
substances. He and Kirchhoff then designed a spectroscope that passed the light of a flame
spectrum through a prism to be analyzed. The wavelengths of light absorbed and emitted
by an element were found to be the same; Kirchhoff determined that 70 dark lines in the
solar spectrum correspond to 70 bright lines emitted by iron vapor. In 1860 Kirchhoff and
Bunsen published their classic work Chemical Analysis by Spectral Observations, in which
they developed the idea that every element produces its own pattern of spectral lines and
thus may be identified by its unique spectral line “fingerprint.” Kirchhoff summarized the
production of spectral lines in three laws, which are now known as Kirchhoff’s laws:

From Chapter  of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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• A hot, dense gas or hot solid object produces a continuous spectrum with no dark
spectral lines.1

• A hot, diffuse gas produces bright spectral lines (emission lines).

• Acool, diffuse gas in front of a source of a continuous spectrum produces dark spectral
lines (absorption lines) in the continuous spectrum.

Applications of Stellar Spectra Data

An immediate application of these results was the identification of elements found in the
Sun and other stars. A new element previously unknown on Earth, helium,2 was discovered
spectroscopically on the Sun in 1868; it was not found on Earth until 1895. Figure 1
shows the visible portion of the solar spectrum, and Table 1 lists some of the elements
responsible for producing the dark absorption

equation

 lines.
Another rich line of investigation was pursued by measuring the Doppler shifts of spectral

lines. For individual stars, vr ≪ c, and so the low-speed approximation of the following 

λobs − λrest

λrest
= "λ

λrest
= vr

c
, (1)

can be utilized to determine their radial velocities. By 1887 the radial velocities of Sirius,
Procyon, Rigel, and Arcturus had been measured with an accuracy of a few kilometers per
second.

Example 1.1. The rest wavelength λrest for an important spectral line of hydrogen
(known as Hα) is 656.281 nm when measured in air. However, the wavelength of the
Hα absorption line in the spectrum of the star Vega in the constellation Lyra is measured to
be 656.251 nm at a ground-based telescope. Equation ( 1) shows that the radial velocity
of Vega is

vr = c (λobs − λrest)

λrest
= −13.9 km s−1;

the minus sign means that Vega is approaching the Sun. stars also have a
proper motion, µ, perpendicular to the line of sight. Vega’s angular position in the sky
changes by µ = 0.35077′′ yr−1. At a distance of r = 7.76 pc, this proper motion is related
to the star’s transverse velocity, vθ Expressing r in meters and µ in radians per second
results in

vθ = rµ = 12.9 km s−1.

1In the first of Kirchhoff’s laws, “hot” actually means any temperature above 0 K. However, according to Wien’s
displacement law a temperature of several thousand degrees K is required for λmax to fall in the visible
portion of the electromagnetic spectrum. t is the opacity or optical depth of the gas that is responsible for the
continuous blackbody spectrum.
2The name helium comes from Helios, a Greek Sun god.

However,

.

I

,
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This transverse velocity is comparable to Vega’s radial velocity. Vega’s speed through space
relative to the Sun is thus

v =
√

v2
r + v2

θ = 19.0 km s−1.

The average speed of stars in the solar neighborhood is about 25 km s−1. In reality, the
measurement of a star’s radial velocity is complicated by the 29.8 km s−1 motion of Earth
around the Sun, which causes the observed wavelength λobs of a spectral line to vary
sinusoidally over the course of a year. This effect of Earth’s speed may be easily compensated
for by subtracting the component of Earth’s orbital velocity along the line of sight from the
star’s measured radial velocity.

Spectrographs

Modern methods can measure radial velocities with an accuracy of better than ±3 m s−1!
Today astronomers use spectrographs to measure the spectra of stars and galaxies; see
Fig. 2.3 After passing through a narrow slit, the starlight is collimated by a mirror and
directed onto a diffraction grating. A diffraction grating is a piece of glass onto which
narrow, closely spaced lines have been evenly ruled (typically several thousand lines per
millimeter); the grating may be made to transmit the light (a transmission grating) or reflect
the light (a reflection grating). In either case, the grating acts like a long series of neighboring
double slits. Different wavelengths of light have their maxima occurring at different angles
θ given by the following  equation

d sin θ = nλ (n = 0, 1, 2, . . .),

where d is the distance between adjacent lines of the grating, n is the order of the spectrum,
and θ is measured from the line normal (or perpendicular) to the grating. (n = 0 corresponds
to θ = 0 for all wavelengths, so the light is not dispersed into a spectrum in this case.) The
spectrum is then focused onto a photographic plate or electronic detector for recording.

The ability of a spectrograph to resolve two closely spaced wavelengths separated by an
amount "λ depends on the order of the spectrum, n, and the total number of lines of the
grating that are illuminated, N . The smallest difference in wavelength that the grating can
resolve is

"λ = λ

nN
, (2)

where λ is either of the closely spaced wavelengths being measured. The ratio λ/"λ is the
resolving power of the grating.4

3 masses
of the stars to be determined. The same methods have now been used to detect numerous extrasolar planets.
4In some cases, the resolving power of a spectrograph may be determined by other factors—for example, the slit
width.

Measuring the radial velocities of stars in binary star systems allows the

:
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FIGURE 1 The solar spectrum with Fraunhofer lines. Note that the wavelengths are expressed
in angstroms (1 Å = 0.1 nm), a commonly used wavelength unit in astronomy. Modern depictions of
spectra are typically shown as plots of flux as a function of wavelength
(Courtesy of The Observatories of the Carnegie Institution of Washington.)

.
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TABLE 1 Wavelengths of some of the stronger Fraunhofer lines measured in air near sea level.

The difference in wavelengths of spectral lines when measured in air versus in
vacuum are discussed in Example 3.1. (Data from Lang, Astrophysical Formulae, Third Edition,
Springer, New York, 1999.)

Wavelength Equivalent
(nm) Name Atom Width (nm)

385.992 Fe I 0.155
388.905 H8 0.235
393.368 K Ca II 2.025
396.849 H Ca II 1.547
404.582 Fe I 0.117
410.175 h, Hδ H I 0.313
422.674 g Ca I 0.148
434.048 G′, Hγ H I 0.286
438.356 d Fe I 0.101
486.134 F, Hβ H I 0.368
516.733 b4 Mg I 0.065
517.270 b2 Mg I 0.126
518.362 b1 Mg I 0.158
588.997 D2 Na I 0.075
589.594 D1 Na I 0.056
656.281 C, Hα H I 0.402

Light from
telescope

Focal planeSlit

Camera mirror

Detector

Diffraction
grating

Collimating
mirror

!1

!1

!1

!2

!2
!2

FIGURE 2 Spectrograph.
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Astronomers recognized the great potential for uncovering the secrets of the stars in the
empirical rules that had been obtained for the spectrum of light: Wien’s law, the Stefan–
Boltzmann equation, Kirchhoff’s laws, and the new science of spectroscopy. By 1880
Gustav Wiedemann (1826–1899) found that a detailed investigation of the Fraunhofer lines
could reveal the temperature, pressure, and density of the layer of the Sun’s atmosphere
that produces the lines. The splitting of spectral lines by a magnetic field was discovered by
Pieter Zeeman (1865–1943) of the Netherlands in 1897, raising the possibility of measuring
stellar magnetic fields. But a serious problem blocked further progress: However impressive,
these results lacked the solid theoretical foundation required for the interpretation of stellar
spectra. For example, the absorption lines produced by hydrogen are much stronger for
Vega than for the Sun. Does this mean that Vega’s composition contains significantly more
hydrogen than the Sun’s? The answer is no, but how can this information be gleaned from
the dark absorption lines of a stellar spectrum recorded on a photographic plate? The answer
required a new understanding of the nature of light itself.

2 PHOTONS

Despite Heinrich Hertz’s absolute certainty in the wave nature of light, the solution to the
riddle of the continuous spectrum of blackbody radiation led to a complementary descrip-
tion, and ultimately to new conceptions of matter and energy. Planck’s constant h

is the basis of the modern description of matter and energy known as quantum
mechanics. Today h is recognized as a fundamental constant of nature, like the speed of
light c and the universal gravitational constant G. Although Planck himself was uncom-
fortable with the implications of his discovery of energy quantization, quantum theory was
to develop into what is today a spectacularly successful description of the physical world.
The next step forward was taken by Einstein, who convincingly demonstrated the reality
of Planck’s quantum bundles of energy.

The Photoelectric Effect

When light shines on a metal surface, electrons are ejected from the surface, a result called the
photoelectric effect. The electrons are emitted with a range of energies, but those originating
closest to the surface have the maximum kinetic energy, Kmax. A surprising feature of the
photoelectric effect is that the value of Kmax does not depend on the brightness of the light
shining on the metal. Increasing the intensity of a monochromatic light source will eject more
electrons but will not increase their maximum kinetic energy. Instead, Kmax varies with the
frequency of the light illuminating the metal surface. In fact, each metal has a characteristic
cutoff frequency νc and a corresponding cutoff wavelength λc = c/νc; electrons will be
emitted only if the frequency ν of the light satisfies ν > νc (or the wavelength satisfies
λ < λc). This puzzling frequency dependence is nowhere to be found in Maxwell’s classic
description of electromagnetic waves. The equation for the Poynting vector admits no role
for the frequency in describing the energy carried by a light wave.

Einstein’s bold solution was to take seriously Planck’s assumption of the quantized
energy of electromagnetic waves. According to Einstein’s explanation of the photoelectric
effect, the light striking the metal surface consists of a stream of massless particles called
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photons.5 The energy of a single photon of frequency ν and wavelength λ is just the energy
of Planck’s quantum of energy:

Ephoton = hν = hc

λ
. (3)

Example 2.1. The energy of a single photon of visible light is small by everyday stan-
dards. For red light of wavelength λ = 700 nm, the energy of a single photon is

Ephoton = hc

λ
≃ 1240 eV nm

700 nm
= 1.77 eV.

Here, the product hc has been expressed in the convenient units of (electron volts) ×
(nanometers); recall that 1 eV = 1.602 × 10−19 J. For a single photon of blue light with
λ = 400 nm,

Ephoton = hc

λ
≃ 1240 eV nm

400 nm
= 3.10 eV.

How many visible photons (λ = 500 nm) are emitted each second by a 100-W light bulb
(assuming that it is monochromatic)? The energy of each photon is

Ephoton = hc

λ
≃ 1240 eV nm

500 nm
= 2.48 eV = 3.97 × 10−19 J.

This means that the 100-W light bulb emits 2.52 × 1020 photons per second. As this huge
number illustrates, with so many photons nature does not appear “grainy.” We see the world
as a continuum of light, illuminated by a flood of photons.

Einstein reasoned that when a photon strikes the metal surface in the photoelectric effect,
its energy may be absorbed by a single electron. The electron uses the photon’s energy to
overcome the binding energy of the metal and so escape from the surface. If the minimum
binding energy of electrons in a metal (called the work function of the metal, usually a few
eV) is φ, then the maximum kinetic energy of the ejected electrons is

Kmax = Ephoton − φ = hν − φ = hc

λ
− φ. (4)

Setting Kmax = 0, the cutoff frequency and wavelength for a metal are seen to be νc = φ/h

and λc = hc/φ, respectively.
The photoelectric effect established the reality of Planck’s quanta. Albert Einstein was

awarded the 1921 Nobel Prize, not for his theories of special and general relativity, but
“for his services to theoretical physics, and especially for his discovery of the law of the

5Only a massless particle can move with the speed of light, since a massive particle would have infinite energy
The term photon was first used in 1926 by the physicist G. N. Lewis (1875–1946).

.
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photoelectric effect.”6 Today astronomers take advantage of the quantum nature of light in
various instruments and detectors, such as CCDs (charge-coupled devices)

The Compton Effect

In 1922, the American physicist Arthur Holly Compton (1892–1962) provided the most
convincing evidence that light does in fact manifest its particle-like nature when interacting
with matter. Compton measured the change in the wavelength of X-ray photons as they
were scattered by free electrons. Because photons are massless particles that move at the
speed of light, the relativistic energy equation (with mass m = 0 for photons), shows that
the energy of a photon is related to its momentum p by

Ephoton = hν = hc

λ
= pc. (5)

Compton considered the “collision” between a photon and a free electron, initially at rest.
As shown in Fig. 3, the electron is scattered in the direction φ and the photon is scattered
by an angle θ . Because the photon has lost energy to the electron, the wavelength of the
photon has increased.

In this collision, both (relativistic) momentum and energy are conserved. It is left as
an exercise to show that the final wavelength of the photon, λf , is greater than its initial

"

#

Electron

Scat
ter

ed
 photon

me

!i

! f

Incident photon

FIGURE 3 The Compton effect: The scattering of a photon by a free electron. θ and φ are the
scattering angles of the photon and electron, respectively.

6Partly in recognition of his determination of an accurate value of Planck’s constant h the American physicist
Robert A. Millikan (1868–1953) also received a Nobel Prize (1923) for his work on the photoelectric effect.

.

,
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wavelength, λi , by an amount

"λ = λf − λi = h

mec
(1 − cos θ), (6)

where me is the mass of the electron. Today, this change in wavelength is known as the
Compton effect. The term h/mec in Eq. ( 6), called the Compton wavelength, λC , is
the characteristic change in the wavelength of the scattered photon and has the value λC =
0.00243 nm, 30 times smaller than the wavelength of the X-ray photons used by Compton.
Compton’s experimental verification of this formula provided convincing evidence that
photons are indeed massless particles that nonetheless carry momentum, as described by
Eq. ( 5). This is the physical basis for the force exerted by radiation upon matter.

3 THE BOHR MODEL OF THE ATOM

The pioneering work of Planck, Einstein, and others at the beginning of the twentieth
century revealed the wave–particle duality of light. Light exhibits its wave properties as
it propagates through space, as demonstrated by its double-slit interference pattern. On
the other hand, light manifests its particle nature when it interacts with matter, as in the
photoelectric and Compton effects. Planck’s formula describing the energy distribution of
blackbody radiation explained many of the features of the continuous spectrum of light
emitted by stars. But what physical process was responsible for the dark absorption lines
scattered throughout the continuous spectrum of a star, or for the bright emission lines
produced by a hot, diffuse gas in the laboratory?

The Structure of the Atom

In the very last years of the nineteenth century, Joseph John Thomson (1856–1940) discov-
ered the electron while working at Cambridge University’s Cavendish Laboratory. Because
bulk matter is electrically neutral, atoms were deduced to consist of negatively charged elec-
trons and an equal positive charge of uncertain distribution. Ernest Rutherford (1871–1937)
of New Zealand, working at England’s University of Manchester, discovered in 1911 that
an atom’s positive charge was concentrated in a tiny, massive nucleus. Rutherford directed
high-speed alpha particles (now known to be helium nuclei) onto thin metal foils. He was
amazed to observe that a few of the alpha particles were bounced backward by the foils
instead of plowing through them with only a slight deviation. Rutherford later wrote: “It
was quite the most incredible event that has ever happened to me in my life. It was almost
as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and
hit you.” Such an event could occur only as the result of a single collision of the alpha
particle with a minute, massive, positively charged nucleus. Rutherford calculated that the
radius of the nucleus was 10,000 times smaller than the radius of the atom itself, showing
that ordinary matter is mostly empty space! He established that an electrically neutral atom
consists of Z electrons (where Z is an integer), with Z positive elementary charges confined
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to the nucleus. Rutherford coined the term proton to refer to the nucleus of the hydrogen
atom (Z = 1), 1836 times more massive than the electron. But how were these charges
arranged?

The Wavelengths of Hydrogen

The experimental data were abundant. The wavelengths of 14 spectral lines of hydrogen
had been precisely determined. Those in the visible region of the electromagnetic spectrum
are 656.3 nm (red, Hα), 486.1 nm (turquoise, Hβ), 434.0 nm (blue, Hγ ), and 410.2 nm
(violet, Hδ). In 1885 a Swiss school teacher, Johann Balmer (1825–1898), had found, by
trial and error, a formula to reproduce the wavelengths of these spectral lines of hydrogen,
today called the Balmer series or Balmer lines:

1
λ

= RH

(

1
4

− 1
n2

)

, (7)

where n = 3, 4, 5, . . . , and RH = 1.09677583 × 107 ± 1.3 m−1 is the experimentally de-
termined Rydberg constant for hydrogen.7 Balmer’s formula was very accurate, to within
a fraction of a percent. Inserting n = 3 gives the wavelength of the Hα Balmer line, n = 4
gives Hβ, and so on. Furthermore, Balmer realized that since 22 = 4, his formula could be
generalized to

1
λ

= RH

(

1
m2

− 1
n2

)

, (8)

with m < n (both integers). Many nonvisible spectral lines of hydrogen were found later,
just as Balmer had predicted. Today, the lines corresponding to m = 1 are called Lyman
lines. The Lyman series of lines is found in the ultraviolet region of the electromagnetic
spectrum. Similarly, inserting m = 3 into Eq. ( 8) produces the wavelengths of the Paschen
series of lines, which lie entirely in the infrared portion of the spectrum. The wavelengths
of important selected hydrogen lines are given in Table 2.

Yet all of this was sheer numerology, with no foundation in the physics of the day. Physi-
cists were frustrated by their inability to construct a model of even this simplest of atoms. A
planetary model of the hydrogen atom, consisting of a central proton and one electron held
together by their mutual electrical attraction, should have been most amenable to analysis.
However, a model consisting of a single electron and proton moving around their common
center of mass suffers from a basic instability. According to Maxwell’s equations of elec-
tricity and magnetism, an accelerating electric charge emits electromagnetic radiation. The
orbiting electron should thus lose energy by emitting light with a continuously increasing
frequency (the orbital frequency) as it spirals down into the nucleus. This theoretical predic-
tion of a continuous spectrum disagreed with the discrete emission lines actually observed.
Even worse was the calculated timescale: The electron should plunge into the nucleus in
only 10−8 s. Obviously, matter is stable over much longer periods of time!

7RH is named in honor of Johannes Rydberg (1854–1919), a Swedish spectroscopist.
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TABLE 2 The wavelengths of selected hydrogen spectral lines in air. (Based on Cox, (ed.),
Allen’s Astrophysical Quantities, Fourth Edition, Springer, New York, 2000.)

Series Name Symbol Transition Wavelength (nm)
Lyman Lyα 2 ↔ 1 121.567

Lyβ 3 ↔ 1 102.572
Lyγ 4 ↔ 1 79.254
Lylimit ∞ ↔ 1 91.18

Balmer Hα 3 ↔ 2 656.281
Hβ 4 ↔ 2 486.134
Hγ 5 ↔ 2 434.048
Hδ 6 ↔ 2 410.175
Hϵ 7 ↔ 2 397.007
H8 8 ↔ 2 388.905
Hlimit ∞ ↔ 3 364.6

Paschen Paα 4 ↔ 3 1875.10
Paβ 5 ↔ 3 1281.81
Paγ 6 ↔ 3 1093.81
Palimit ∞ ↔ 3 820.4

Bohr’s Semiclassical Atom

Theoretical physicists hoped that the answer might be found among the new ideas of pho-
tons and quantized energy. A Danish physicist, Niels Bohr (1885–1962; see Fig. 4) came
to the rescue in 1913 with a daring proposal. The dimensions of Planck’s constant, J × s,
are equivalent to kg × m s−1 × m, the units of angular momentum. Perhaps the angular
momentum of the orbiting electron was quantized. This quantization had been previously
introduced into atomic models by the British astronomer J. W. Nicholson. Although Bohr
knew that Nicholson’s models were flawed, he recognized the possible significance of the
quantization of angular momentum. Just as an electromagnetic wave of frequency ν could
have the energy of only an integral number of quanta, E = nhν, suppose that the value
of the angular momentum of the hydrogen atom could assume only integral multiples of
Planck’s constant divided by 2π : L = nh/2π = n!.8 Bohr hypothesized that in orbits with
precisely these allowed values of the angular momentum, the electron would be stable and
would not radiate in spite of its centripetal acceleration. What would be the result of such
a bold departure from classical physics?

To analyze the mechanical motion of the atomic electron–proton system, we start with
the mathematical description of their electrical attraction given by Coulomb’s law. For two
charges q1 and q2 separated by a distance r , the electric force on charge 2 due to charge 1
has the familiar form

F = 1
4πϵ0

q1q2

r2
r̂, (9)

8The quantity ! ≡ h/2π = 1.054571596 × 10−34 J s and is pronounced “h-bar.”
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FIGURE 4 Niels Bohr (1885–1962). (Courtesy of The Niels Bohr Archive, Copenhagen.)

where ϵ0 = 8.854187817 . . . × 10−12 F m−1 is the permittivity of free space9 and r̂ is a unit
vector directed from charge 1 toward charge 2.

Consider an electron of mass me and charge −e and a proton of mass mp and charge +e

in circular orbits around their common center of mass, under the influence of their mutual
electrical attraction, e being the fundamental charge, e = 1.602176462 × 10−19 C.

problem by using the reduced mass

µ = memp

me + mp

= (me)(1836.15266 me)

me + 1836.15266 me

= 0.999455679 me

and the total mass

M = me + mp = me + 1836.15266 me = 1837.15266 me = 1.0005446 mp

of the system. Since M ≃ mp and µ ≃ me, the hydrogen atom may be thought of as being
composed of a proton of mass M that is at rest and an electron of mass µ that follows a
circular orbit of radius r around the proton; see Fig. 5. The electrical attraction between the
electron and the proton produces the electron’s centripetal acceleration v2/r , as described
by Newton’s second law:

F = µa,

implying

1
4πϵ0

q1q2

r2
r̂ = −µ

v2

r
r̂,

9Formally, ϵ0 is defined as ϵ0 ≡ 1/µ0c
2, where µ0 ≡ 4π × 10−7 N A−2 is the permeability of free space and

c ≡ 2.99792458 × 108 m s−1 is the defined speed of light.

This two-body problem may be treated as an equivalent one-body
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FIGURE 5 The Bohr model of the hydrogen atom.

or

− 1
4πϵ0

e2

r2
r̂ = −µ

v2

r
r̂.

Canceling the minus sign and the unit vector r̂, this expression can be solved for the kinetic
energy, 1

2µv2:

K = 1
2
µv2 = 1

8πϵ0

e2

r
. (10)

Now the electrical potential energy U of the Bohr atom is10

U = − 1
4πϵ0

e2

r
= −2K.

Thus the total energy E = K + U of the atom is

E = K + U = K − 2K = −K = − 1
8πϵ0

e2

r
. (11)

Note that the relation between the kinetic, potential, and total energies is in accordance
with the virial theorem for an inverse-square force,
E = 1

2U = −K . Because the kinetic energy must be positive, the total energy E is negative.
This merely indicates that the electron and the proton are bound. To ionize the atom (that
is, to remove the proton and electron to an infinite separation), an amount of energy of
magnitude |E| (or more) must be added to the atom.

Thus far the derivation has been completely classical in nature. At this point, however,
we can use Bohr’s quantization of angular momentum,

L = µvr = n!, (12)

10 This is found from a derivation analogous to the one leading to the gravitational result The zero of potential
energy is taken to be zero at r = ∞.

.
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to rewrite the kinetic energy, Eq. (10).

1
8πϵ0

e2

r
= 1

2
µv2 = 1

2
(µvr)2

µr2
= 1

2
(n!)2

µr2
.

Solving this equation for the radius r shows that the only values allowed by Bohr’s quan-
tization condition are

rn = 4πϵ0!
2

µe2
n2 = a0n

2, (13)

where a0 = 5.291772083 × 10−11 m = 0.0529 nm is known as the Bohr radius. Thus the
electron can orbit at a distance of a0, 4a0, 9a0, . . . from the proton, but no other separations
are allowed. According to Bohr’s hypothesis, when the electron is in one of these orbits,
the atom is stable and emits no radiation.

Inserting this expression for r into Eq. ( 11) reveals that the allowed energies of the
Bohr atom are

En = − µe4

32π2ϵ2
0!2

1
n2

= −13.6 eV
1
n2

. (14)

The integer n, known as the principal quantum number, completely determines the char-
acteristics of each orbit of the Bohr atom. Thus, when the electron is in the lowest orbit (the
ground state), with n = 1 and r1 = a0, its energy is E1 = −13.6 eV. With the electron in
the ground state, it would take at least 13.6 eV to ionize the atom. When the electron is in
the first excited state, with n = 2 and r2 = 4a0, its energy is greater than it is in the ground
state: E2 = −13.6/4 eV = −3.40 eV.

If the electron does not radiate in any of its allowed orbits, then what is the origin of the
spectral lines observed for hydrogen? Bohr proposed that a photon is emitted or absorbed
when an electron makes a transition from one orbit to another. Consider an electron as it
“falls” from a higher orbit, nhigh, to a lower orbit, nlow, without stopping at any intermediate
orbit. (This is not a fall in the classical sense; the electron is never observed between the
two orbits.) The electron loses energy"E = Ehigh − Elow, and this energy is carried away
from the atom by a single photon. Equation ( 14) leads to an expression for the wavelength
of the emitted photon,

Ephoton = Ehigh − Elow

or

hc

λ
=
(

− µe4

32π2ϵ2
0!2

1
n2

high

)

−
(

− µe4

32π2ϵ2
0!2

1
n2

low

)

,
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which gives

1
λ

= µe4

64π3ϵ2
0!3c

(

1
n2

low

− 1
n2

high

)

. (15)

Comparing this with Eqs. ( 7) and ( 8) reveals that Eq. ( 15) is just the generalized
Balmer formula for the spectral lines of hydrogen, with nlow = 2 for the Balmer series.
Inserting values into the combination of constants in front of the parentheses shows that
this term is exactly the Rydberg constant for hydrogen:

RH = µe4

64π3ϵ2
0!3c

= 10967758.3 m−1.

This value is in perfect agreement with the experimental value quoted following Eq. ( 7)
for the hydrogen lines determined by Johann Balmer, and this agreement illustrates the great
success of Bohr’s model of the hydrogen atom.11

Example 3.1. What is the wavelength of the photon emitted when an electron makes a
transition from the n = 3 to the n = 2 orbit of the Bohr hydrogen atom? The energy lost
by the electron is carried away by the photon, so

Ephoton = Ehigh − Elow

hc

λ
= −13.6 eV

1
n2

high

−
(

−13.6 eV
1

n2
low

)

= −13.6 eV
(

1
32

− 1
22

)

.

Solving for the wavelength gives λ = 656.469 nm in a vacuum. This result is within 0.03%
of the measured value of the Hα spectral line, as quoted in Example 1.1 and Table 2.

The discrepancy between the calculated and the observed values is due to the measure-
ments being made in air rather than in vacuum. Near sea level, the speed of light is slower
than in vacuum by a factor of approximately 1.000297. Defining the index of refraction
to be n = c/v, where v is the measured speed of light in the medium, nair = 1.000297.
Given that λν = v for wave propagation, and since ν cannot be altered in moving from one
medium to another without resulting in unphysical discontinuities in the electromagnetic
field of the light wave, the measured wavelength must be proportional to the wave speed.
Thus λair/λvacuum = vair/c = 1/nair . Solving for the measured wavelength of the Hα line
in air yields

λair = λvacuum/nair = 656.469 nm/1.000297 = 656.275 nm.

continued

11The slightly different Rydberg constant, R∞, found in many texts assumes an infinitely heavy nucleus. The
reduced mass, µ, in the expression for RH is replaced by the electron mass, me , in R∞.
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This result differs from the quoted value by only 0.0009%. The remainder of the discrepancy
is due to the fact that the index of refraction is wavelength dependent. The index of refraction
also depends on environmental conditions such as temperature, pressure, and humidity.12

Unless otherwise noted, throughout the remainder of this text, wavelengths will be as-
sumed to be measured in air (from the ground).

The reverse process may also occur. If a photon has an energy equal to the difference
in energy between two orbits (with the electron in the lower orbit), the photon may be
absorbed by the atom. The electron uses the photon’s energy to make an upward transition
from the lower orbit to the higher orbit. The relation between the photon’s wavelength and
the quantum numbers of the two orbits is again given by Eq. (15).

After the quantum revolution, the physical processes responsible for Kirchhoff’s laws
(discussed in Section 1) finally became clear.

• A hot, dense gas or hot solid object produces a continuous spectrum with no dark
spectral lines. This is the continuous spectrum of blackbody radiation emitted at any
temperature above absolute zero and described by the Planck functions Bλ(T ) and
Bν(T ). The wavelengthλmax at which the Planck function Bλ(T ) obtains its maximum
value is given by Wien’s displacement law

• A hot, diffuse gas produces bright emission lines. Emission lines are produced when
an electron makes a downward transition from a higher orbit to a lower orbit. The
energy lost by the electron is carried away by a single photon. For example, the
hydrogen Balmer emission lines are produced by electrons “falling” from higher
orbits down to the n = 2 orbit; see Fig. 6(a).

• A cool, diffuse gas in front of a source of a continuous spectrum produces dark
absorption lines in the continuous spectrum. Absorption lines are produced when
an electron makes a transition from a lower orbit to a higher orbit. If an incident
photon in the continuous spectrum has exactly the right amount of energy, equal to

H$

H%
n = 1

n = 2

n = 3

n = 4

H$

H%
n = 1

n = 2

n = 3

n = 4
(a) (b)

FIGURE 6 Balmer lines produced by the Bohr hydrogen atom. (a) Emission lines. (b) Absorption
lines.

12See, for example, Lang, Astrophysical Formulae, 1999, page 185 for a fitting formula for n(λ).

.

The Interaction of Light and Matter



% $ & '
Lyman (Ly)

% $ & '
Balmer (H)

% $ & '
Paschen (Pa)

n = •
n = 4
n = 3

n = 2

n = 1

....

A
bs

or
pt

io
n 

lin
e

E
m

is
si

on
 li

ne

0

–2

–4

–6

–8

–10

–12

–14

E
ne

rg
y 

(e
V

)

FIGURE 7 Energy level diagram for the hydrogen atom showing Lyman, Balmer, and Paschen
lines (downward arrows indicate emission lines; upward arrow indicates absorption lines).

the difference in energy between a higher orbit and the electron’s initial orbit, the
photon is absorbed by the atom and the electron makes an upward transition to that
higher orbit. For example, the hydrogen Balmer absorption lines are produced by
atoms absorbing photons that cause electrons to make transitions from the n = 2
orbit to higher orbits; see Figs. 6(b) and 7.

Despite the spectacular successes of Bohr’s model of the hydrogen atom, it is not quite
correct. Although angular momentum is quantized, it does not have the values assigned
by Bohr.13 Bohr painted a semiclassical picture of the hydrogen atom, a miniature Solar
System with an electron circling the proton in a classical circular orbit. In fact, the electron
orbits are not circular. They are not even orbits at all, in the classical sense of an electron
at a precise location moving with a precise velocity. Instead, on an atomic level, nature is
“fuzzy,” with an attendant uncertainty that cannot be avoided. It was fortunate that Bohr’s
model, with all of its faults, led to the correct values for the energies of the orbits and to
a correct interpretation of the formation of spectral lines. This intuitive, easily imagined
model of the atom is what most physicists and astronomers have in mind when they visualize
atomic processes.

4 QUANTUM MECHANICS AND WAVE–PARTICLE DUALITY

The last act of the quantum revolution began with the musings of a French prince, Louis de
Broglie (1892–1987; see Fig. 8). Wondering about the recently discovered wave–particle
duality for light, he posed a profound question: If light (classically thought to be a wave)

13As we will see in the next section, instead of L = n!, the actual values of the orbital angular momentum are
L = √

ℓ(ℓ+ 1) !, where ℓ, an integer, is a new quantum number.
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FIGURE 8 Louis de Broglie (1892–1987). (Courtesy of AIP Niels Bohr Library.)

could exhibit the characteristics of particles, might not particles sometimes manifest the
properties of waves?

de Broglie’s Wavelength and Frequency

In his 1927 Ph.D. thesis, de Broglie extended the wave–particle duality to all of nature.
Photons carry both energy E and momentum p, and these quantities are related to the
frequency ν and wavelength λ of the light wave by Eq. (5):

ν = E

h

λ = h

p
.

(16)

(17)

de Broglie proposed that these equations be used to define a frequency and a wavelength
for all particles. The de Broglie wavelength and frequency describe not only massless pho-
tons but massive electrons, protons, neutrons, atoms, molecules, people, planets, stars, and
galaxies as well. This seemingly outrageous proposal of matter waves has been confirmed
in countless experiments. Figure 9 shows the interference pattern produced by electrons
in a double-slit experiment. Just as Thomas Young’s double-slit experiment established the
wave properties of light, the electron double-slit experiment can be explained only by the
wave-like behavior of electrons, with each electron propagating through both slits.14 The
wave–particle duality applies to everything in the physical world; everything exhibits its
wave properties in its propagation and manifests its particle nature in its interactions.

14See Chapter 6 of Feynman (1965) for a fascinating description of the details and profound implications of the
electron double-slit experiment.
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FIGURE 9 Interference pattern from an electron double-slit experiment. (Figure from Jönsson,
Zeitschrift für Physik, 161, 454, 1961.)

Example 4.1. Compare the wavelengths of a free electron moving at 3 × 106 m s−1 and
a 70-kg man jogging at 3 m s−1. For the electron,

λ = h

p
= h

mev
= 0.242 nm,

which is about the size of an atom and much shorter than the wavelength of visible light.
Electron microscopes utilize electrons with wavelengths one million times shorter than
visible wavelengths to obtain a much higher resolution than is possible with optical micro-
scopes.

The wavelength of the jogging man is

λ = h

p
= h

mmanv
= 3.16 × 10−36 m,

which is completely negligible on the scale of the everyday world, and even on atomic or
nuclear scales. Thus the jogging gentleman need not worry about diffracting when returning
home through his doorway!

Just what are the waves that are involved in the wave–particle duality of nature? In
a double-slit experiment, each photon or electron must pass through both slits, since the
interference pattern is produced by the constructive and destructive interference of the two
waves. Thus the wave cannot convey information about where the photon or electron is,
but only about where it may be. The wave is one of probability, and its amplitude is denoted
by the Greek letter - (psi). The square of the wave amplitude, |-|2, at a certain location
describes the probability of finding the photon or electron at that location. In the double-slit
experiment, photons or electrons are never found where the waves from slits 1 and 2 have
destructively interfered—that is, where |-1 +-2|2 = 0.
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Heisenberg’s Uncertainty Principle

The wave attributes of matter lead to some unexpected conclusions of paramount importance
for the science of astronomy. For example, consider Fig. 10(a). The probability wave,
-, is a sine wave, with a precise wavelength λ. Thus the momentum p = h/λ of the
particle described by this wave is known exactly. However, because |-|2 consists of a
number of equally high peaks extending out to x = ±∞, the particle’s location is perfectly
uncertain. The particle’s position can be narrowed down if several sine waves with different
wavelengths are added together, so they destructively interfere with one another nearly
everywhere. Figure 10(b) shows the resulting combination of waves,-, is approximately
zero everywhere except at one location. Now the particle’s position may be determined
with a greater certainty because |-|2 is large only for a narrow range of values of x.
However, the value of the particle’s momentum has become more uncertain because - is
now a combination of waves of various wavelengths. This is nature’s intrinsic trade-off:
The uncertainty in a particle’s position, "x, and the uncertainty in its momentum, "p, are
inversely related. As one decreases, the other must increase. This fundamental inability of a
particle to simultaneously have a well-defined position and a well-defined momentum is a
direct result of the wave–particle duality of nature. A German physicist, Werner Heisenberg
(1901–1976), placed this inherent “fuzziness” of the physical world in a firm theoretical
framework. He demonstrated that the uncertainty in a particle’s position multiplied by the
uncertainty in its momentum must be at least as large as !/2:

"x"p ≥ 1
2

!. (18)

Today this is known as Heisenberg’s uncertainty principle. The equality is rarely realized
in nature, and the form often employed for making estimates is

"x"p ≈ !. (19)

A similar statement relates the uncertainty of an energy measurement, "E, and the time
interval, "t , over which the energy measurement is taken:

"E"t ≈ !. (20)

(a) (b)

FIGURE 10 Two examples of a probability wave, -: (a) a single sine wave and (b) a pulse
composed of many sine waves.
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As the time available for an energy measurement increases, the inherent uncertainty in the
result decreases.

Example 4.2. Imagine an electron confined within a region of space the size of a hy-
drogen atom. We can estimate the minimum speed and kinetic energy of the electron using
Heisenberg’s uncertainty principle. Because we know only that the particle is within an
atom-size region of space, we can take "x ≈ a0 = 5.29 × 10−11 m. This implies that the
uncertainty in the electron’s momentum is roughly

"p ≈ !

"x
= 1.98 × 10−24 kg m s−1.

Thus, if the magnitude of the momentum of the electron were repeatedly measured, the
resulting values would vary within a range ±"p around some average (or expected) value.
Since this expected value, as well as the individual measurements, must be ≥ 0, the expected
value must be at least as large as "p. Thus we can equate the minimum expected value of
the momentum with its uncertainty: pmin ≈ "p. Using pmin = mevmin, the minimum speed
of the electron is estimated to be

vmin = pmin

me

≈ "p

me

≈ 2.18 × 106 m s−1.

The minimum kinetic energy of the (nonrelativistic) electron is approximately

Kmin = 1
2
mev

2
min ≈ 2.16 × 10−18 J = 13.5 eV.

This is in good agreement with the kinetic energy of the electron in the ground state of
the hydrogen atom. An electron confined to such a small region must move rapidly with at
least this speed and this energy. his subtle quantum effect is responsible for supporting
white dwarf and neutron stars against the tremendous inward pull of gravity.

Quantum Mechanical Tunneling

When a ray of light attempts to travel from a glass prism into air, it may undergo total
internal reflection if it strikes the surface at an angle greater than the critical angle θc, where
the critical angle is related to the indices of refraction of the glass and air by

sin θc = nair

nglass
.

This familiar result is nonetheless surprising because, even though the ray of light is totally
reflected, the index of refraction of the outside air appears in this formula. In fact, the
electromagnetic wave does enter the air, but it ceases to be oscillatory and instead dies
away exponentially. In general, when a classical wave such as a water or light wave enters a

T
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FIGURE 11 Quantum mechanical tunneling (barrier penetration) of a particle traveling to the
right.

medium through which it cannot propagate, it becomes evanescent and its amplitude decays
exponentially with distance.

This total internal reflection can in fact be frustrated by placing another prism next to
the first prism so that their surfaces nearly (but not quite) touch. Then the evanescent wave
in the air may enter the second prism before its amplitude has completely died away. The
electromagnetic wave once again becomes oscillatory upon entering the glass, and so the
ray of light has traveled from one prism to another without passing through the air gap
between the prisms. In the language of particles, photons have tunneled from one prism to
another without traveling in the space between them.

The wave–particle duality of nature implies that particles can also tunnel through a region
of space (a barrier) in which they cannot exist classically, as illustrated in Fig. 11. The
barrier must not be too wide (not more than a few particle wavelengths) if tunneling is to take
place; otherwise, the amplitude of the evanescent wave will have declined to nearly zero.
This is consistent with Heisenberg’s uncertainty principle, which implies that a particle’s
location cannot be determined with an uncertainty that is less than its wavelength. Thus, if
the barrier is only a few wavelengths wide, the particle may suddenly appear on the other
side of the barrier. Barrier penetration is extremely important in radioactive decay, where
alpha particles tunnel out of an atom’s nucleus; in modern electronics, where it is the basis
for the “tunnel diode”; and inside stars, where the rates of nuclear fusion reactions depend
upon tunneling.

Schrödinger’s Equation and the Quantum Mechanical Atom

What are the implications for Bohr’s model of the hydrogen atom? Heisenberg’s uncertainty
principle does not allow classical orbits, with their simultaneously precise values of the
electron’s position and momentum. Instead, the electron orbitals must be imagined as fuzzy
clouds of probability, with the clouds being more “dense” in regions where the electron is
more likely to be found (see Fig. 12). In 1925 a complete break from classical physics
was imminent, one that would fully incorporate de Broglie’s matter waves. Maxwell’s

The Interaction of Light and Matter

equations of electricity andmagnetismcan bemanipulated to produce a wave equa-
tion for the electromagnetic waves that describe the propagation of photons. Simi-
larly, a wave equation discovered in 1926 by Erwin Schrödinger (1877–1961), an 
Austrian physicist, led to a true quantum mechanics, the quantum analog of the 
classical mechanics that originated with Galileo and Newton. The Schrödinger
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mℓ = 0. Right: 2p orbital with mℓ = ±1. The quantum numbers n, ℓ, and mℓ are described in the
text.

equation can be solved for the probability waves that describe the allowed values of a par-
ticle’s energy, momentum, and so on, as well as the particle’s propagation through space.
In particular, the Schrödinger equation can be solved analytically for the hydrogen atom,
giving exactly the same set of allowed energies as those obtained by Bohr (cf. Eq. 11).
However, in addition to the principal quantum number n, Schrödinger found that two addi-
tional quantum numbers, ℓ and mℓ, are required for a complete description of the electron
orbitals. These additional numbers describe the angular momentum vector, L, of the atom.
Instead of the quantization used by Bohr, L = n!, the solution to the Schrödinger equation
shows that the permitted values of the magnitude of the angular momentum L are actually

L =
√

ℓ(ℓ+ 1) !, (21)

where ℓ = 0, 1, 2, . . . , n − 1, and n is the principal quantum number that determines the
energy.

Note that it is common practice to refer to the angular momentum quantum numbers by
their historical spectroscopic designations s, p, d, f , g, h, and so on, corresponding to ℓ = 0,
1, 2, 3, 4, 5, etc. When the associated principle quantum number is used in combination
with the angular momentum quantum number, the principle quantum number precedes the
spectroscopic designation. For example, (n = 2, ℓ = 1) corresponds to 2p, and (n = 3,
ℓ = 2) is given as 3d . This notation was used in the caption of Fig. 12 and is also used in
Fig. 13.

The z-component of the angular momentum vector, Lz, can assume only the values
Lz = mℓ!, with mℓ equal to any of the 2ℓ+ 1 integers between −ℓ and +ℓ inclusive. Thus
the angular momentum vector can point in 2ℓ+ 1 different directions. For our purposes, the
important point is that the values of the energy of an isolated hydrogen atom do not depend
on ℓ and mℓ. In the absence of a preferred direction in space, the direction of the angular
momentum has no effect on the atom’s energy. Different orbitals, labeled by different values
of ℓ and mℓ (see Fig. 12), are said to be degenerate if they have the same value of the
principal quantum number n and so have the same energy. Electrons making a transition
from a given orbital to one of several degenerate orbitals will produce the same spectral
line, because they experience the same change in energy.

The Interaction of Light and Matter
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FIGURE 13 Splitting of absorption lines by the Zeeman effect.

However, the atom’s surroundings may single out one spatial direction as being different
from another. For example, an electron in an atom will feel the effect of an external magnetic
field. The magnitude of this effect will depend on the 2ℓ+ 1 possible orientations of the
electron’s motion, as given by mℓ, and the magnetic field strength, B, where the units
of B are teslas (T).15 As the electron moves through the magnetic field, the normally
degenerate orbitals acquire slightly different energies. Electrons making a transition between
these formerly degenerate orbitals will thus produce spectral lines with slightly different
frequencies. The splitting of spectral lines in a weak magnetic field is called the Zeeman
effect and is shown in Fig. 13. The three frequencies of the split lines in the simplest case
(called the normal Zeeman effect) are

ν = ν0 and ν0 ± eB

4πµ
, (22)

where ν0 is the frequency of the spectral line in the absence of a magnetic field and µ is the
reduced mass. Although the energy levels are split into 2ℓ+ 1 components, electron transi-
tions involving these levels produce just three spectral lines with different polarizations.16

Viewed from different directions, it may happen that not all three lines will be visible. For
example, when looking parallel to the magnetic field (as when looking down on a sunspot),
the unshifted line of frequency ν0 is absent.

Thus the Zeeman effect gives astronomers a probe of the magnetic fields observed
around sunspots and on other stars. Even if the splitting of the spectral line is too small to
be directly detected, the different polarizations across the closely spaced components can
still be measured and the magnetic field strength deduced.

Example 4.3. Interstellar clouds may contain very weak magnetic fields, as small as
B ≈ 2 × 10−10 T. Nevertheless, astronomers have been able to measure this magnetic
field. Using radio telescopes, they detect the variation in polarization that occurs across the

15Another commonly used unit of magnetic field strength is gauss, where 1 G = 10−4 T. Earth’s magnetic field is
roughly 0.5 G, or 5 × 10−5 T.
16See the ection,  The Complex Spectra of Atoms ,  concerning selection rules.,,,,S

The Interaction of Light and Matter



blended Zeeman components of the absorption lines that are produced by these interstellar
clouds of hydrogen gas. The change in frequency,"ν, produced by a magnetic field of this
magnitude can be calculated from Eq. ( 22) by using the mass of the electron, me, for the
reduced mass µ:

"ν = eB

4πme

= 2.8 Hz,

a minute change. The total difference in frequency from one side of this blended line to
the other is twice this amount, or 6 Hz. For comparison, the frequency of the radio wave
emitted by hydrogen with λ = 21 cm is ν = c/λ = 1.4 × 109 Hz, 250 million times larger!

Spin and the Pauli Exclusion Principle

Attempts to understand more complicated patterns of magnetic field splitting (the anomalous
Zeeman effect), usually involving an even number of unequally spaced spectral lines, led
physicists in 1925 to discover a fourth quantum number. In addition to its orbital motion,
the electron possesses a spin. This is not a classical top-like rotation but purely a quantum
effect that endows the electron with a spin angular momentum S. S is a vector of constant
magnitude

S =
√

1
2

(

1
2

+ 1
)

! =
√

3
2

!,

with a z-component Sz = ms!. The only values of the fourth quantum number, ms , are ± 1
2 .

With each orbital, or quantum state, labeled by four quantum numbers, physicists won-
dered how many electrons in a multielectron atom could occupy the same quantum state.
The answer was supplied in 1925 by an Austrian theoretical physicist, Wolfgang Pauli
(1900–1958): No two electrons can occupy the same quantum state. The Pauli exclusion
principle, that no two electrons can share the same set of four quantum numbers, explained
the electronic structure of atoms, thereby providing an explanation of the properties of the
periodic table of the elements, the well-known chart from any introductory chemistry text.
Despite this success, Pauli was unhappy about the lack of a firm theoretical understanding
of electron spin. Spin was stitched onto quantum theory in an ad hoc manner, and the seams
showed. Pauli lamented this patchwork theory and asked, “How can one avoid despondency
if one thinks of the anomalous Zeeman effect?”

The final synthesis arrived in 1928 from an unexpected source. A brilliant English the-
oretical physicist, Paul Adrien Maurice Dirac (1902–1984), was working at Cambridge to
combine Schrödinger’s wave equation with Einstein’s theory of special relativity. When he
finally succeeded in writing a relativistic wave equation for the electron, he was delighted
to see that the mathematical solution automatically included the spin of the electron. It also
explained and extended the Pauli exclusion principle by dividing the world of particles into
two fundamental groups: fermions and bosons. Fermions17 are particles such as electrons,

17The fermion is named after the Italian physicist Enrico Fermi (1901–1954).
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protons, and neutrons18 that have a spin of 1
2 ! (or an odd integer times 1

2 !, such as 3
2 !,

5
2 !, . . .). Fermions obey the Pauli exclusion principle, so no two fermions of the same type
can have the same set of quantum numbers. The exclusion principle for fermions, along
with Heisenberg’s uncertainty relation, explains the structure of white dwarfs and neutron
stars Bosons19 are particles such as photons that have an integral spin of 0, !, 2!, 3!, . . . .
Bosons do not obey the Pauli exclusion principle, so any number of bosons can occupy
the same quantum state.

As a final bonus, the Dirac equation predicted the existence of antiparticles.Aparticle and
its antiparticle are identical except for their opposite electric charges and magnetic moments.
Pairs of particles and antiparticles may be created from the energy of gamma-ray photons
(according to E = mc2). Conversely, particle–antiparticle pairs may annihilate each other,
with their mass converted back into the energy of two gamma-ray photons.

holes.

The Complex Spectra of Atoms

With the full list of four quantum numbers (n, ℓ, mℓ, and ms) that describe the detailed
state an each electron in an atom, the number of possible energy levels increases rapidly
with the number of electrons. When we take into account the additional complications of
external magnetic fields, and the electromagnetic interactions between the electrons them-
selves and between the electrons and the nucleus, the spectra can become very complicated
indeed. Figure 14 shows some of the available energy levels for the two electrons in the
neutral helium atom.20 Imagine the complexity of the relatively abundant iron atom with
its 26 electrons!

Although energy levels exist for electrons with various combinations of quantum num-
bers, it is not always easy for an electron to make a transition from one quantum state with
a specific set of quantum numbers to another quantum state. In particular, Nature imposes
a set of selection rules that restrict certain transitions. For example, a careful investigation
of Fig. 14 will show that only transitions involving "ℓ = ±1 are shown (from 1P to 1S,
or from 1F to 1D, for instance). These transitions are referred to as allowed transitions and
can happen spontaneously on timescales of 10−8 s. On the other hand, transitions that do
not satisfy the requirement that "ℓ = ±1 are known as forbidden transitions.

In the case of the Zeeman effect first discussed on page 134, it was pointed out that only
three transitions could occur between the 1s and 2p energy levels (recall Fig. 13). This
is because of another set of selection rules requiring that "mℓ = 0 or ±1 and forbidding
transitions between orbitals if both orbitals have mℓ = 0.

Although forbidden transitions may occur, they require much longer times if they are to
occur with any significant probability. Since collisions between atoms trigger transitions
and can compete with spontaneous transitions, very low gas densities are required for
measurable intensities to be observed from forbidden transitions. Such environments do
exist in astronomy, such as in the diffuse interstellar medium or in the outer atmospheres

18The neutron was not discovered until 1932 by James Chadwick (1891–1974), the same year that the positron
(antimatter electron) was discovered by Carl Anderson (1905–1991).
19The boson is named in honor of the Indian physicist S. N. Bose (1894–1974).
20Figure 14 is known as a Grotrian diagram.

.

Pair creation and annihilation play a major role in the evaporation of black
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FIGURE 14 Some of the electronic energy levels of the helium atom. A small number of possible
allowed transitions are also indicated. (Data courtesy of the National Institute of Standards and
Technology.)

of stars. (It is beyond the scope of this text to discuss the detailed physics that underlies the
existence of selection rules.)

The revolution in physics started by Max Planck culminated in the quantum atom and
gave astronomers their most powerful tool: a theory that would enable them to analyze the
spectral lines observed for stars, galaxies, and nebulae.21 Different atoms, and combina-
tions of atoms in molecules, have orbitals of distinctly different energies; thus they can be
identified by their spectral line “fingerprints.” The specific spectral lines produced by an
atom or molecule depend on which orbitals are occupied by electrons. This, in turn, depends
on its surroundings: the temperature, density, and pressure of its environment. These and
other factors, such as the strength of a surrounding magnetic field, may be determined by
a careful examination of spectral lines.
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PROBLEM

1 Barnard’s star, named after the American astronomer Edward E. Barnard (1857–1923), is
an orange star in the constellation Ophiuchus. It has the largest known proper motion (µ =
10.3577′′ yr−1) and the fourth-largest parallax angle (p = 0.54901′′ ). Only the stars in the
triple system α Centauri have larger parallax angles. In the spectrum of Barnard’s star, the
Hα absorption line is observed to have a wavelength of 656.034 nm when measured from
the ground.
(a) Determine the radial velocity of Barnard’s star.
(b) Determine the transverse velocity of Barnard’s star.
(c) Calculate the speed of Barnard’s star through space.

2 When salt is sprinkled on a flame, yellow light consisting of two closely spaced wavelengths,
588.997 nm and 589.594 nm, is produced. They are called the sodium D lines and were observed
by Fraunhofer in the Sun’s spectrum.
(a) If this light falls on a diffraction grating with 300 lines per millimeter, what is the angle

between the second-order spectra of these two wavelengths?
(b) How many lines of this grating must be illuminated for the sodium D lines to just be

resolved?

3 Show that hc ≃ 1240 eV nm.

4 The photoelectric effect can be an important heating mechanism for the grains of dust found
in interstellar clouds (see Section 12.1). The ejection of an electron leaves the grain with a
positive charge, which affects the rates at which other electrons and ions collide with and stick
to the grain to produce the heating. This process is particularly effective for ultraviolet photons
(λ ≈ 100 nm) striking the smaller dust grains. If the average energy of the ejected electron is
about 5 eV, estimate the work function of a typical dust grain.

5

The Interaction of Light
and Matter

Ephoton = hν = hc

λ
= pc. (5)

"λ = λf − λi = h

mec
(1 − cos θ), (6)

6 Consider the case of a “collision” between a photon and a free proton, initially at rest. What
is the characteristic change in the wavelength of the scattered photon in units of nanometers?
How does this compare with the Compton wavelength, λC?

7 Verify that the units of Planck’s constant are the units of angular momentum.

From Chapter  of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 by
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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,

Use Eq. (5) for the momentum of a photon, plus the conservation of relativistic momentum and 
energy, to derive Eq. (6) for the change in wavelength of the scattered photon in the Compton 
effect.



8 A one-electron atom is an atom with Z protons in the nucleus and with all but one of its electrons
lost to ionization.
(a) Starting with Coulomb’s law, determine expressions for the orbital radii and energies for a

Bohr model of the one-electron atom with Z protons.
(b) Find the radius of the ground-state orbit, the ground-state energy, and the ionization energy

of singly ionized helium (He II).
(c) Repeat part (b) for doubly ionized lithium (Li III).

9 To demonstrate the relative strengths of the electrical and gravitational forces of attraction
between the electron and the proton in the Bohr atom, suppose the hydrogen atom were held
together solely by the force of gravity. Determine the radius of the ground-state orbit (in units
of nm and AU) and the energy of the ground state (in eV).

10 Calculate the energies and vacuum wavelengths of all possible photons that are emitted when
the electron cascades from the n = 3 to the n = 1 orbit of the hydrogen atom.

11 Find the shortest vacuum-wavelength photon emitted by a downward electron transition in the
Lyman, Balmer, and Paschen series. These wavelengths are known as the series limits. In which
regions of the electromagnetic spectrum are these wavelengths found?

12 An electron in a television set reaches a speed of about 5 × 107 m s−1 before it hits the screen.
What is the wavelength of this electron?

13 Consider the de Broglie wave of the electron in the Bohr atom. The circumference of the
electron’s orbit must be an integral number of wavelengths, nλ; see Fig. 15. Otherwise, the
electron wave will find itself out of phase and suffer destructive interference. Show that this
requirement leads to Bohr’s condition for the quantization of angular momentum, Eq. ( 12).

r

!

FIGURE 15 Three de Broglie wavelengths spanning an electron’s orbit in the Bohr atom.

L = µvr = n!, (12)

14 A white dwarf is a very dense star, with its ions and electrons packed extremely close together.
Each electron may be considered to be located within a region of size"x ≈ 1.5 × 10−12 m. Use
Heisenberg’s uncertainty principle, Eq. ( 19), to estimate the minimum speed of the electron.
Do you think that the effects of relativity will be important for these stars?

15 An electron spends roughly 10−8 s in the first excited state of the hydrogen atom before making
a spontaneous downward transition to the ground state.

(a) Use Heisenberg’s uncertainty principle (Eq. 20) to determine the uncertainty "E in the
energy of the first excited state.

"E"t ≈ !. (20)

"x"p ≈ !. (19)

The Interaction of Light and Matter: Problem Set



16 Each quantum state of the hydrogen atom is labeled by a set of four quantum numbers:
{n, ℓ, mℓ, ms}.
(a) List the sets of quantum numbers for the hydrogen atom having n = 1, n = 2, and n = 3.
(b) Show that the degeneracy of energy level n is 2n2.

17 The members of a class of stars known as Ap stars are distinguished by their strong global
magnetic fields (usually a few tenths of one tesla). The star HD215441 has an unusually
strong magnetic field of 3.4 T. Find the frequencies and wavelengths of the three components
of the Hα spectral line produced by the normal Zeeman effect for this magnetic field.

COMPUTER PROBLEM

18 One of the most important ideas of the physics of waves is that any complex waveform can
be expressed as the sum of the harmonics of simple cosine and sine waves. That is, any wave
function f (x) can be written as

f (x) = a0 + a1 cos x + a2 cos 2x + a3 cos 3x + a4 cos 4x + · · ·

+ b1 sin x + b2 sin 2x + b3 sin 3x + b4 sin 4x + · · · .

The coefficients an and bn tell how much of each harmonic goes into the recipe for f (x). This
series of cosine and sine terms is called the Fourier series for f (x). In general, both cosine and
sine terms are needed, but in this problem you will use only the sine terms; all of the an ≡ 0.

, the process of constructing
a wave pulse by adding was described. The Fourier sine series that you
will use to construct the odd harmonics and is given by

- = 2
N + 1

(sin x − sin 3x + sin 5x − sin 7x + · · · ± sin Nx) = 2
N + 1

N
∑

n=1
n odd

(−1)(n−1)/2 sin nx,

where N is an odd integer. The leading factor of 2/(N + 1) does not change the shape of- but
scales the wave for convenience so that its maximum value is equal to 1 for any choice of N .
(a) Graph- for N = 5, using values of x (in radians) between 0 and π . What is the width,"x,

of the wave pulse?
(b) Repeat part (a) for N = 11.
(c) Repeat part (a) for N = 21.
(d) Repeat part (a) for N = 41.
(e) If - represents the probability wave of a particle, for which value of N is the position of

the particle known with the least uncertainty? For which value of N is the momentum of
the particle known with the least uncertainty?

a series of sine waves
your wave employs only

(b) Calculate the uncertainty"λ in the wavelength of the photon involved in a transition (either
upward or downward) between the ground and first excited states of the hydrogen atom.
Why can you assume that "E = 0 for the ground state?

This increase in the width of a spectral line is called natural broadening.

In section 4 of  The Interaction of Light and Matter“

  The letter A is the star’s spectral type, and the letter p stands for “peculiar.”
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Telescopes

1 Basic Optics
2 Optical Telescopes
3 Radio Telescopes
4 Infrared, Ultraviolet, X-ray, and Gamma-Ray Astronomy
5 All-Sky Surveys and Virtual Observatories

1 BASIC OPTICS

Refraction and Reflection

refracting
reflecting

Snell’s law

nλ ≡ c/vλ
vλ θ

vλ ≡ c
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Example 1.2. Keck Observatory
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a

a

a

a
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active optics
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Space-Based Observatories

Hubble Space Telescope
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James Webb Space Telescope
µ

Electronic Detectors

quantum efficiency
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3 RADIO TELESCOPES
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Atacama Large Millimeter Array
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PROBLEM

1 For some point P in space, show that for any arbitrary closed surface surrounding P , the integral
over a solid angle about P gives

%tot =
∮

d% = 4π.

2 The light rays coming from an object do not, in general, travel parallel to the optical axis of
a lens or mirror system. Consider an arrow to be the object, located a distance p from the
center of a simple converging lens of focal length f , such that p > f . Assume that the arrow is
perpendicular to the optical axis of the system with the tail of the arrow located on the axis. To
locate the image, draw two light rays coming from the tip of the arrow:

(i) One ray should follow a path parallel to the optical axis until it strikes the lens. It then bends
toward the focal point of the side of the lens opposite the object.

(ii) A second ray should pass directly through the center of the lens undeflected. (This assumes
that the lens is sufficiently thin.)

The intersection of the two rays is the location of the tip of the image arrow. All other rays
coming from the tip of the object that pass through the lens will also pass through the image tip.
The tail of the image is located on the optical axis, a distance q from the center of the lens. The
image should also be oriented perpendicular to the optical axis.

(a) Using similar triangles, prove the relation

1
p

+ 1
q

= 1
f

.

(b) Show that if the distance of the object is much larger than the focal length of the lens
(p ≫ f ), then the image is effectively located on the focal plane. This is essentially always
the situation for astronomical observations.

The analysis of a diverging lens or a mirror (either converging or diverging) is similar and leads
to the same relation between object distance, image distance, and focal length.

3 Show that if two lenses of focal lengths f1 and f2 can be considered to have zero physical
separation, then the effective focal length of the combination of lenses is

1
feff

= 1
f1

+ 1
f2

.

Note:Assuming that the actual physical separation of the lenses is x, this approximation is strictly
valid only when f1 ≫ x and f2 ≫ x.

4 (a) Using the result of Problem 3, show that a compound lens system can be constructed from
two lenses of different indices of refraction, n1λ and n2λ, having the property that the resultant
focal lengths of the compound lens at two specific wavelengths λ1 and λ2, respectively, can
be made equal, or

feff ,λ1 = feff ,λ2 .

(b) Argue qualitatively that this condition does not guarantee that the focal length will be constant
for all wavelengths.

Telescopes
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5 Prove that the angular magnification of a telescope having an objective focal length of fobj and
an eyepiece focal length of feye is given by Eq. ( 9) when the objective and the eyepiece are
separated by the sum of their focal lengths, fobj + feye.

m = fobj

feye
. (9)

6 The diffraction pattern for a single slit (Figs. 7 and 8) is given by

I (θ) = I0

[

sin(β/2)

β/2

]2

,

where β ≡ 2πD sin θ/λ.

(a) Using l’Hôpital’s rule, prove that the intensity at θ = 0 is given by I (0) = I0.
(b) If the slit has an aperture of 1.0 µm, what angle θ corresponds to the first minimum if the

wavelength of the light is 500 nm? Express your answer in degrees.

!
!

Path difference = (D/2) sin !

L

D

y

FIGURE 7 For a minimum to occur, the path difference between paired rays must be a half-
wavelength.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

m
–3 –2 –1 0 1 2 3

I / I0

FIGURE 8 The diffraction pattern produced by a single slit. (Photograph from Cagnet, Francon,
and Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Berlin, 1962.)

7 (a) Using the Rayleigh criterion, estimate the angular resolution limit of the human eye at
550 nm. Assume that the diameter of the pupil is 5 mm.

(b) Compare your answer in part (a) to the angular diameters of the Moon and Jupiter. You may
find the data in Appendix helpful.

(c) What can you conclude about the ability to resolve the Moon’s disk and Jupiter’s disk with
the unaided eye?
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Using the Rayleigh criterion, estimate the theoretical diffraction limit for the angular res-
olution of a typical 20-cm (8-in) amateur telescope at 550 nm. Express your answer in
arcseconds.

(b) Using the information in Appendix: Solar  System  Data,  estimate the minimum size of a
crater on the Moon that can be resolved by a 20-cm (8-in) telescope.

(c) Is this resolution limit likely to be achieved? Why or why not?

9 The New Technology Telescope (NTT) is operated by the European Southern Observatory at
Cerro La Silla. This telescope was used as a testbed for evaluating the adaptive optics technology
used in the VLT. The NTT has a 3.58-m primary mirror with a focal ratio of f/2.2.
(a) Calculate the focal length of the primary mirror of the New Technology Telescope.
(b) What is the value of the plate scale of the NTT?
(c) ϵ Bootes is a double star system whose components are separated by 2.9′′. Calculate the

linear separation of the images on the primary mirror focal plane of the NTT.

10 When operated in “planetary” mode, HST’s WF/PC 2 has a focal ratio of f/28.3 with a plate scale
of 0.0455′′ pixel−1. Estimate the angular size of the field of view of one CCD in the planetary
mode.

11 Suppose that a radio telescope receiver has a bandwidth of 50 MHz centered at 1.430 GHz
(1 GHz = 1000 MHz). Assume that, rather than being a perfect detector over the entire band-
width, the receiver’s frequency dependence is triangular, meaning that the sensitivity of the
detector is 0% at the edges of the band and 100% at its center. This filter function can be
expressed as

fν =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ν

νm − νℓ
− νℓ

νm − νℓ
if νℓ ≤ ν ≤ νm

− ν

νu − νm

+ νu

νu − νm

if νm ≤ ν ≤ νu

0 elsewhere.

(a) Find the values of νℓ, νm, and νu.
(b) Assume that the radio dish is a 100% efficient reflector over the receiver’s bandwidth and

has a diameter of 100 m. Assume also that the source NGC 2558 (a spiral galaxy with an
apparent visual magnitude of 13.8) has a constant spectral flux density of S = 2.5 mJy over
the detector bandwidth. Calculate the total power measured at the receiver.

(c) Estimate the power emitted at the source in this frequency range if d = 100 Mpc. Assume
that the source emits the signal isotropically.

12 What would the diameter of a single radio dish need to be to have a collecting area equivalent
to that of the 27 telescopes of the VLA?

13 How much must the pointing angle of a two-element radio interferometer be changed in order to
move from one interference maximum to the next? Assume that the two telescopes are separated
by the diameter of Earth and that the observation is being made at a wavelength of 21 cm. Express
your answer in arcseconds.

14 Assuming that ALMA is completed with the currently envisioned 50 antennas, how many unique
baselines will exist within the array?

15 The technical specifications for the planned SIM PlanetQuest mission call for the ability to
resolve two point sources with an accuracy of better than 0.000004′′ for objects as faint as 20th
magnitude in visible light. This will be accomplished through the use of optical interferometry.
(a) Assuming that grass grows at the rate of 2 cm per week, and assuming that SIM could

observe a blade of grass from a distance of 10 km, how long would it take for SIM to detect
a measurable change in the length of the blade of grass?
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(b) Using a baseline of the diameter of Earth’s orbit, how far away will SIM be able to determine
distances using trigonometric parallax, assuming the source is bright enough? (For reference,
the distance from the Sun to the center of the Milky Way Galaxy is approximately 8 kpc.)

(c) From your answer to part (b), what would the apparent magnitude of the Sun be from that
distance?

(d) The star Betelgeuse (in Orion) has an absolute magnitude of−5.14. How far could Betelgeuse
be from SIM and still be detected? (Neglect any effects of dust and gas between the star and
the spacecraft.)

16 (a) Using data available in the text or on observatory websites, list the wavelength ranges (in
cm) and photon energy ranges (in eV) covered by the following telescopes: VLA, ALMA,
SIRTF, JWST, VLT/VLTI, Keck/Keck Interferometer, HST, IUE, EUVE, Chandra, CGRO.

(b) Graphically illustrate the wavelength coverage of each of the telescopes listed in part (a) by
drawing a horizontal bar over a horizontal axis like the one shown in Fig. 25.
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FIGURE 25 The transparency of Earth’s atmosphere as a function of wavelength.

(c) Using photon energies rather than wavelengths, create a graphic similar to the one in part (b).

COMPUTER PROBLEM

17 Suppose that two identical slits are situated next to each other in such a way that the axes of the
slits are parallel and oriented vertically. Assume also that the two slits are the same distance from
a flat screen. Different light sources of identical intensity are placed behind each slit so that the
two sources are incoherent, which means that double-slit interference effects can be neglected.
(a) If the two slits are separated by a distance such that the central maximum of the diffraction

pattern corresponding to the first slit is located at the second minimum of the second slit’s
diffraction pattern, plot the resulting superposition of intensities (i.e., the total intensity at
each location). Include at least two minima to the left of the central maximum of the leftmost
slit and at least two minima to the right of the central maximum of the rightmost slit. Hint:
Refer to the equation given in Problem 6 and plot your results as a function of β.

(b) Repeat your calculations for the case when the two slits are separated by a distance such
that the central maximum of one slit falls at the location of the first minimum of the second
(the Rayleigh criterion for single slits).

(c) What can you conclude about the ability to resolve two individual sources (the slits) as the
sources are brought progressively closer together?
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1 THE CLASSIFICATION OF BINARY STARS
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ECLIPSING, SPECTROSCOPIC BINARIES

The Effect of Eccentricity on Radial Velocity Measurements
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i ≃ ◦ first contact ta tb

rs = v
(tb − ta) ,

v = vs + vℓ relative vs vℓ
tb

tc

rℓ = v
(tc − ta) = rs + v

(tc − tb) .

Example 3.1.
P = .

α %λs = . %λℓ =
.

mℓ

ms

= vrs

vrℓ

= %λs

%λℓ
= . .

i = ◦

vrs = %λs

λ
c = −

as = vrsP

π
= . × = . .

vrℓ = . −

aℓ = .

a = as + aℓ = .

continued
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ms + mℓ = a /P = . ⊙.

ms = . ⊙ mℓ = . ⊙
tb − ta = .

tc − tb =

rs = (vrs + vrℓ)
(tb − ta) = . × = . ⊙,

⊙ = . ×
rℓ = ⊙

Fr = F = σTe .

B = k
(

πrℓFrℓ + πrs Frs

)

,

k

primary

Bp = kπrℓFrℓ

secondary

Bs = k
(

πrℓ − πrs

)

Frℓ + kπrs Frs .

limb darkening
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B Bp Bs

B − Bp

B − Bs

= Frs

Frℓ

B − Bp

B − Bs

=
(

Ts

Tℓ

)

.

Example 3.2.

m , = .

m ,p = . m ,s = .

Bp

B
= (m , −m ,p)/ = . .

Bs

B
= (m , −m ,s)/ = . .

Frs

Frℓ

= − Bp/B

− Bs/B
= . .

Ts

Tℓ
=
(

Frs

Frℓ

) /

= . .

A Computer Modeling Approach
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In order to introduce you to the process of modeling binary systems, the 
simple code is described on the companion website. TwoStars



4 THE SEARCH FOR EXTRASOLAR PLANETS

WD95
Binary Maker

Binary Systems and Stellar Parameters

makes the simplifying assumption that the stars are perfectly spherically symmetric. Thus
TwoStars is capable of generating light curves, radial velocity curves, and astrometric data
for systems in which the two stars are well separated. The simplifying assumptions imply
that TwoStars is incapable of modeling the details of more complicated systems such as
RR Cen, however.4



Example 4.1. reflex motion

. ⊙
e = .

v = πa/P = . − .

v⊙ = m

M⊙
v = . − .

−
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planets discovered by the radial velocity technique are quite close to their parent star and 
very massive. For instance, the lower limit for the mass of the planet orbiting 51 Peg is 
0.45 MJ (where MJ is the mass of Jupiter), it has an orbital period of just 4.23077 d, and 
the semimajor axis of its orbit is only 0.051 AU. The lower limit on the mass of the planet 
orbiting HD 168443c is 16.96 MJ, its orbital period is 1770 d, and the semimajor axis of 
its orbit is 2.87 AU. As the length of time that stars are observed increases, longer orbital-
period planets will continue to be discovered, as will lower-mass planets.

to measure radial velocity. Pulsations of the surface of the star, surface con-
vection and the movement of surface features such as star spots, can also con-
fuse the measurements and degrade the velocity resolution limit. All of the

,
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PROBLEM SET

1 Consider two stars in orbit about a mutual center of mass. If a
1

is the semimajor axis of the

orbit of star of mass m
1

and a
2

is the semimajor axis of the orbit of star of mass m
2

, prove that

the semimajor axis of the orbit of the reduced mass is given by a = a
1

+ a
2

. Hint:
ecall that

r = r
2

−r
1

.

2

weighting function w(τ ) is considered, such that

∫ τ

0

w(τ ) dτ = 1,

then the integral average of f (τ ) becomes

⟨f (τ )⟩ =
∫ τ

0

f (τ ) w(τ ) dτ.

Comparison reveals that the weighting function implicitly used in that case

was w(τ ) = 1/τ

over the interval 0 to τ .

In evaluating ⟨sin

3 i⟩ between 0 rad and π/ 2 rad (0

◦
and 90

◦
, respectively) it is more

(a) Select an appropriate weighting function and show that your weighting function is normal-

ized over the interval i = 0 to π/2.

(b) Prove that ⟨sin

3 i⟩ = 3π/16.

3 Assume that two stars are in circular orbits about a mutual center of mass and are separated by

a distance a. Assume also that the angle of inclination is i and their stellar radii are r
1

and r
2

.

(a) Find an expression for the smallest angle of inclination that will just barely produce an

eclipse. Hint: Refer to Fig.   8.

R

,

Orbital plane

To Earth

Plane of the sky

i

FIGURE 8 The geometry of an eclipsing, spectroscopic binary requires that the angle of inclina-

tion i be close to 90

◦
.
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(b) If a = 2 AU, r
1

= 10 R⊙, and r
2

= 1 R⊙, what minimum value of i will result in an eclipse?

,

Binary Systems and Stellar
eParamet rs

Integral averages implicitly assume a probability distribution (or weighting function) that 
was constant throughout the interval over which the integral was applied. When a normalized 

likely that the radial velocity variations will be detected if the plane of the orbit is oriented along 
the line of sight. The weighting function should therefore take into consideration the projection 
of the plane of the orbital velocity onto the line of sight.



4 Sirius is a visual binary with a period of 49.94 yr. Its measured trigonometric parallax is

0.37921

′′ ± 0.00158

′′
and, assuming that the plane of the orbit is in the plane of the sky, the

true angular extent of the semimajor axis of the reduced mass is 7.61

′′
. The ratio of the distances

of Sirius A and Sirius B from the center of mass is aA/aB = 0.466.

(a) Find the mass of each member of the system.

(b) The absolute bolometric magnitude of Sirius A is 1.36, and Sirius B has an absolute bolo-

metric magnitude of 8.79. Determine their luminosities. Express your answers in terms of

the luminosity of the Sun.

(c) The effective temperature of Sirius B is approximately 24,790 K ±100 K. Estimate its radius,

and compare your answer to the radii of the Sun and Earth.

5 ζ Phe is a 1.67-day spectroscopic binary with nearly circular orbits. The maximum measured

Doppler shifts of the brighter and fainter components of the system are 121.4 km s

−1

and

247 km s

−1

, respectively.

(a) Determine the quantity m sin

3 i for each star.

(b) Using a statistically chosen value for sin

3 i that takes into consideration the Doppler-shift

selection effect, estimate the individual masses of the components of ζ Phe.

6 From the light and velocity curves of an eclipsing, spectroscopic binary star system, it is deter-

mined that the orbital period is 6.31 yr, and the maximum radial velocities of Stars A and B are

5.4 km s

−1

and 22.4 km s

−1

, respectively. Furthermore, the time period between first contact and

minimum light (tb − ta) is 0.58 d, the length of the primary minimum (tc − tb) is 0.64 d, and the

apparent bolometric magnitudes of maximum, primary minimum, and secondary minimum are

5.40 magnitudes, 9.20 magnitudes, and 5.44 magnitudes, respectively. From this information,

and assuming circular orbits, find the

(a) Ratio of stellar masses.

(b) Sum of the masses (assume i ≃ 90

◦
).

(c) Individual masses.

(d) Individual radii (assume that the orbits are circular).

(e) Ratio of the effective temperatures of the two stars.
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7 The V -band light curve of YY Sgr is shown in Fig. 2. Neglecting bolometric corrections,
estimate the ratio of the temperatures of the two stars in the system.
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FIGURE 2 The V magnitude light curve of YY Sagittarii, an eclipsing binary star. The data from
many orbital periods have been plotted on this light curve as a function of phase, where the phase is
defined to be 0.0 at the primary minimum. This system has an orbital period P = 2.6284734 d, an
eccentricity e = 0.1573, and orbital inclination i = 88.89◦ (see Section 2). (Figure adopted from
Lacy, C. H. S., Astron. J., 105, 637, 1993.)
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8 Refer to the synthetic light curve and model of RR Centauri shown in Fig. 11.
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FIGURE 11 A synthetic light curve of RR Centauri, an eclipsing binary star system for which

the two components are in close contact. The open circle represents the size of the Sun. The orbital

and physical characteristics of the RR Cen system are P = 0.6057 d, e = 0.0, M
1

= 1.8 M⊙, M
2

=
0.37 M⊙. The spectral classification of the primary is F0V. 

(Figure adapted from R. E. Wilson, Publ. Astron. Soc. Pac.,

106, 921, 1994;

©Astronomical

Society of the Pacific.)

(a) Indicate the approximate points on the light curve (as a function of phase) that correspond

to the orientations depicted.

(b) Explain qualitatively the shape of the light curve.

9 Data from binary star systems were used to illustrate the mass–luminosity relation in Fig. 7. A

strong correlation also exists between mass and the effective temperatures of stars. Use the data

provided in Popper, Annu. Rev. Astron. Astrophys., 18, 115, 1980 to create a graph of log

10

Te as

a function of log

10

(M/M⊙). Use the data from Popper’s Table 2, Table 4, Table 7 (excluding the

α Aur system), and Table 8 (include only those stars with spectral types in the Sp column that

end with the Roman numeral V). The stars that are excluded in Tables 7 and 8 are evolved stars

with structures significantly different from the main sequence stars. The article by Popper may

be available in your library or it can be downloaded from the NASA Astrophysics Data System

(NASA ADS) at http://adswww.harvard.edu.
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10 Give two reasons why the radial velocity technique for detecting planets around other stars favors
massive planets (Jupiters) with relatively short orbital periods.

11 Explain why radial velocity detections of extrasolar planets yield only lower limits on the masses
of the orbiting planets. What value is actually measured, and what unknown orbital parameter
is involved?

12 From the data given in the text, determine the masses of the following stars (in solar masses):

(a) 51 Peg

(b) HD 168443c

13 Suppose that you are an astronomer on a planet orbiting another star. While you are observing
our Sun, Jupiter passes in front of it. Estimate the fractional decrease in the brightness of the star,
assuming that you are observing a flat disk of constant flux, with a temperature of Te = 5777 K.
Hint: Neglect Jupiter’s contribution to the total brightness of the system.

14 From the data given in the text, combined with the information in Fig. 12, make a rough
estimate of the radius of the orbiting planet, and compare your result with the quoted value. Be
sure to explain each step used in computing your estimate.
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FIGURE 12 The photometric detection of two transits of an extrasolar planet across the disk of
HD 2094589 in September 1999. The September 16 transit was artificially offset by −0.05 relative
to the transit of September 9 in order to avoid overlap of the data. Tc designates the midpoint of the
transit, and JD represents the Julian Date (time) of the particular measurement. (Figure adapted from
Charbonneau, Brown, Latham, and Mayor, Ap. J., 529, L45, 2000.)

COMPUTER PROBLEMS

15 (a) Use the computer program TwoStars, described in Appendix: A Binary Star 
Code and available on the companion website, to generate orbital radial velocity data
similar to Fig. 6 for any choice of eccentricity. Assume that M1 = 0.5 M⊙, M2 = 2.0 M⊙,
P = 1.8 yr, and i = 30◦. Plot your results for e = 0, 0.2, 0.4, and 0.5. (You may assume
that the center-of-mass velocity is zero and that the orientation of the major axis is
perpendicular to the line of sight.)

TwoStars,
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(b) Verify your results for e = 0 by using the equations developed in Section 3.

(c) Explain how you might determine the eccentricity of an orbital system.

16 The code TwoStars can be used to analyze the apparent motions of binary

stars across

the plane of the sky. If fact, TwoStars was used to generate the data for Fig.

1.

Assume that the binary system used in Problem 15 is located 3.2 pc from Earth and

that its center of mass is moving through space with the vector components (v′
x, v

′
y, v

′
z) =

(30 km s

−1, 42 km s

−1, −15.3 km s

−1). From the position data generated by TwoStars, plot

the apparent positions of the stars in milliarcseconds for the case where e = 0.4.
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FIGURE 6 The orbital paths and radial velocities of two stars in elliptical orbits (e = 0.4). As

in Fig. 5, M
1

= 1 M⊙, M
2

= 2 M⊙, the orbital period is P = 30 d, and the radial velocity of the

center of mass is v
cm

= 42 km s

−1

. In addition, the orientation of periastron is 45

◦
. v

1

, v
2

, and v
cm

are the velocities of Star 1, Star 2, and the center of mass, respectively. (a) The plane of the orbits lies

along the line of sight of the observer. (b) The observed radial velocity curves.
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FIGURE 1 An astrometric binary, which contains one visible member. The unseen component

is implied by the oscillatory motion of the observable star in the system. The proper motion of the

entire system is reflected in the straight-line motion of the center of mass.

Systems and Stellar par ameter s 
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17 Figure 2 shows the light curve of the eclipsing binary YY Sgr. The code TwoStars, described
in Appendix: and available on the companion website, can be
used to roughly model this system. Use the data provided in the caption, and assume that
the masses, radii, and effective temperatures of the two stars are M1 = 5.9 M⊙, R1 = 3.2 R⊙,
Te1 = 15,200 K, and M2 = 5.6 M⊙, R2 = 2.9 R⊙, Te2 = 13,700 K. Also assume that the
periastron angle is 214.6◦ and that the center of mass is at rest relative to the observer.

(a) Using TwoStars, create a synthetic light curve for the system.

(b) Using TwoStars, plot the radial velocities of the two stars.

18 Using the data given in the text, and assuming that the orbital inclination is 90◦, use TwoStars
to generate data that model the l ight curve of OGLE-TR-56b. You may assume
that the radius of the planet is approximately the radius of Jupiter (7 × 107 m) and its temperature
is roughly 1000 K. Take the temperature of the star to be 3000 K. You may also assume that the
planet’s orbit is perfectly circular.
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FIGURE 2 The V magnitude light curve of YY Sagittarii, an eclipsing binary star. The data from
many orbital periods have been plotted on this light curve as a function of phase, where the phase is
defined to be 0.0 at the primary minimum. This system has an orbital period P = 2.6284734 d, an
eccentricity e = 0.1573, and orbital inclination i = 88.89◦ (see Section 2). (Figure adopted from
Lacy, C. H. S., Astron. J., 105, 637, 1993.)

TwoStars, A Binary Star Code
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The Classification of Stellar Spectra

1 The Formation of Spectral Lines
2 The Hertzsprung–Russell Diagram

1 THE FORMATION OF SPECTRAL LINES

With the invention of photometry and spectroscopy, the new science of astrophysics pro-
gressed rapidly. As early as 1817, Joseph Fraunhofer had determined that different stars
have different spectra. Stellar spectra were classified according to several schemes, the ear-
liest of which recognized just three types of spectra. As instruments improved, increasingly
subtle distinctions became possible.

The Spectral Types of Stars

A spectral taxonomy developed at Harvard by Edward C. Pickering (1846–1919) and his
assistant Williamina P. Fleming (1857–1911) in the 1890s labeled spectra with capital let-
ters according to the strength of their hydrogen absorption lines, beginning with the letter
A for the broadest lines. At about the same time, Antonia Maury (1866–1952), another of
Pickering’s assistants and a colleague of Fleming’s, was developing a somewhat differ-
ent classification scheme that she was using to study the widths of spectral lines. In her
work Maury rearranged her classes in a way that would have been equivalent to placing
Pickering’s and Fleming’s B class before the A stars. Then, in 1901, Annie Jump Cannon1

(1863–1941; see Fig. 1), also employed by Pickering, and using the scheme of Pickering
and Fleming while following the suggestion of Maury, rearranged the sequence of spectra
by placing O and B before A, added decimal subdivisions (e.g., A0–A9), and consolidated
many of the classes. With these changes, the Harvard classification scheme of “O B A F G K
M” became a temperature sequence, running from the hottest blue O stars to the coolest red
M stars. Generations of astronomy students have remembered this string of spectral types
by memorizing the phrase “Oh Be A Fine Girl/Guy, Kiss Me.” Stars nearer the beginning
of this sequence are referred to as early-type stars, and those closer to the end are called
late-type stars. These labels also distinguish the stars within the spectral subdivisions, so
astronomers may speak of a K0 star as an “early K star” or refer to a B9 star as a “late B
star.” Cannon classified some 200,000 spectra between 1911 and 1914, and the results were

1The Annie J. Cannon Award is bestowed annually by the American Association of University Women and the
American Astronomical Society for distinguished contributions to astronomy by a woman.



FIGURE 1 Annie Jump Cannon (1863–1941). (Courtesy of Harvard College Observatory.)

collected into the Henry Draper Catalogue.2 Today, many stars are referred to by their
HD numbers; Betelgeuse is HD 39801.

The physical basis of the Harvard spectral classification scheme remained obscure, how-
ever. Vega (spectral type A0) displays very strong hydrogen absorption lines, much stronger
than the faint lines observed for the Sun (spectral type G2). On the other hand, the Sun’s
calcium absorption lines are much more intense than those of Vega. Is this a result of a
variation in the composition of the two stars? Or are the different surface temperatures of
Vega (Te = 9500 K) and the Sun (Te = 5777 K) responsible for the relative strengths of the
absorption lines?

The theoretical understanding of the quantum atom achieved early in the twentieth cen-
tury gave astronomers the key to the secrets of stellar spectra.

for an electron to make an upward transition from a lower to a higher orbital. Emission lines
are formed in the inverse process, when an electron makes a downward transition from a
higher to a lower orbital and a single photon carries away the energy lost by the elec-
tron. The wavelength of the photon thus depends on the energies of the atomic orbitals
involved in these transitions. For example, the Balmer absorption lines of hydrogen are
caused by electrons making upward transitions from the n = 2 orbital to higher-energy or-
bitals, and Balmer emission lines are produced when electrons make downward transitions
from higher-energy orbitals to the n = 2 orbital.

The distinctions between the spectra of stars with different temperatures are due to
electrons occupying different atomic orbitals in the atmospheres of these stars. The details
of spectral line formation can be quite complicated because electrons can be found in any of
an atom’s orbitals. Furthermore, the atom can be in any one of various stages of ionization
and has a unique set of orbitals at each stage. An atom’s stage of ionization is denoted by a

2In 1872 Henry Draper took the first photograph of a stellar spectrum. The catalog bearing his name was financed
from his estate.

Absorption lines are created when anatom absorbsa photon with exactly the energyrequired
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Roman numeral following the symbol for the atom. For example, H I and He I are neutral
(not ionized) hydrogen and helium, respectively; He II is singly ionized helium, and Si III
and Si IV refer to a silicon atom that has lost two and three electrons, respectively.

In the Harvard system devised by Cannon, the Balmer lines reach their maximum inten-
sity in the spectra of stars of type A0, which have an effective temperature of Te =9520 K.

The visible spectral lines of neutral helium (He I) are strongest for B2
stars (Te = 22,000 K), and the visible spectral lines of singly ionized calcium (Ca II) are
most intense for K0 stars (Te = 5250 K).3

Table 1 lists some of the defining criteria for various spectral types. In the table the
term metal is used to indicate any element heavier than helium, a convention commonly
adopted by astronomers because by far the most abundant elements in the universe are
hydrogen and helium.

(1300 K to 2500 K for L spectral types and less than 1300 K for T spectral types).4 In
order to remember the new, cooler spectral types, one might consider extending the popular
mnemonic by: “Oh Be A Fine Girl/Guy, Kiss Me—Less Talk!”

Figures 2 and 3 display some sample photographic spectra for various spectral types.
You will note that hydrogen lines [e.g., Hγ (434.4 nm) and Hδ (410.1 nm)] increase in width
(strength) from O9 to A0, then decrease in width from A0 through F5, and nearly vanish
by late K. Helium (He) lines are discernible in the spectra of early-type stars (O and early
B) but begin to disappear in cooler stars.

Figures 4 and 5 also depict stellar spectra in a graphical format typical of modern
digital detectors. Readily apparent is the shifting to longer wavelengths of the peak of the
superimposed blackbody spectrum as the temperature of the star decreases (later spectral
types). Also apparent are the Hα, Hβ, Hγ , and Hδ Balmer lines at 656.2 nm, 486.1 nm,
434.0 nm, and 410.2 nm, respectively. Note how these hydrogen absorption lines grow
in strength from O to A and then decrease in strength for spectral types later than A. For
later spectral types, the messy spectra are indicative of metal lines, with molecular lines
appearing in the spectra of the coolest stars.

The Maxwell–Boltzmann Velocity Distribution

To uncover the physical foundation of this classification system, two basic questions must
be answered: In what orbitals are electrons most likely to be found? What are the relative
numbers of atoms in various stages of ionization?

3The two prominent spectral lines of Ca II are usually referred to as the H (λ = 396.8 nm) and K (λ = 393.3 nm)
lines of calcium. The nomenclature for the H line was devised by Fraunhofer; the K line was named by E. Mascart
(1837–1908) in the 1860s.
4The surveys that discovered large numbers of these objects are the Sloan Digital Sky Survey (SDSS) and the
2-Micron All-Sky Survey (2MASS).

The Classification of Stellar Spectra

In addition to the traditional spectral types of the Harvard classification scheme 
(OBAFGKM), Table   1 also includes recently defined spectral types of very cool stars 
and brown dwarfs. Brown dwarfs are objects with too little mass to allow nuclear reac-
tions to occur in their interiors in any substantial way, so they are not considered stars 
in the usual sense. The necessity of introducing these new spectral types came from all-
sky surveys that detected a large number of objects with very low effective temperatures



TABLE 1 Harvard Spectral Classification.

Spectral Type Characteristics
O Hottest blue-white stars with few lines

Strong He II absorption (sometimes emission) lines.
He I absorption lines becoming stronger.

B Hot blue-white
He I absorption lines strongest at B2.
H I (Balmer) absorption lines becoming stronger.

A White
Balmer absorption lines strongest at A0, becoming weaker later.
Ca II absorption lines becoming stronger.

F Yellow-white
Ca II lines continue to strengthen as Balmer lines continue to weaken.
Neutral metal absorption lines (Fe I, Cr I).

G Yellow
Solar-type spectra.
Ca II lines continue becoming stronger.
Fe I, other neutral metal lines becoming stronger.

K Cool orange
Ca II H and K lines strongest at K0, becoming weaker later.
Spectra dominated by metal absorption lines.

M Cool red
Spectra dominated by molecular absorption bands,

especially titanium oxide (TiO) and vanadium oxide (VO).
Neutral metal absorption lines remain strong.

L Very cool, dark red
Stronger in infrared than visible.
Strong molecular absorption bands of metal hydrides (CrH, FeH), water

(H2O), carbon monoxide (CO), and alkali metals (Na, K, Rb, Cs).
TiO and VO are weakening.

T Coolest, Infrared
Strong methane (CH4) bands but weakening CO bands.

The answers to both questions are found in an area of physics known as statistical
mechanics. This branch of physics studies the statistical properties of a system composed
of many members. For example, a gas can contain a huge number of particles with a large
range of speeds and energies. Although in practice it would be impossible to calculate
the detailed behavior of any single particle, the gas as a whole does have certain well-
defined properties, such as its temperature, pressure, and density. For such a gas in thermal
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FIGURE 2 Stellar spectra for main-sequence classes O9–F5. Note that these spectra are displayed
as negatives; absorption lines appear bright. Wavelengths are given in angstroms. (Figure from Abt,
et al., An Atlas of Low-Dispersion Grating Stellar Spectra, Kitt Peak National Observatory, Tucson,
AZ, 1968.)

equilibrium (the gas is not rapidly increasing or decreasing in temperature, for instance), the
Maxwell–Boltzmann velocity distribution function5 describes the fraction of particles
having a given range of speeds. The number of gas particles per unit volume having speeds
between v and v + dv is given by

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv, (1)

5This name honors James Clerk Maxwell and Ludwig Boltzmann (1844–1906), the latter of whom is considered
the founder of statistical mechanics.
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FIGURE 3 Stellar spectra for main-sequence classes F5–M5. Note that these spectra are displayed
as negatives; absorption lines appear bright. Wavelengths are given in angstroms. (Figure from Abt,
et al., An Atlas of Low-Dispersion Grating Stellar Spectra, Kitt Peak National Observatory, Tucson,
AZ, 1968.)

where n is the total number density (number of particles per unit volume), nv ≡ ∂n/∂v,
m is a particle’s mass, k is Boltzmann’s constant, and T is the temperature of the gas in
kelvins. Figure 6 shows the Maxwell–Boltzmann distribution of molecular speeds in terms
of the fraction of molecules having a speed between v and v + dv. The exponent of the
distribution function is the ratio of a gas particle’s kinetic energy, 1

2mv2, to the characteristic
thermal energy, kT . It is difficult for a significant number of particles to have an energy
much greater or less than the thermal energy; the distribution peaks when these energies
are equal, at a most probable speed of

vmp =
√

2kT

m
. (2)
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FIGURE 4 Digitized spectra of main sequence classes O5–F0 displayed in terms of relative flux
as a function of wavelength. Modern spectra obtained by digital detectors (as opposed to photographic
plates) are generally displayed graphically. (Data from Silva and Cornell, Ap. J. Suppl., 81, 865, 1992.)

The high-speed exponential “tail” of the distribution function results in a somewhat higher
(average) root-mean-square speed6 of

vrms =
√

3kT

m
. (3)

Example 1.1. The area under the curve between two speeds is equal to the fraction of gas
particles in that range of speeds. In order to determine the fraction of hydrogen atoms in a gas
of T = 10,000 K having speeds between v1 = 2 × 104 m s−1 and v2 = 2.5 × 104 m s−1,
it is necessary to integrate the Maxwell–Boltzmann distribution between these two limits,

6The root-mean-square speed is the square root of the average (mean) value of v2: vrms =
√

v2 .
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or

N/Ntotal = 1
n

∫ v2

v1

nv dv

=
( m

2πkT

)3/2
∫ v2

v1

e−mv2/2kT 4πv2 dv. (4)

Although Eq. ( 4) has a closed-form solution when v1 = 0 and v2 → ∞, it must be eval-
uated numerically in other cases. This can be accomplished crudely by evaluating the
integrand using an average value of the velocity over the interval, multiplied by the width
of the interval, or

N/Ntotal = 1
n

∫ v2

v1

nv(v) dv ≃ 1
n
nv(v) (v2 − v1),

where v ≡ (v1 + v2)/2. Substituting, we find

N/Ntotal ≃
( m

2πkT

)3/2
e−mv2/2kT 4πv2 (v2 − v1)

≃ 0.125.

Approximately 12.5% of the hydrogen atoms in a gas at 10,000 K have speeds between
2 × 104 m s−1 and 2.5 × 104 m s−1. A more careful numerical integration over the range
gives 12.76%.

The Boltzmann Equation

The atoms of a gas gain and lose energy as they collide. As a result, the distribution in
the speeds of the impacting atoms, given by Eq. ( 1), produces a definite distribution of
the electrons among the atomic orbitals. This distribution of electrons is governed by a
fundamental result of statistical mechanics: Orbitals of higher energy are less likely to be
occupied by electrons.

Let sa stand for the specific set of quantum numbers that identifies a state of energy Ea

for a system of particles. Similarly, let sb stand for the set of quantum numbers that identifies
a state of energy Eb. For example, Ea = −13.6 eV for the lowest orbit of the hydrogen
atom, with sa = {n = 1, ℓ = 0, mℓ = 0, ms = +1/2} identifying a specific state with
that energy (recall Section 5.4 for a discussion of quantum numbers). Then the ratio of the
probability P(sb) that the system is in state sb to the probability P(sa) that the system is in
state sa is given by

P(sb)

P (sa)
= e−Eb/kT

e−Ea/kT
= e−(Eb−Ea)/kT , (5)

where T is the common temperature of the two systems. The term e−E/kT is called the
Boltzmann factor.7

7The energies encountered in this context are usually given in units of electron volts (eV), so it is useful to
remember that at a room temperature of 300 K, the product kT is approximately 1/40 eV.
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FIGURE 5 Digitized spectra of main sequence classes F6–K5 displayed in terms of relative flux
as a function of wavelength. (Data from Silva and Cornell, Ap. J. Suppl., 81, 865, 1992.)

The Boltzmann factor plays such a fundamental role in the study of statistical mechanics
that Eq. ( 5) merits further consideration. Suppose, for example, that Eb > Ea; the energy
of state sb is greater than the energy of state sa . Notice that as the thermal energy kT decreases
toward zero (i.e., T → 0), the quantity −(Eb − Ea)/kT → −∞, and so P(sb)/P (sa) → 0.
This is just what is to be expected if there isn’t any thermal energy available to raise the
energy of an atom to a higher level. On the other hand, if there is a great deal of thermal
energy available (i.e., T → ∞), then −(Eb − Ea)/kT → 0 and P(sb)/P (sa) → 1. Again
this is what would be expected since with an unlimited reservoir of thermal energy, all
available energy levels of the atom should be accessible with equal probability. You can
quickly verify that if we had assumed instead that Eb < Ea , the expected results would
again be obtained in the limits of T → 0 and T → ∞.

It is often the case that the energy levels of the system may be degenerate, with more
than one quantum state having the same energy. That is, if states sa and sb are degenerate,
then Ea = Eb but sa ̸= sb. When taking averages, we must count each of the degenerate
states separately. To account properly for the number of states that have a given energy,
define ga to be the number of states with energy Ea . Similarly, define gb to be the number
of states with energy Eb. These are called the statistical weights of the energy levels.
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FIGURE 6 Maxwell–Boltzmann distribution function, nv/n, for hydrogen atoms at a temperature
of 10,000 K. The fraction of hydrogen atoms in the gas having velocities between 2 × 104 m s−1 and
2.5 × 104 m s−1 is the shaded area under the curve between those two velocities; see Example 1.1.

Example 1.2. The ground state of the hydrogen atom is twofold degenerate. In fact,
although “ground state” is the standard terminology, the plural “ground states” would be
more precise because these are two quantum states that have the same energy of −13.6 eV
(for ms = ±1/2).8 In the same manner, the “first excited state” actually consists of eight
degenerate quantum states with the same energy of −3.40 eV.

Table 2 shows the set of quantum numbers {n, ℓ, mℓ, ms} that identifies each state; it
also shows each state’s energy. Notice that there are g1 = 2 ground states with the energy
E1 = −13.6 eV, and g2 = 8 first excited states with the energy E2 = −3.40 eV.

The ratio of the probabilityP(Eb) that the system will be found in any of thegb degenerate
states with energy Eb to the probability P(Ea) that the system is in any of the ga degenerate
states with energy Ea is given by

P(Eb)

P (Ea)
= gb e−Eb/kT

ga e−Ea/kT
= gb

ga

e−(Eb−Ea)/kT .

Stellar atmospheres contain a vast number of atoms, so the ratio of probabilities is indis-
tinguishable from the ratio of the number of atoms. Thus, for the atoms of a given element
in a specified state of ionization, the ratio of the number of atoms Nb with energy Eb to

8In reality, the two “ground states” of the hydrogen atom are not precisely degenerate.

important signature of hydrogen gas in interstellar space.
wo states actually have slightly different energies, enabling the hydrogen atom to emit 21-cm radio waves,
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TABLE 2 Quantum Numbers and Energies for the Hydrogen Atom.

Ground States s1 Energy E1

n ℓ mℓ ms (eV)
1 0 0 +1/2 −13.6
1 0 0 −1/2 −13.6

First Excited States s2 Energy E2

n ℓ mℓ ms (eV)
2 0 0 +1/2 −3.40
2 0 0 −1/2 −3.40
2 1 1 +1/2 −3.40
2 1 1 −1/2 −3.40
2 1 0 +1/2 −3.40
2 1 0 −1/2 −3.40
2 1 −1 +1/2 −3.40
2 1 −1 −1/2 −3.40

the number of atoms Na with energy Ea in different states of excitation is given by the
Boltzmann equation,

Nb

Na

= gb e−Eb/kT

ga e−Ea/kT
= gb

ga

e−(Eb−Ea)/kT . (6)

Example 1.3. For a gas of neutral hydrogen atoms, at what temperature will equal
numbers of atoms have electrons in the ground state (n = 1) and in the first excited state
(n = 2)?9 Recall from Example 1.2 that the degeneracy of the nth energy level of the
hydrogen atom is gn = 2n2. Associating state a with the ground state and state b with the
first excited state, setting N2 = N1 on the left-hand sideof Eq. (6), and using the equation
for the energy levels lead to

1 = 2(2)2

2(1)2
e−[(−13.6 eV/22)−(−13.6 eV/12)]/kT ,

or

10.2 eV
kT

= ln (4).

9We have reverted to the standard practice of referring to the two degenerate states of lowest energy as the “ground
state” and to the eight degenerate states of next-lowest energy as the “first excited state.”
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Solving for the temperature yields10

T = 10.2 eV
k ln (4)

= 8.54 × 104 K.

High temperatures are required for a significant number of hydrogen atoms to have elec-
trons in the first excited state. Figure 7 shows the relative occupancy of the ground and
first excited states, N2/(N1 + N2), as a function of temperature.11 This result is somewhat
puzzling, however. Recall that the Balmer absorption lines are produced by electrons in
hydrogen atoms making an upward transition from the n = 2 orbital. If, as shown in Exam-
ple 1.3, temperatures on the order of 85,000 K are needed to provide electrons in the first
excited state, then why do the Balmer lines reach their maximum intensity at a much lower
temperature of 9520 K? Clearly, according to Eq. ( 6), at temperatures higher than 9520 K
an even greater proportion of the electrons will be in the first excited state rather than in the
ground state. If this is the case, then what is responsible for the diminishing strength of the
Balmer lines at higher temperatures?

The Saha Equation

The answer lies in also considering the relative number of atoms in different stages of
ionization. Let χi be the ionization energy needed to remove an electron from an atom (or

5000 10,000 15,000 20,000 25,000

Temperature (K)

0.00
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0.02
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1 

+ 
N

2)

FIGURE 7 N2/(N1 + N2) for the hydrogen atom obtained via the Boltzmann equation.

10When we are working with electron volts, the Boltzmann constant can be expressed in the convenient form
k = 8.6173423 × 10−5 eV K−1.
11For the remainder of this section, we will use a = 1 for the ground state energy and b = 2 for the energy of the
first excited state.
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ion) in the ground state, thus taking it from ionization stage i to stage (i + 1). For example,
the ionization energy of hydrogen, the energy needed to convert it from H I to H II, is
χI = 13.6 eV. However, it may be that the initial and final ions are not in the ground state.
An average must be taken over the orbital energies to allow for the possible partitioning of
the atom’s electrons among its orbitals. This procedure involves calculating the partition
functions, Z, for the initial and final atoms. The partition function is simply the weighted
sum of the number of ways the atom can arrange its electrons with the same energy, with
more energetic (and therefore less likely) configurations receiving less weight from the
Boltzmann factor when the sum is taken. If Ej is the energy of the j th energy level and gj

is the degeneracy of that level, then the partition function Z is defined as

Z =
∞
∑

j=1

gj e−(Ej −E1)/kT . (7)

If we use the partition functions Zi and Zi+1 for the atom in its initial and final stages of
ionization, the ratio of the number of atoms in stage (i + 1) to the number of atoms in stage
i is

Ni+1

Ni

= 2Zi+1

neZi

(

2πmekT

h2

)3/2

e−χi /kT . (8)

This equation is known as the Saha equation, after the Indian astrophysicist Meghnad
Saha (1894–1956), who first derived it in 1920. Because a free electron is produced in the
ionization process, it is not surprising to find the number density of free electrons (number
of free electrons per unit volume), ne, on the right-hand side of the Saha equation. Note that
as the number density of free electrons increases, the number of atoms in the higher stage
of ionization decreases, since there are more electrons with which the ion may recombine.
The factor of 2 in front of the partition function Zi+1 reflects the two possible spins of the
free electron, with ms = ±1/2. The term in parentheses is also related to the free electron,
with me being the electron mass.12 Sometimes the pressure of the free electrons, Pe, is used
in place of the electron number density; the two are related by the ideal gas law written in
the form

Pe = nekT .

Then the Saha equation takes the alternative form

Ni+1

Ni

= 2kT Zi+1

PeZi

(

2πmekT

h2

)3/2

e−χi /kT . (9)

12The term in parentheses is the number density of electrons for which the quantum energy is roughly equal to the
characteristic thermal energy kT . For the classical conditions encountered in stellar atmospheres, this term is much
greater than ne .
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The electron pressure ranges from 0.1 N m−2 in the atmospheres of cooler stars to 100 N m−2

for hotter stars.

Combining the Boltzmann and Saha Equations

We are now finally ready to consider the combined effects of the Boltzmann and Saha
equations and how they influence the stellar spectra that we observe.

Example 1.4. Consider the degree of ionization in a stellar atmosphere that is assumed
to be composed of pure hydrogen. Assume for simplicity that the electron pressure is a
constant Pe = 20 N m−2.

The Saha equation ( 9) will be used to calculate the fraction of atoms that are ionized,
NII/Ntotal = NII/(NI + NII), as the temperature T varies between 5000 K and 25,000 K.
However, the partition functions ZI and ZII must be determined first. A hydrogen ion is
just a proton and so has no degeneracy; thus ZII = 1. The energy of the first excited state
of hydrogen is E2 − E1 = 10.2 eV above the ground state energy. Because 10.2 eV ≫ kT

for the temperature regime under consideration, the Boltzmann factor e−(E2−E1)/kT ≪ 1.
Nearly all of the H I atoms are therefore in the ground state (recall the previous example),
so Eq. ( 7) for the partition function simplifies to ZI ≃ g1 = 2(1)2 = 2.

Inserting these values into the Saha equation with χI = 13.6 eV gives the ratio of ionized
to neutral hydrogen, NII/NI. This ratio is then used to find the fraction of ionized hydrogen,
NII/Ntotal, by writing

NII

Ntotal
= NII

NI + NII
= NII/NI

1 + NII/NI
;

the results are displayed in Fig. 8. This figure shows that when T = 5000 K, essentially
none of the hydrogen atoms are ionized. At about 8300 K, 5% of the atoms have become
ionized. Half of the hydrogen is ionized at a temperature of 9600 K, and when T has risen to
11,300 K, all but 5% of the hydrogen is in the form of H II. Thus the ionization of hydrogen
takes place within a temperature interval of approximately 3000 K. This range of tempera-
tures is quite limited compared to the temperatures of tens of millions of degrees routinely
encountered inside stars. The narrow region inside a star where hydrogen is partially ion-
ized is called a hydrogen partial ionization zone and has a characteristic temperature of
approximately 10,000 K for a wide range of stellar parameters.

Now we can see why the Balmer lines are observed to attain their maximum intensity at
a temperature of 9520 K, instead of at the much higher characteristic temperatures (on the
order of 85,000 K) required to excite electrons to the n = 2 energy level of hydrogen. The
strength of the Balmer lines depends on N2/Ntotal, the fraction of all hydrogen atoms that
are in the first excited state. This is found by combining the results of the Boltzmann and
Saha equations. Because virtually all of the neutral hydrogen atoms are in either the ground
state or the first excited state, we can employ the approximation N1 + N2 ≃ NI and write

N2

Ntotal
=
(

N2

N1 + N2

)(

NI

Ntotal

)

=
(

N2/N1

1 + N2/N1

)(

1
1 + NII/NI

)

.

continued
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FIGURE 8 NII/Ntotal for hydrogen from the Saha equation when Pe = 20 N m−2. Fifty percent
ionization occurs at T ≃ 9600 K.
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FIGURE 9 N2/Ntotal for hydrogen from the Boltzmann and Saha equations, assuming Pe =
20 N m−2. The peak occurs at approximately 9900 K.

Figure 9 shows that in this example, the hydrogen gas would produce the most intense
Balmer lines at a temperature of 9900 K, in good agreement with the observations. The
diminishing strength of the Balmer lines at higher temperatures is due to the rapid ionization
of hydrogen above 10,000 K. Figure 10 summarizes this situation.
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FIGURE 10 The electron’s position in the hydrogen atom at different temperatures. In (a), the
electron is in the ground state. Balmer absorption lines are produced only when the electron is initially
in the first excited state, as shown in (b). In (c), the atom has been ionized.

Of course, stellar atmospheres are not composed of pure hydrogen, and the results ob-
tained in Example 1.4 depended on an appropriate value for the electron pressure. In
stellar atmospheres, there is typically one helium atom for every ten hydrogen atoms. The
presence of ionized helium provides more electrons with which the hydrogen ions can re-
combine. Thus, when helium is added, it takes a higher temperature to achieve the same
degree of hydrogen ionization.

It should also be emphasized that the Saha equation can be applied only to a gas in ther-
modynamic equilibrium, so that the Maxwell–Boltzmann velocity distribution is obeyed.
Furthermore, the density of the gas must not be too great (less than roughly 1 kg m−3 for
stellar material), or the presence of neighboring ions will distort an atom’s orbitals and
lower its ionization energy.

Example 1.5. The Sun’s “surface” is a thin layer of the solar atmosphere called the pho-

We must compare the number of neutral hydrogen atoms with electrons in the first
excited state (which produce the Balmer lines) to the number of singly ionized calcium
atoms with electrons in the ground state (which produce the Ca II H and K lines). As in
Example 1.4, we will use the Saha equation to determine the degree of ionization and will
use the Boltzmann equation to reveal the distribution of electrons between the ground and
first excited states.

continued

1 See Cox (2000), page 348 for a model solar photosphere.3
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tosphere  The characteristic temperature of the photosphere is T = Te = 5777 K, and it has 
about 500,000 hydrogen atoms for each calcium atom with an electron pressure of about 
1.5 Nm−2.13 From this information and knowledge of the  appropriate statistical weights and 
partition functions, the Saha and Boltzmann equations can be used to estimate the rela-
tive strengths of the absorption lines due to hydrogen (the Balmer lines) and those due to 
calcium (the Ca II H and K lines).
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Let’s consider hydrogen first. If we substitute the partition functions found in Exam-
ple 1.4 into the Saha equation ( 9), the ratio of ionized to neutral hydrogen is

[

NII

NI

]

H
= 2kT Zi+1

PeZi

(

2πmekT

h2

)3/2

e−χi /kT = 7.70 × 10−5 ≃ 1
13,000

.

Thus there is only one hydrogen ion (H II) for every 13,000 neutral hydrogen atoms (H I)
at the Sun’s surface. Almost none of the hydrogen is ionized.

The Boltzmann equation ( 6) reveals how many of these neutral hydrogen atoms are in
the first excited state. Using gn = 2n2 for hydrogen (implying g1 = 2 and g2 = 8), we have

[

N2

N1

]

H I
= g2

g1
e−(E2−E1)/kT = 5.06 × 10−9 ≃ 1

198,000,000
.

The result is that only one of every 200 million hydrogen atoms is in the first excited state
and capable of producing Balmer absorption lines:

N2

Ntotal
=
(

N2

N1 + N2

)(

NI

Ntotal

)

= 5.06 × 10−9.

We now turn to the calcium atoms. The ionization energy χI of Ca I is 6.11 eV, about
half of the 13.6 eV ionization energy of hydrogen. We will soon see, however, that this
small difference has a great effect on the ionization state of the atoms. Note that the Saha
equation is very sensitive to the ionization energy because χ/kT appears as an exponent
and kT ≈ 0.5 eV ≪ χ . Thus a difference of several electron volts in the ionization energy
produces a change of many powers of e in the Saha equation.

Evaluating the partition functions ZI and ZII for calcium is a bit more complicated than
for hydrogen, and the results have been tabulated elsewhere:14 ZI = 1.32 and ZII = 2.30.
Thus the ratio of ionized to un-ionized calcium is

[

NII

NI

]

Ca
= 2kT ZII

PeZI

(

2πmekT

h2

)3/2

e−χI/kT = 918.

Practically all of the calcium atoms are in the form of Ca II; only one atom out of 900
remains neutral. Now we can use the Boltzmann equation to estimate how many of these
calcium ions are in the ground state, capable of forming the Ca II H and K absorption
lines. The next calculation will consider the K (λ = 393.3 nm) line; the results for the H
(λ = 396.8 nm) line are similar. The first excited state of Ca II is E2 − E1 = 3.12 eV above
the ground state. The degeneracies for these states are g1 = 2 and g2 = 4. Thus the ratio of
the number of Ca II ions in the first excited state to those in the ground state is

[

N2

N1

]

Ca II
= g2

g1
e−(E2−E1)/kT = 3.79 × 10−3 = 1

264
.

Out of every 265 Ca II ions, all but one are in the ground state and are capable of produc-
ing the Ca II K line. This implies that nearly all of the calcium atoms in the Sun’s photosphere

1 The values of the partition functions used here are from Aller (1963); see also Cox (2000), page 32.4
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are singly ionized and in the ground state,1 so that almost all of the calcium atoms are
available for forming the H and K lines of calcium:

[

N1

Ntotal

]

Ca II
≃
[

N1

N1 + N2

]

Ca II

[

NII

Ntotal

]

Ca

=
(

1
1 + [N2/N1]Ca II

)(

[NII/NI]Ca

1 + [NII/NI]Ca

)

=
(

1
1 + 3.79 × 10−3

) (

918
1 + 918

)

= 0.995.

Now it becomes clear why the Ca II H and K lines are so much stronger in the Sun’s
spectrum than are the Balmer lines. There are 500,000 hydrogen atoms for every calcium
atom in the solar photosphere, but only an extremely small fraction, 5.06 × 10−9, of these
hydrogen atoms are un-ionized and in the first excited state, capable of producing a Balmer
line. Multiplying these two factors,

(500,000) × (5.06 × 10−9) ≈ 0.00253 = 1
395

,

reveals that there are approximately 400 times more Ca II ions with electrons in the ground
state (to produce the Ca II H and K lines) than there are neutral hydrogen atoms with
electrons in the first excited state (to produce the Balmer lines). The strength of the H and
K lines is not due to a greater abundance of calcium in the Sun. Rather, the strength of these
Ca II lines reflects the sensitive temperature dependence of the atomic states of excitation
and ionization.

Figure 11 shows how the strength of various spectral lines varies with spectral type
and temperature. As the temperature changes, a smooth variation from one spectral type to
the next occurs, indicating that there are only minor differences in the composition of stars,
as inferred from their spectra. The first person to determine the composition of the stars and
discover the dominant role of hydrogen in the universe was Cecilia Payne (1900–1979).
Her 1925 Ph.D. thesis, in which she calculated the relative abundances of 18 elements in
stellar atmospheres, is among the most brilliant ever done in astronomy.

2 THE HERTZSPRUNG–RUSSELL DIAGRAM

Early in the twentieth century, as astronomers accumulated data for an increasingly large
sample of stars, they became aware of the wide range of stellar luminosities and absolute
magnitudes. The O stars at one end of the Harvard sequence tended to be both brighter and

1 It is left as an exercise to show that only a very small fraction of calcium atoms are doubly ionized (Ca III).
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FIGURE 11 The dependence of spectral line strengths on temperature.

An Enormous Range in Stellar Radii

If this idea of stellar cooling were correct, then there should be a relation between a star’s
absolute magnitude and its spectral type. A Danish engineer and amateur astronomer, Ejnar
Hertzsprung (1873–1967), analyzed stars whose absolute magnitudes and spectral types
had been accurately determined. In 1905 he published a paper confirming the expected
correlation between these quantities. However, he was puzzled by his discovery that stars
of type G or later had a range of magnitudes, despite having the same spectral classification.
Hertzsprung termed the brighter stars giants. This nomenclature was natural, since the
Stefan–Boltzmann law shows that

R = 1
T 2

e

√

L

4πσ
. (10)

If two stars have the same temperature (as inferred for stars having the same spectral type),
then the more luminous star must be larger.

1 Stellar evolution describes the change in the structure and composition of an individual star as it ages. This
usage of the term evolution differs from that in biology, where it describes the changes that occur over generations,
rather than during the lifetime of a single individual.
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hotter than the M stars at the other end. In addition, the empirical mass–luminosity rela-
tion, deduced from the study of binary stars, showed that O stars are more massive than 
M stars. These regularities led to a theory of stellar evolution16 that described how stars 
might cool off as they age. This theory (no longer accepted) held that stars begin their 
lives as young, hot, bright blue O stars. It was suggested that as they age, stars become 
less massive as they exhaust more and more of their “fuel” and that they then gradually 
become cooler and fainter until they fade away as old, dim red M stars. Although incorrect, 
a vestige of this idea remains in the terms early and late spectral types.



Hertzsprung presented his results in tabular form only. Meanwhile, at Princeton Uni-
versity, Henry Norris Russell (1877–1957) independently came to the same conclusions as
Hertzsprung. Russell used the same term, giant, to describe the luminous stars of late spec-
tral type and the term dwarf stars for their dim counterparts. In 1913 Russell published the
diagram shown in Fig. 12. It records a star’s observed properties: absolute magnitude on
the vertical axis (with brightness increasing upward) and spectral type running horizontally
(so temperature increases to the left). This first “Russell diagram” shows most of the features
of its modern successor, the Hertzsprung–Russell (H–R) diagram.17 More than 200 stars
were plotted, most within a band reaching from the upper left-hand corner, home of the hot,
bright O stars, to the lower right-hand corner, where the cool, dim M stars reside. This band,
called the main sequence, contains between 80% and 90% of all stars in the H–R diagram.
In the upper right-hand corner are the giant stars. A single white dwarf, 40 Eridani B, sits at
the lower left.1 The vertical bands of stars in Russell’s diagram are a result of the discrete
classification of spectral types. A more recent version of an observational H–R diagram is
shown in Fig. 13 with the absolute visual magnitude of each star plotted versus its color
index and spectral type.

Figure 14 shows another version of the H–R diagram. Based on the average properties

The Sun (G2) is found on the main sequence, as is
Vega (A0). Both axes are scaled logarithmically to accommodate the huge span of
stellar luminosities, ranging from about 5 × 10−4 L⊙ to nearly 106 L⊙.2 Actually, the main
sequence is not a line but, rather, has a finite width, as shown in Figs. 12 and 13, owing
to the changes in a star’s temperature and luminosity that occur while it is on the main
sequence and to slight differences in the compositions of stars. The giant stars occupy the
region above the lower main sequence, with the supergiants, such as Betelgeuse, in the
extreme upper right-hand corner. The white dwarfs (which, despite their name, are often
not white at all) lie well below the main sequence.

The radius of a star can be easily determined from its position on the H–R diagram.
The Stefan–Boltzmann law in the form of Eq. ( 10) shows that if two stars have the
same surface temperature, but one star is 100 times more luminous than the other, then the

17The names of Hertzsprung and Russell were forever joined by another Danish astronomer, Bengt Strömgren
(1908–1987), who suggested that the diagram be named after its two inventors. Strömgren’s suggestion that star
clusters be studied led to a clarification of the ideas of stellar evolution.
18Russell merely considered this star to be an extremely underluminous binary companion of the star 40 Eridani
A; the extraordinary nature of white dwarfs was yet to be discovered. Note that the term dwarf refers to the stars
on the main sequence and should not be confused with the white dwarf designation for stars lying well below the
main sequence.

Note that Fig. 13 suggests that a correlation exists between color index and spectral type, both of which are
reflections of the effective temperature of the star. Recall that color index is closely related to the blackbody
spectrum of a star.
2 Extremely late and early spectral types are not included in Fig. 14. The dimmest main-sequence stars are
difficult to find, and the brightest have very short lifetimes, making their detection unlikely. As a result, only a
handful of stars belonging to these classifications are known—too few to establish their average properties.
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of main-sequence stars, this diagram has a theorist’s orientation: The luminosity and 
 effective temperature are plotted for each star, rather than the observationally determined 
quantities of absolute magnitude and color index or spectral type.



FIGURE 12 Henry Norris Russell’s first diagram, with spectral types listed along the top and
absolute magnitudes on the left-hand side. (Figure from Russell, Nature, 93, 252, 1914.)

radius of the more luminous star is
√

100 = 10 times larger. On a logarithmically plotted
H–R diagram, the locations of stars having the same radii fall along diagonal lines that run
roughly parallel to the main sequence (lines of constant radius are also shown in Fig. 14).
The main-sequence stars show some variation in their sizes, ranging from roughly 20 R⊙
at the extreme upper left end of the main sequence down to 0.1 R⊙ at the lower right end.
The giant stars fall between roughly 10 R⊙ and 100 R⊙. For example, Aldebaran (α Tauri),
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FIGURE 13 An observer’s H–R diagram. The data are from the Hipparcos catalog. More than
3700 stars are included here with parallax measurements determined to better than 20%. (Data courtesy
of the European Space Agency.)
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the gleaming “eye” of the constellation Taurus (the Bull), is an orange giant star that is 45
times larger than the Sun.

The supergiant stars are even larger. Betelgeuse, a pulsating variable star, contracts
and expands roughly between 700 and 1000 times the radius of the Sun with a period of
approximately 2070 days. If Betelgeuse were located at the Sun’s position, its surface would
at times extend past the orbit of Jupiter. The star µ Cephei in the constellation of Cepheus
(a king of Ethiopia) is even larger and would swallow Saturn.21

The existence of such a simple relation between luminosity and temperature for main-
sequence stars is a valuable clue that the position of a star on the main sequence is governed
by a single factor. This factor is the star’s mass.

The most massive O stars listed in that table are observed
to have masses of 60 M⊙,22 and the lower end of the main sequence is bounded by M stars
having at least 0.08 M⊙.2 Combining the radii and masses known for main-sequence stars,
we can calculate the average density of the stars. The result, perhaps surprising, is that main-
sequence stars have roughly the same density as water. Moving up the main sequence, we
find that the larger, more massive, early-type stars have a lower average density.

Example 2.1. The Sun, a G2 main-sequence star, has a mass of M⊙ = 1.9891 × 1030 kg
and a radius of R⊙ = 6.95508 × 108 m. Its average density is thus

ρ⊙ = M⊙
4
3 πR3

⊙
= 1410 kg m−3.

Sirius, the brightest-appearing star in the sky, is classified as an A1 main sequence star with
a mass of 2.2 M⊙ and a radius of 1.6 R⊙. The average density of Sirius is

ρ = 2.2 M⊙
4
3 π(1.6 R⊙)3

= 760 kg m−3 = 0.54 ρ⊙,

which is about 76 percent of the density of water. However, this is enormously dense
compared to a giant or supergiant star. The mass of Betelgeuse is estimated to lie between
10 and 15 M⊙; we will adopt 10 M⊙ here. For illustration, if we take the maximum radius of
this pulsating star to be about 1000 R⊙, then the average density of Betelgeuse (at maximum
size) is roughly

ρ = 10 M⊙
4
3 π(1000 R⊙)3

= 10−8 ρ⊙!

Thus Betelgeuse is a tenuous, ghostly object—a hundred thousand times less dense than
the air we breathe. It is difficult even to define what is meant by the “surface” of such a
wraith-like star.

21µ Cephei is a pulsating variable like Betelgeuse and has a period of 730 days. One of the reddest stars visible
in the night sky, µ Cephei, is known as the Garnet Star.

22Theoretical calculations indicate that main-sequence stars as massive as 90 M⊙ may exist, and recent observations
have been made of a few stars with masses estimated near 100 M⊙
2 Stars less massive than 0.08 M⊙ have insufficient temperatures in their cores to support significant nuclear
burning

3

.
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Morgan–Keenan Luminosity Classes

Hertzsprung wondered whether there might be some difference in the spectra of giant
and main-sequence stars of the same spectral type (or same effective temperature). He
found just such a variation in spectra among the stars cataloged by Antonia Maury. In
her classification scheme she had noted line width variations that she referred to as a
c-characteristic. The subtle differences in the relative strengths of spectral lines for stars of
similar effective temperatures and different luminosities are depicted in Fig. 15. The work
begun by Hertzsprung and Maury, and further developed by other astronomers, culminated
in the 1943 publication of the Atlas of Stellar Spectra by William W. Morgan (1906–1994)
and Phillip C. Keenan (1908–2000) of Yerkes Observatory. Their atlas consists of 55 prints
of spectra that clearly display the effect of temperature and luminosity on stellar spectra and
includes the criteria for the classification of each spectrum. The MKK Atlas established the
two-dimensional Morgan–Keenan (M–K) system of spectral classification.2 A luminosity
class, designated by a Roman numeral, is appended to a star’s Harvard spectral type. The
numeral “I” (subdivided into classes Ia and Ib) is reserved for the supergiant stars, and “V”
denotes a main-sequence star. The ratio of the strengths of two closely spaced lines is often
employed to place a star in the appropriate luminosity class. In general, for stars of the same
spectral type, narrower lines are usually produced by more luminous stars.2 The Sun is a
G2 V star, and Betelgeuse is classified as M2 Ia.2 The series of Roman numerals extends
below the main sequence; the subdwarfs (class VI or “sd”) reside slightly to the left of the
main sequence because they are deficient in metals. The M–K system does not extend to
the white dwarfs, which are classified by the letter D. Figure 16 shows the corresponding
divisions on the H–R diagram and the locations of a selection of specific stars, and Table 3
lists the luminosity classes.

The two-dimensional M–K classification scheme enables astronomers to locate a star’s
position on the Hertzsprung–Russell diagram based entirely on the appearance of its spec-
trum. Once the star’s absolute magnitude, M , has been read from the vertical axis of the
H–R diagram, the distance to the star can be calculated from its apparent magnitude, m

d = 10(m−M+5)/5,

where d is in units of parsecs. This method of distance determination, called spectroscopic
parallax, is responsible for many of the distances measured for stars,2 but its accuracy is
limited because there is not a perfect correlation between stellar absolute magnitudes and
luminosity classes. The intrinsic scatter of roughly ±1 magnitude for a specific luminosity
class renders d uncertain by a factor of about 101/5 = 1.6.

24Edith Kellman of Yerkes printed the 55 spectra and was a co-author of the atlas; hence the additional “K” in
MKK Atlas.

25 ecause the atmospheres of more luminous stars are less dense,there are fewer
collisions between atoms. Collisions can distort the energies of atomic orbitals, leading to broadening of the
spectral lines.
26Betelgeuse, a pulsating variable star, is sometimes given the intermediate classification M2 Iab.
2 Since the technique of parallax is not involved, the term spectroscopic parallax is a misnomer, although the
name does at least imply a distance determination.
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FIGURE 15 A comparison of the strengths of the hydrogen Balmer lines in types A0 Ia, A0 Ib,
A0 III, A0 IV, A0 V, and a white dwarf, showing the narrower lines found in supergiants. These
spectra are displayed as negatives, so absorption lines appear bright. (Figure from Yamashita, Nariai,
and Norimoto, An Atlas of Representative Stellar Spectra, University of Tokyo Press, Tokyo, 1978.)
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FIGURE 16 Luminosity classes on the H–R diagram. (Figure from Kaler, Stars and Stellar
Spectra, © Cambridge University Press 1989. Reprinted with the permission of Cambridge University
Press.)
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TABLE 3 Morgan–Keenan Luminosity Classes.

Class Type of Star
Ia-O Extreme, luminous supergiants

Ia Luminous supergiants
Ib Less luminous supergiants
II Bright giants
III Normal giants
IV Subgiants
V Main-sequence (dwarf) stars

VI, sd Subdwarfs
D White dwarfs
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PROBLEM SET

1 Show that at room temperature, the thermal energy kT ≈ 1/40 eV. At what temperature is kT

equal to 1 eV? to 13.6 eV?

2 Verify that Boltzmann’s constant can be expressed in terms of electron volts rather than joules
as k = 8.6173423 × 10−5 eV K−1.

3 Use Fig. 6, the graph of the Maxwell–Boltzmann distribution for hydrogen gas at 10,000 K,
to estimate the fraction of hydrogen atoms with a speed within 1 km s−1 of the most probable
speed, vmp.

4 Show that the most probable speed of the Maxwell–Boltzmann distribution of molecular speeds
(Eq. 1) is given by Eq. (2).

5 For a gas of neutral hydrogen atoms, at what temperature is the number of atoms in the first
excited state only 1% of the number of atoms in the ground state? At what temperature is the
number of atoms in the first excited state 10% of the number of atoms in the ground state?

The Classification of Stellar Spectra
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FIGURE 6 Maxwell–Boltzmann distribution function, nv/n, for hydrogen atoms at a temperature
of 10,000 K. The fraction of hydrogen atoms in the gas having velocities between 2 × 104 m s−1 and
2.5 × 104 m s−1 is the shaded area under the curve between those two velocities; see Example 1.1.

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv, (1)

vmp =
√

2kT

m
. (2)

From Chapter 8 of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 by
 Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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(b) At a temperature of 85,400 K, when equal numbers (N ) of atoms are in the ground state and
in the first excited state, how many atoms are in the second excited state (n = 3)? Express
your answer in terms of N .

(c) As the temperature T → ∞, how will the electrons in the hydrogen atoms be distributed,
according to the Boltzmann equation? That is, what will be the relative numbers of electrons
in the n = 1, 2, 3, . . . orbitals? Will this in fact be the distribution that actually occurs? Why
or why not?

7 In Example 1.4,
of the H I atoms are in the ground state, so Eq. ( 7) for the partition function simplifies to
ZI ≃ g1 = 2(1)2 = 2.” Verify that this statement is correct for a temperature of 10,000 K
evaluating the first three terms in Eq. (7) for the partition function.

8 Equation ( 7) for the partition function actually diverges as n → ∞. Why can we ignore these
large-n terms?

9 Consider a box of electrically neutral hydrogen gas that is maintained at a constant volume
V . In this simple situation, the number of free electrons must equal the number of H II ions:
neV = NII.Also, the total number of hydrogen atoms (both neutral and ionized), Nt , is related to
the density of the gas by Nt = ρV/(mp + me) ≃ ρV/mp , where mp is the mass of the proton.
(The tiny mass of the electron may be safely ignored in this expression for Nt .) Let the density
of the gas be 10−6 kg m−3, typical of the photosphere of an A0 star.
(a) Make these substitutions into Eq. ( 8) to derive a quadratic equation for the fraction of

ionized atoms:
(

NII

Nt

)2

+
(

NII

Nt

)(

mp

ρ

)(

2πmekT

h2

)3/2

e−χI/kT −
(

mp

ρ

)(

2πmekT

h2

)3/2

e−χI/kT = 0.

(b) Solve the quadratic equation in part (a) for the fraction of ionized hydrogen, NII/Nt , for a
range of temperatures between 5000 K and 25,000 K. Make a graph of your results, and
compare it with Fig. 8.

from The Classification of stellar 
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Z =
∞
∑

j=1

gj e−(Ej −E1)/kT . (7)

Z =
∞
∑

j=1

gj e−(Ej −E1)/kT . (7)

Ni+1

Ni

= 2Zi+1

neZi

(

2πmekT

h2

)3/2

e−χi /kT . (8)

“

6 Consider a gas of neutral hydrogen atoms, as in Example 1.3 from The Classification of Stellar  

(a) At what temperature will equal numbers of atoms have electrons in the ground state and in
the second excited state (n = 3)?

“
”

,”
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FIGURE 8 NII/Ntotal for hydrogen from the Saha equation when Pe = 20 N m−2. Fifty percent
ionization occurs at T ≃ 9600 K.

10 In this problem, you will follow a procedure similar to that of Example 1.4
stellar atmosphere composed of pure helium to find the temp-

partial ionization zone, where half of the He I atoms have been
would be found on a white dwarf of spectral type DB.) The

of neutral helium and singly ionized helium are χI = 24.6 eV and χII =
The partition functions are ZI = 1, ZII = 2, and ZIII = 1 (as expected for

atom). Use Pe = 20 N m−2 for the electron pressure.
(a) Use Eq. ( 9) to findNII/NI andNIII/NII for temperatures of 5000 K, 15,000 K, and 25,000 K.

How do they compare?

(b) Show that NII/Ntotal = NII/(NI + NII + NIII) can be expressed in terms of the ratios NII/NI

and NIII/NII.
(c) Make a graph of NII/Ntotal similar to Fig. 8 for a range of temperatures from 5000 K

to 25,000 K. What is the temperature at the middle of the He I partial ionization zone?
Because the temperatures of the middle of the hydrogen and He I partial ionization zones
are so similar, they are sometimes considered to be a single partial ionization zone with a
characteristic temperature of 1–1.5 ×104 K.

from The Classification
 of Stellar Spectra  for the case of a
erature at the middle of the He I
ionized. (Such an atmosphere
ionization energies
54.4 eV, respectively.
any completely ionized

Ni+1

Ni

= 2kT Zi+1

PeZi

(

2πmekT

h2

)3/2

e−χi /kT . (9)

“
”
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FIGURE 8 NII/Ntotal for hydrogen from the Saha equation when Pe = 20 N m−2. Fifty percent
ionization occurs at T ≃ 9600 K.

11 Follow the procedure of Problem 10 to find the temperature at the middle of the He II partial
ionization zone, where half of the He II atoms have been ionized. This ionization zone is found at
a greater depth in the star, and so the electron pressure is larger—use a value of Pe = 1000 N m−2.
Let your temperatures range from 10,000 K to 60,000 K. This particular ionization zone plays
a crucial role in pulsating stars.

12 Use the Saha equation to determine the fraction of hydrogen atoms that are ionized, NII/Ntotal,
at the center of the Sun. Here the temperature is 15.7 million K and the number density of
electrons is about ne = 6.1 × 1031 m−3. (Use ZI = 2.) Does your result agree with the fact that
practically all of the Sun’s hydrogen is ionized at the Sun’s center? What is the reason for any
discrepancy?

13 Use the information in Example 1.5
atoms (Ca III/Ca II) in the Sun’s photosphere. The
Use ZIII = 1 for the partition function of Ca III. Is
Example 1.5 that in the solar photosphere, “nearly

forming the H and K lines of calcium”?

14 Consider a giant star and a main-sequence star of the same spectral type.
the main-sequence star.

Use the Saha equation to explain why this is so. Note that this means that there is not a perfect
correspondence between temperature and spectral type!

from The Classification  of Stellar  Spectra  to calculate
the ratio of doubly to singly ionized calcium
ionization energy of Ca II is χII = 11.9 eV.
your result consistent with the statement in
all of the calcium atoms are available for

“ ”

The giant star, which
has a lower atmospheric density, has a slightly lower temperature than
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16 The blue-white star Fomalhaut (“the fish’s mouth” in Arabic) is in the southern constella-
tion of Pisces Austrinus. Fomalhaut has an apparent visual magnitude of V = 1.19. Use the
H–R diagram in Fig. 16 to determine the distance to this star.
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FIGURE  14 The theorist’s Hertzsprung–Russell diagram. The dashed lines indicate lines of con-
stant radius.

15 Figure 14 shows that a white dwarf star typically has a radius that is only 1% of the Sun’s.
Determine the average density of a 1-M⊙ white dwarf.
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FIGURE 16 Luminosity classes on the H–R diagram. (Figure from Kaler, Stars and Stellar
Spectra, © Cambridge University Press 1989. Reprinted with the permission of Cambridge University
Press.)
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Stellar Atmospheres

1 The Description of the Radiation Field
2 Stellar Opacity
3 Radiative Transfer
4 The Transfer Equation
5 The Profiles of Spectral Lines

1 THE DESCRIPTION OF THE RADIATION FIELD

The light that astronomers receive from a star comes from the star’s atmosphere, the layers
of gas overlying the opaque interior. A flood of photons pours from these layers, releasing
the energy produced by the thermonuclear reactions, gravitational contraction, and cooling
in the star’s center. The temperature, density, and composition of the atmospheric layers
from which these photons escape determine the features of the star’s spectrum. To interpret
the observed spectral lines properly, we must describe how light travels through the gas that
makes up a star.

The Specific and Mean Intensities

Figure 1 shows a ray of light with a wavelength between λ and λ+ dλ passing through
a surface of area dA at an angle θ into a cone of solid angle d#.1 The angle θ is measured
from the direction perpendicular to the surface, so dA cos θ is the area dA projected onto
a plane perpendicular to the direction in which the radiation is traveling. Defining

Eλ ≡ ∂E

∂λ
,

Eλ dλ is assumed to be the amount of energy that these rays carry into the cone in a time
interval dt . Then the specific intensity of the rays is defined as

Iλ ≡ ∂I

∂λ
≡ Eλ dλ

dλ dt dA cos θ d#
. (1)

1The surface is a mathematical location in space and is not necessarily a real physical surface.

From Chapter  of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.

9
by 



x

y

z

dA

I!(T )

dW = sin " d" d#

d##

" d"

FIGURE 1 Intensity Iλ.

Although the energy Eλ dλ in the numerator is vanishingly small, the differentials in the
denominator are also vanishingly small, so the ratio approaches a limiting value of Iλ. The
specific intensity is usually referred to simply as the intensity. Thus, in spherical coordinates,

Eλ dλ = Iλ dλ dt dA cos θ d# = Iλ dλ dt dA cos θ sin θ dθ dφ (2)

is the amount of electromagnetic radiation energy having a wavelength between λ and
λ+ dλ that passes in time dt through the area dA into a solid angle d# = sin θ dθ dφ. The

Imagine a light ray of intensity Iλ as it propagates through a vacuum. Because Iλ is
defined in the limit d# → 0, the energy of the ray does not spread out (or diverge). The
intensity is therefore constant along any ray traveling through empty space.

In general, the specific intensity Iλ does vary with direction, however.The mean intensity
of the radiation is found by integrating the specific intensity over all directions and dividing
the result by 4π sr, the solid angle enclosed by a sphere, to obtain an average value of Iλ.
In spherical coordinates, this average value is3

⟨Iλ⟩ ≡ 1
4π

∫

Iλ d# = 1
4π

∫ 2π

φ=0

∫ π

θ=0
Iλ sin θ dθ dφ. (3)

For an isotropic radiation field (one with the same intensity in all directions), ⟨Iλ⟩ = Iλ.
Blackbody radiation is isotropic and has ⟨Iλ⟩ = Bλ.

W m−3 indicates an energy per second per unit area per unit wavelength interval,
W m−2m−1, not an energy per second per unit volume.
3Many texts refer to the average intensity as Jλ instead of ⟨Iλ⟩. However, in this text the notation ⟨Iλ⟩ has been
selected to explicitly illustrate the average nature of the quantity.

2
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specific intensity therefore has units of W m−3 sr −1.2 The Planck function Bl is an example 
of the specific intensity for the special case of blackbody radiation. In general, however, 
the energy of the light need not vary with wavelength in the same way as it does for black-
body radiation. Later we will see under what circumstances we may set Il = Bl.



The Specific Energy Density

To determine how much energy is contained within the radiation field, we can use a “trap”
consisting of a small cylinder of length dL, open at both ends, with perfectly reflecting
walls inside; see Fig. 2. Light entering the trap at one end travels and (possibly) bounces
back and forth until it exits the other end of the trap. The energy inside the trap is the same
as what would be present at that location if the trap were removed. The radiation that enters
the trap at an angle θ travels through the trap in a time dt = dL/(c cos θ). Thus the amount
of energy inside the trap with a wavelength between λ and λ+ dλ that is due to the radiation
that enters at angle θ is

Eλ dλ = Iλ dλ dt dA cos θ d# = Iλ dλ dA d#
dL

c
.

The quantity dA dL is just the volume of the trap, so the specific energy density (energy
per unit volume having a wavelength between λ and λ+ dλ) is found by dividing Eλ dλ

by dL dA, integrating over all solid angles, and using Eq. (3):

uλ dλ = 1
c

∫

Iλ dλ d#

= 1
c

∫ 2π

φ=0

∫ π

θ=0
Iλ dλ sin θ dθ dφ

= 4π
c

⟨Iλ⟩ dλ. (4)

z

dA

Light entering trap

Light leaving trap

dW

dL

"

FIGURE 2 Cylindrical “trap” for measuring energy density uλ.
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For an isotropic radiation field, uλ dλ = (4π/c)Iλ dλ, and for blackbody radiation,

uλ dλ = 4π
c

Bλ dλ = 8πhc/λ5

ehc/λkT − 1
dλ. (5)

At times it may be more useful to express the blackbody energy density in terms of the
frequency, ν, of the light by employing

uν dν = 4π
c

Bν dν = 8πhν3/c3

ehν/kT − 1
dν. (6)

Thus uν dν is the energy per unit volume with a frequency between ν and ν + dν.
The total energy density, u, is found by integrating over all wavelengths or over all

frequencies:

u =
∫ ∞

0
uλ dλ =

∫ ∞

0
uν dν.

For blackbody radiation (Iλ = Bλ), the equation shows that

u = 4π
c

∫ ∞

0
Bλ(T ) dλ = 4σT 4

c
= aT 4, (7)

where a ≡ 4σ/c is known as the radiation constant and has the value

a = 7.565767 × 10−16 J m−3K−4.

The Specific Radiative Flux

Another quantity of interest is Fλ, the specific radiative flux. Fλ dλ is the net energy
having a wavelength between λ and λ+ dλ that passes each second through a unit area in
the direction of the z-axis:

Fλ dλ =
∫

Iλ dλ cos θ d# =
∫ 2π

φ=0

∫ π

θ=0
Iλ dλ cos θ sin θ dθ dφ. (8)

The factor of cos θ determines the z-component of a light ray and allows the cancelation of
oppositely directed rays. For an isotropic radiation field there is no net transport of energy,
and so Fλ = 0.

Both the radiative flux and the specific intensity describe the light received from a
celestial source, and you may wonder which of these quantities is actually measured by a
telescope’s photometer, pointed at the source of light. The answer depends on whether the
source is resolved by the telescope. Figure 3(a) shows a source of light, uniform over
its entire surface,4 that is resolved by the telescope; the angle θ subtended by the source
as a whole is much larger than θmin, the smallest angle resolvable according to Rayleigh’s

4The assumption of a uniform light source precludes dimming effects such as limb darkening.

:
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FIGURE 3 The measurement of (a) the specific intensity for a resolved source and (b) the radiative
flux for an unresolved source. Note that any object with an angular resolution smaller than θmin on
the surface of the resolved source (such as a surface feature on a planet) remains unresolved.

criterion. In this case, what is being measured is the specific intensity, the amount of energy
per second passing through the aperture area into the solid angle defined by θmin. For
example, at a wavelength of 501 nm, the measured value of the specific intensity at the
center of the Sun’s disk is

I501 = 4.03 × 1013 W m−3sr−1.

4, resulting in the same amount of energy reaching each square meter of the detector. The
specific intensity of light rays from the source is thus measured to be constant.5

However, it is the radiative flux that is measured for an unresolved source. As the source
recedes farther and farther, it will eventually subtend an angle θ smaller than θmin, and
it can no longer be resolved by the telescope. When θ < θmin, the energy received from

decreases as 1/r2, as expected.

5 he image and object intensities of a resolved
object are the same.

T
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Now imagine that the source is moved twice as far away. According to the inverse 
square law for light, there will be only (1/2)2 = 1/4 as much energy received from each 
square meter of the source. If the source is still resolved, however, then the amount of 
source area that contributes energy to the solid angle  has increased by a factor of

the entire source will disperse throughout the diffraction pattern (the Airy disk and 
rings) determined by the telescope’s aperture. Because the light arriving at the detec-
tor leaves the surface of the source at all angles [see Fig.  3(b)], the detector is effec-
tively integrating the specific intensity over all directions. This is just the definition of 
the radiative flux, Eq. (  8). As the distance r to the source increases further, the amount 
of energy falling within the Airy disk (and consequently the value of the radiative flux)

#min

#min



Radiation Pressure

reflected at an angle θ from a perfectly reflecting surface of area dA into a solid angle
d#. Because the angle of incidence equals the angle of reflection, the solid angles shown
for the incident and reflected photons are the same size and inclined by the same angle
θ on opposing sides of the z-axis. The change in the z-component of the momentum of
photons with wavelengths between λ and λ+ dλ that are reflected from the area dA in a
time interval dt is

dpλ dλ =
[

(pλ)final,z − (pλ)initial,z
]

dλ

=
[

Eλ cos θ
c

−
(

−Eλ cos θ
c

)]

dλ

= 2 Eλ cos θ
c

dλ

= 2
c

Iλ dλ dt dA cos2 θ d#,

where the last expression was obtained from Eq. ( 2). Dividing dpλ by dt and dA gives
(dpλ/dt)/dA. But from Newton’s second and third laws, −dpλ/dt is the force exerted by
the photons on the area dA, although we will ignore the minus sign, which merely says
that the force is in the −z-direction. Thus the radiation pressure is the force per unit area,
(dpλ/dt)/dA, produced by the photons within the solid angle d#. Integrating over the
hemisphere of all incident directions results in Prad,λ dλ, the radiation pressure exerted by

" "

z

dW dW

dA

FIGURE 4 Radiation pressure produced by incident photons from the solid angle d#.
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Because a photon possesses an energy E, Einstein’s relativistic energy equation tells us 
that even though it is massless, a photon also carries a momentum of p = E /c and thus 
can exert a radiation pressure. This radiation pressure can be derived in the same way 
that gas pressure is found for molecules bouncing off a wall. Figure  4 shows photons



those photons having a wavelength between λ and λ+ dλ:

Prad,λ dλ = 2
c

∫

hemisphere
Iλ dλ cos2 θ d# (reflection)

= 2
c

∫ 2π

φ=0

∫ π/2

θ=0
Iλ dλ cos2 θ sin θ dθ dφ.

Just as the pressure of a gas exists throughout the volume of the gas and not just at the
container walls, the radiation pressure of a “photon gas” exists everywhere in the radia-
tion field. Imagine removing the reflecting surface dA in Fig. 4 and replacing it with a
mathematical surface. The incident photons will now keep on going through dA; instead of
reflected photons, photons will be streaming through dA from the other side. Thus, for an
isotropic radiation field, there will be no change in the expression for the radiation pressure
if the leading factor of 2 (which originated in the change in momentum upon reflection of
the photons) is removed and the angular integration is extended over all solid angles:

Prad,λ dλ = 1
c

∫

sphere
Iλ dλ cos2 θ d# (transmission) (9)

= 1
c

∫ 2π

φ=0

∫ π

θ=0
Iλ dλ cos2 θ sin θ dθ dφ

= 4π
3c

Iλ dλ (isotropic radiation field). (10)

However, it may be that the radiation field is not isotropic. In that case, Eq. ( 9) for the ra-
diation pressure is still valid but the pressure depends on the orientation of the mathematical
surface dA.

The total radiation pressure produced by photons of all wavelengths is found by inte-
grating Eq. (10):

Prad =
∫ ∞

0
Prad,λ dλ.

For blackbody radiation, it is left as a problem to show that

Prad = 4π
3c

∫ ∞

0
Bλ(T ) dλ = 4σT 4

3c
= 1

3
aT 4 = 1

3
u. (11)

Thus the blackbody radiation pressure is one-third of the energy density. (For comparison,
the pressure of an ideal monatomic gas is two-thirds of its energy density.)

Stellar Atmospheres



2 STELLAR OPACITY

from the shape of the blackbody Planck function, Bλ, because solar absorption lines remove
light from the Sun’s continuous spectrum at certain wavelengths. The decrease in intensity
produced by the dense series of metallic absorption lines in the solar spectrum is especially
effective; this effect is called line blanketing. In other wavelength regimes (e.g., X-ray and
UV), emission lines may augment the intensity of the continuous spectrum.

Temperature and Local Thermodynamic Equilibrium

Although we often think in terms of the temperature at a particular location, there are
actually many different measures of temperature within a star, defined according to the
physical process being described:

• The effective temperature, which is obtained from the Stefan–Boltzmann law
is uniquely defined for a specific level within a star and is an important global
descriptor of that star.

• The excitation temperature is defined by the Boltzmann equation.

• The ionization temperature is defined by the Saha equation
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FIGURE 5 The spectrum of the Sun in 2 nm wavelength intervals. The dashed line is the curve of
an ideal blackbody having the Sun’s effective temperature. (Figure adapted from Aller, Atoms, Stars,
and Nebulae, Third Edition, Cambridge University Press, New York, 1991.)

6The “surface” of a star is defined as the region where the emergent visual continuum forms, namely the photosphere

7See Böhm-Vitense (1981) for more details concerning the determination of temperatures.

.
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The classification of stellar spectra is an ongoing process. Even the most basic task, 
such as finding the “surface”6 temperature of a particular star, is complicated by the fact 
that stars are not actually blackbodies. The Stefan–Boltzmann relation defines a star’s 
 effective temperature, but some effort is required to obtain a more accurate value of the 
“surface” temperature.7 Figure  5 shows that the Sun’s spectrum deviates substantially



• The kinetic temperature is contained in the Maxwell–Boltzmann distribution

• The color temperature is obtained by fitting the shape of a star’s continuous spectrum
to the Planck function

With the exception of the effective temperature, the remaining temperatures apply to any
location within the star and vary according to the conditions of the gas. Although defined
differently, the excitation temperature, the ionization temperature, the kinetic temperature,
and the color temperature are the same for the simple case of a gas confined within an
“ideal box.” The confined gas particles and blackbody radiation will come into equilibrium,
individually and with each other, and can be described by a single well-defined temperature.
In such a steady-state condition, no net flow of energy through the box or between the
matter and the radiation occurs. Every process (e.g., the absorption of a photon) occurs at
the same rate as its inverse process (e.g., the emission of a photon). This condition is called
thermodynamic equilibrium.

However, a star cannot be in perfect thermodynamic equilibrium. A net outward flow
of energy occurs through the star, and the temperature, however it is defined, varies with
location. Gas particles and photons at one position in the star may have arrived there
from other regions, either hotter or cooler (in other words, there is no “ideal box”). The
distribution in particle speeds and photon energies thus reflects a range of temperatures. As
the gas particles collide with one another and interact with the radiation field by absorbing
and emitting photons, the description of the processes of excitation and ionization becomes
quite complex. However, the idealized case of a single temperature can still be employed
if the distance over which the temperature changes significantly is large compared with the
distances traveled by the particles and photons between collisions (their mean free paths).
In this case, referred to as local thermodynamic equilibrium (LTE), the particles and
photons cannot escape the local environment and so are effectively confined to a limited
volume (an approximated “box”) of nearly constant temperature.

Example 2.1. The photosphere is the surface layer of the Sun’s atmosphere where the

HT ≡ T

|dT /dr| = 5685 K
(5790 K − 5580 K)/(25.0 km)

= 677 km,

where the average temperature has been used for the value of T .
How does the temperature scale height of 677 km compare with the average dis-

tance traveled by an atom before hitting another atom? The density of the photosphere at
that level is about ρ = 2.1 × 10−4 kg m−3, consisting primarily of neutral hydrogen atoms
in the ground state.Assuming a pure hydrogen gas for convenience, the number of hydrogen

continued

.
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photons can escape into space. According to a model solar atmosphere, the temperature in 
one region of the photosphere varies from 5580 K to 5790 K over a distance of 25.0 km. 
The characteristic distance over which the temperature varies, called the temperature scale 
height, HT , is given by
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Collision cross section %
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Point atoms

FIGURE 6 Mean free path, ℓ, of a hydrogen atom.

atoms per cubic meter is roughly

n = ρ

mH

= 1.25 × 1023 m−3,

where mH is the mass of a hydrogen atom. In an approximate sense, two of these atoms will
“collide” if their centers pass within two Bohr radii, 2a0, of each other.8 As shown in Fig. 6,
we may consider the equivalent problem of a single atom of radius 2a0 moving with speed v

through a collection of stationary points that represent the centers of the other atoms. In an
amount of time t , this atom has moved a distance vt and has swept out a cylindrical volume
V = π(2a0)

2vt = σvt , where σ ≡ π(2a0)
2 is the collision cross section of the atom in this

classical approximation.9 Within this volume V are nV = nσvt point atoms with which
the moving atom has collided. Thus the average distance traveled between collisions is

ℓ = vt

nσvt
= 1

nσ
. (12)

The distance ℓ is the mean free path between collisions.10 For a hydrogen atom,

σ = π(2a0)
2 = 3.52 × 10−20 m2.

Thus the mean free path in this situation is

ℓ = 1
nσ

= 2.27 × 10−4 m.

The mean free path is several billion times smaller than the temperature scale height. As a
result, the atoms in the gas see an essentially constant kinetic temperature between collisions.
They are effectively confined within a limited volume of space in the photosphere. Of course
this cannot be true for the photons as well, since the Sun’s photosphere is the visible layer

8This treats the atoms as solid spheres, a classical approximation to the quantum atom.
9The concept of cross section actually represents a probability of particle interactions but has units of cross-
sectional area.
10A more careful calculation, using a Maxwellian velocity distribution for all of the atoms, results in a mean free
path that is smaller by a factor of

√
2.
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of the solar surface that we observe from Earth. Thus, by the very definition of photosphere,
the photons must be able to escape freely into space. To say more about the photon mean
free path and the concept of LTE, and to better understand the solar spectrum shown in
Fig. 5, we must examine the interaction of particles and photons in some detail.

The Definition of Opacity

We now turn to a consideration of a beam of parallel light rays traveling through a gas. Any
process that removes photons from a beam of light will be collectively termed absorption. In
this sense then, absorption includes the scattering of photons (such as Compton scattering

The change in the intensity, dIλ, of a ray of wavelength λ as it travels through a gas is
proportional to its intensity, Iλ, the distance traveled, ds, and the density of the gas, ρ. That
is,

dIλ = −κλρIλ ds. (13)

The distance s is measured along the path traveled by the beam and increases in the direction
that the beam travels; the minus sign in Eq. ( 13) shows that the intensity decreases with
distance due to the absorption of photons. The quantity κλ is called the absorption coeffi-
cient, or opacity, with the λ subscript implicitly indicating that the opacity is wavelength-
dependent (κλ is sometimes referred to as a monochromatic opacity). The opacity is the
cross section for absorbing photons of wavelength λ per unit mass of stellar material and
has units of m2 kg−1. In general, the opacity of a gas is a function of its composition, density,
and temperature.11

Example 2.2. Consider a beam of light traveling through a gas with initial intensity Iλ,0
at s = 0. The final intensity Iλ,f after the light has traveled a distance s may be found by
integrating Eq. (13):

∫ Iλ,f

Iλ,0

dIλ

Iλ
= −

∫ s

0
κλρ ds.

This leads to

Iλ = Iλ,0e
−
∫ s

0 κλρ ds, (14)

where the f subscript has been dropped. For the specific case of a uniform gas of constant
opacity and density,

Iλ = Iλ,0e
−κλρs .

continued

11Note that there is some inconsistency in the terminology; some authors refer to opacity as the inverse of the
mean free path of the photons.

)
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as well as the true absorption of photons by atomic electrons making upward transitions. 
In sufficiently cool gases, molecular energy-level transitions may also occur and must be 
included.



For pure absorption (with emission processes neglected), there is no way of replenishing
the photons lost from the beam. The intensity declines exponentially, falling by a factor
of e−1 over a characteristic distance of ℓ = 1/κλρ. In the solar photosphere where the
density is approximately ρ = 2.1 × 10−4 kg m−3, the opacity (at a wavelength of 500 nm)
is κ500 = 0.03 m2 kg−1. Thus the characteristic distance traveled by a photon before being
removed from the beam at this level in the photosphere is

ℓ = 1
κ500ρ

= 160 km.

Recalling Example 2.1, this distance is comparable to the temperature scale height HT =
677 km. This implies that the photospheric photons do not see a constant temperature,
and so local thermodynamic equilibrium (LTE) is not strictly valid in the photosphere.
The temperature of the regions from which the photons have traveled will be somewhat
different from the local kinetic temperature of the gas.Although LTE is a commonly invoked
assumption in stellar atmospheres, it must be used with caution.

Optical Depth

For scattered photons, the characteristic distance ℓ is in fact the mean free path of the
photons. From Eq. ( 12),

ℓ = 1
κλρ

= 1
nσλ

.

Both κλρ and nσλ can be thought of as the fraction of photons scattered per meter of distance
travelled. Note that the mean free path is different for photons of different wavelengths.

It is convenient to define an optical depth, τλ, back along a light ray by

dτλ = −κλρ ds, (15)

where s is the distance measured along the photon’s path in its direction of motion (when
observing the light from a star, we are looking back along the path traveled by the photon;
see Fig. 7). The difference in optical depth between a light ray’s initial position (s = 0)
and its final position after traveling a distance s is

-τλ = τλ,f − τλ,0 = −
∫ s

0
κλρ ds. (16)

Note that -τλ < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at τλ = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
this definition of τλ = 0, Eq. ( 16) gives the initial optical depth, τλ,0, of a ray of light that

Stellar Atmospheres
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FIGURE 7 Optical depth τλ measured back along a ray’s path.

traveled a distance s to reach the top of the atmosphere:

0 − τλ,0 = −
∫ s

0
κλρ ds

τλ =
∫ s

0
κλρ ds. (17)

The “0” subscript has been dropped with the understanding that τλ is the optical depth of
the ray’s initial position, a distance s (s > 0) from the top of the atmosphere.

Combining Eq. ( 17) with Eq. ( 14) of Example 2.2 for the case of pure absorption,
we find that the decline in the intensity of a ray that travels through a gas from an optical
depth τλ to reach the observer is given by

Iλ = Iλ,0e
−τλ . (18)

Thus, if the optical depth of the ray’s starting point is τλ = 1, the intensity of the ray will
decline by a factor of e−1 before escaping from the star. The optical depth may be thought
of as the number of mean free paths from the original position to the surface, as measured
along the ray’s path. As a result, we typically see no deeper into an atmosphere at a given
wavelength than τλ ≈ 1. Of course, for pure absorption the intensity of the ray declines
exponentially regardless of its direction of travel through the gas. But we can observe only
those rays traveling toward us, and this is reflected in our choice of τλ = 0 at the top of the
atmosphere. Other choices of where τλ = 0 may be more useful in some situations.

If τλ ≫ 1 for a light ray passing through a volume of gas, the gas is said to be optically
thick; if τλ ≪ 1, the gas is optically thin. Because the optical depth varies with wavelength,
a gas may be optically thick at one wavelength and optically thin at another. For exam-
ple, Earth’s atmosphere is optically thin at visible wavelengths (we can see the stars), but
optically thick at X-ray wavelengths.

Stellar Atmospheres



z

In
cr

ea
sin

g 
s

&!,0

&! = 0

"h

ln I!,0

ln
 I !

0 1 2 3
sec "

(a) (b)

FIGURE 8 (a) A light ray entering Earth’s atmosphere at an angle θ . (b) ln Iλ vs. sec θ .

Example 2.3. easurements of a star’s radiative flux and
apparent magnitude are routinely corrected for the absorption of light by Earth’s atmosphere.
Figure 8(a) shows a ray of intensity Iλ,0 entering Earth’s atmosphere at an angle θ and
traveling to a telescope on the ground. The intensity of the light detected at the telescope
is Iλ; the problem is to determine the value of Iλ,0. If we take τλ = 0 at the telescope and h

to be the height of the atmosphere, then the optical depth of the light ray’s path through the
atmosphere may be found from Eq. ( 17). Using ds = −dz/ cos θ = − sec θdz yields

τλ =
∫ s

0
κλρ ds = −

∫ 0

h

κλρ
dz

cos θ
= sec θ

∫ h

0
κλρ dz = τλ,0 sec θ,

where τλ,0 is the optical depth for a vertically traveling photon (θ = 0). Substituting into
Eq. ( 18), the intensity of the light received at the telescope is therefore given by

Iλ = Iλ,0e
−τλ,0 sec θ . (19)

There are two unknowns in this equation, Iλ,0 and τλ,0; neither can be determined by
a single observation. However, as time passes and as Earth rotates on its axis, the angle θ
will change, and a semilog graph of several measurements of the received intensity Iλ as a
function of sec θ can be made. As shown in Fig. 8(b), the slope of the best-fitting straight
line is −τλ,0. Extrapolating the best-fitting line to sec θ = 0 provides the value of Iλ,0 at
the point where the line intercepts the Iλ-axis.12 In this way, measurements of the specific
intensity or radiative flux can be corrected for absorption by Earth’s atmosphere.

General Sources of Opacity

The opacity of the stellar material is determined by the details of how photons interact with
particles (atoms, ions, and free electrons). If the photon passes within σλ of the particle,

12Note that since sec θ ≥ 1, the best-fitting straight line must be extrapolated to the mathematically unavailable
value of 0.

M
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where σλ is the particle’s cross-sectional area (or effective target area), the photon may
be either absorbed or scattered. In an absorption process, the photon ceases to exist and
its energy is given up to the thermal energy of the gas. In a scattering process the photon
continues on in a different direction. Both absorption and scattering can remove photons
from a beam of light, and so contribute to the opacity, κλ, of the stellar material. If the
opacity varies slowly with wavelength, it determines the star’s continuous spectrum (or
continuum). The dark absorption lines superimposed on the continuum are the result of a
rapid variation in the opacity with wavelength

In general, there are four primary sources of opacity available for removing stellar
photons from a beam. Each involves a change in the quantum state of an electron, and the
terms bound and free are used to describe whether the electron is bound to an atom or ion
in its initial and final states.

1. Bound–bound transitions (excitations and de-excitations) occur when an electron
in an atom or ion makes a transition from one orbital to another. An electron can make
an upward transition from a lower- to a higher-energy orbital when a photon of the
appropriate energy is absorbed. Thus κλ,bb, the bound–bound opacity, is small except
at those discrete wavelengths capable of producing an upward atomic transition. It
is κλ,bb that is responsible for forming the absorption lines in stellar spectra. The
reverse process, emission, occurs when the electron makes a downward transition
from a higher- to a lower-energy orbital.

If an electron absorbs a photon and then returns directly to its initial orbital
(where it was before absorbing the photon), then a single photon is emitted in a
random direction. The net result of this absorption–emission sequence is essentially
a scattered photon. Otherwise, if the electron makes a transition to an orbital other
than its initial one, the original photon is not recovered and the process is one of true
absorption. If, while in its excited state, the atom or ion collides with a neighboring
particle, collisional de-excitation may result. When this occurs, the energy lost by the
atom or ion becomes a part of the thermal energy of the gas.

An important by-product of this absorption process is degrading of the average
energy of the photons in the radiation field. For example, if one photon is absorbed
but two photons are emitted as the electron cascades down to its initial orbital, then
the average photon energy has been reduced by half. There is no simple equation
for bound–bound transitions that describes all of the contributions to the opacity by
individual spectral lines.

2. Bound–free absorption, also known as photoionization, occurs when an incident
photon has enough energy to ionize an atom. The resulting free electron can have
any energy, so any photon with a wavelength λ ≤ hc/χn, where χn is the ionization
energy of the nth orbital, can remove an electron from an atom. Thus κλ,bf , the
bound–free opacity, is one source of the continuum opacity. The cross section for the
photoionization of a hydrogen atom in quantum state n by a photon of wavelength λ
is

σbf = 1.31 × 10−19 1
n5

(

λ

500 nm

)3

m2,

.
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FIGURE 9 Free–free absorption of a photon.

which is comparable to the collision cross section for hydrogen found in Exam-
ple 2.1. The inverse process of free–bound emission occurs when a free electron
recombines with an ion, emitting one or more photons in random directions. As with
bound–bound emission, this also contributes to reducing the average energy of the
photons in the radiation field.

3. Free–free absorption is a scattering process, shown in Fig. 9, that takes place when
a free electron in the vicinity of an ion absorbs a photon, causing the speed of the
electron to increase. In this process the nearby ion is necessary in order to conserve
both energy and momentum. (It is left as an exercise to show that an isolated free
electron cannot absorb a photon.) Since this mechanism can occur for a continuous
range of wavelengths, free–free opacity, κλ,ff , is another contributor to the continuum
opacity. It may also happen that as it passes near an ion, the electron loses energy
by emitting a photon, which causes the electron to slow down. This process of free–
free emission is also known as bremsstrahlung, which means “braking radiation” in
German.

4. Electron scattering is as advertised: A photon is scattered (not absorbed) by a free
electron through the process of Thomson scattering. In this process, the electron can
be thought of as being made to oscillate in the electromagnetic field of the photon.
However, because the electron is tiny, it makes a poor target for an incident photon,
resulting in a small cross section. The cross section for Thomson scattering has the
same value for photons of all wavelengths:

σT = 1
6πϵ2

0

(

e2

mec2

)2

= 6.65 × 10−29 m2. (20)

This is typically two billion times smaller than the hydrogen cross section for pho-
toionization, σbf . The small size of the Thomson cross section means that electron
scattering is most effective as a source of opacity when the electron density is very
high, which requires high temperature. In the atmospheres of the hottest stars (and in
the interiors of all stars), where most of the gas is completely ionized, other sources of
opacity that involve bound electrons are eliminated. In this high-temperature regime,
the opacity due to electron scattering, κes, dominates the continuum opacity.
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Thomson cross section; it is proportional to 1/λ4 and so decreases with increas-
ing photon wavelength. Rayleigh scattering can be neglected in most atmospheres,
but it is important in the UV for the extended envelopes of supergiant stars, and in
cool main-sequence stars.13 The scattering of photons from small particles is also
responsible for the reddening of starlight as it passes through interstellar dust.

Example 2.4. The energy of an electron in the n = 2 orbit of a hydrogen atom is given
by

E2 = −13.6
22

eV = −3.40 eV.

A photon must have an energy of at least χ2 = 3.40 eV to eject this electron from the atom.
Thus any photon with a wavelength

λ ≤ hc

χ2
= 364.7 nm

is capable of ionizing a hydrogen atom in the first excited state (n = 2). The opacity of
the stellar material suddenly increases at wavelengths λ ≤ 364.7 nm, and the radiative flux
measured for the star accordingly decreases. The abrupt drop in the continuous spectrum
of a star at this wavelength, called the Balmer jump, is evident in the Sun’s spectrum
(Fig. 5). The size of the Balmer jump in hot stars depends on the fraction of hydrogen
atoms that are in the first excited state. This fraction is determined by the temperature via

continued

13Rayleigh scattering is also important in planetary atmospheres and is responsible for Earth’s blue sky, for
instance.
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A photon may also be scattered by an electron that is loosely bound to 
an atomic  nucleus. This result is called Compton scattering if the photon’s 
 wavelength is much smaller than the atom or Rayleigh scattering if the pho-
ton’s wavelength is much larger. In Compton scattering, the change in the 
wavelength and energy of the scattered photon is very small, so Compton 
scattering is usually lumped together with Thomson scattering. The cross sec-
tion for Rayleigh scattering from a loosely bound electron is smaller than the

the Boltzmann equation, so a measurement of the size of the Balmer jump can be used 
to determine the temperature of the atmosphere. For cooler or very hot stars with other 
significant sources of opacity, the analysis is more complicated, but the size of the Balmer 
jump can still be used as a probe of atmospheric temperatures. 

The wavelength 364.7 nm is right in the middle of the bandwidth of the ultravi-
olet (U) filter in the UBV system. As a result, the Balmer jump will tend to decrease 
the amount of light received in the bandwidth of the U filter and so increase both the 
ultraviolet magnitude U and the color index (U – B) observed for a star. This effect 
will be strongest when N2   / Ntotal, the fraction of all hydrogen atoms that are in the first



excited state, is a maximum. about the temp
rature of an A0 star on the main sequence. A careful examination of the
diagram i reveals that this is indeed the spectral type at which the
value of U − B differs most from its blackbody value. The effect of line blanketing affects
the measured color indices, making the star appear more red than a model blackbody star of
the same effective temperature, and thus increasing the values of both U − B and B − V .

This occurs at a temperature of 9600 K.
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FIGURE Color–color diagram for main-sequence stars. The dashed line is for a blackbody.

Continuum Opacity and the H− Ion

The primary source of the continuum opacity in the atmospheres of stars later than F0 is the
photoionization of H− ions. An H− ion is a hydrogen atom that possesses an extra electron.
Because of the partial shielding that the nucleus provides, a second electron can be loosely
bound to the atom on the side of the ion opposite that of the first electron. In this position
the second electron is closer to the positively charged nucleus than it is to the negatively
charged electron. Therefore, according to Coulomb’s law, the net force on the extra
electron is attractive.

The binding energy of the H− ion is only 0.754 eV, compared with the 13.6 eV required
to ionize the ground state hydrogen atom. As a result, any photon with energy in excess
of the ionization energy can be absorbed by an H− ion, liberating the extra electron; the
remaining energy becomes kinetic energy. Conversely, an electron captured by a hydrogen
atom to form H− will release a photon corresponding to the kinetic energy lost by the
electron together with the ion’s binding energy,

H + e− ! H− + γ .

e-
      color–color

n the  below figure
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Since 0.754 eV corresponds to a photon with a wavelength of 1640 nm, any photon with a
wavelength less than that value can remove an electron from the ion (bound–free opacity).
At longer wavelengths, H− can also contribute to the opacity through free–free absorption.
Consequently, H− ions are an important source of continuum opacity for stars cooler than
F0. However, the H− ions become increasingly ionized at higher temperatures and therefore
make less of a contribution to the continuum opacity. For stars of spectral types B and A,
the photoionization of hydrogen atoms and free–free absorption are the main sources of the
continuum opacity. At the even higher temperatures encountered for O stars, the ionization
of atomic hydrogen means that electron scattering becomes more and more important, with
the photoionization of helium also contributing to the opacity.

Molecules can survive in cooler stellar atmospheres and contribute to the bound–bound
and bound–free opacities; the large number of discrete molecular absorption lines is an
efficient impediment to the flow of photons. Molecules can also be broken apart into their
constituent atoms by the absorption of photons in the process of photodissociation, which
plays an important role in planetary atmospheres.

The total opacity is the sum of the opacities due to all of the preceding sources:

κλ = κλ,bb + κλ,bf + κλ,ff + κes + κH−

(the H− opacity is explicitly included because of its unique and critical contribution to the
opacity in many stellar atmospheres, including our Sun). The total opacity depends not only
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on the wavelength of the light being absorbed but also on the composition, density, and
temperature of the stellar material.14

The Rosseland Mean Opacity

It is often useful to employ an opacity that has been averaged over all wavelengths (or
frequencies) to produce a function that depends only on the composition, density, and
temperature. Although a variety of different schemes have been developed to compute a
wavelength-independent opacity, by far the most commonly used is the Rosseland mean
opacity, often simply referred to as the Rosseland mean.15 This harmonic mean gives
the greatest contribution to the lowest values of opacity. In addition, the Rosseland mean
incorporates a weighting function that depends on the rate at which the blackbody spectrum
varies with temperature Formally, the Rosseland mean opacity is defined as

1
κ

≡

∫ ∞

0

1
κν

∂Bν(T )

∂T
dν

∫ ∞

0

∂Bν(T )

∂T
dν

. (21)

Unfortunately, there is no simple equation that is capable of describing all of the complex
contributions to the opacity by individual spectral lines in bound–bound transitions, and
so an analytic expression for the Rosseland mean cannot be given for these processes.
However, approximation formulae have been developed for both the average bound–free
and free–free opacities:

κbf = 4.34 × 1021 gbf

t
Z(1 + X)

ρ

T 3.5
m2 kg−1 (22)

κ ff = 3.68 × 1018 gff (1 − Z)(1 + X)
ρ

T 3.5
m2 kg−1, (23)

where ρ is the density (in kg m−3) and T is the temperature (in kelvins). X and Z are the
mass fractions, or fractional abundances (by mass), of hydrogen and metals, respectively.16

14The additional dependencies of the opacity on the electron number density, states of excitation and ionization
of the atoms and ions, and other factors can all be calculated from the composition, density, and temperature.
15This wavelength-averaged opacity was introduced in 1924 by the Norwegian astronomer Svein Rosseland
(1894–1985).

1

other constituents are frequently lumped together and referred to as metals. In certain applications, however, it is
necessary to specify the composition in greater detail. In these cases, each species is represented by its own mass
fraction.

6Because the primary components of most stellar gases are hydrogen and helium, all

.
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Together with the mass fraction of helium, Y , their formal definitions are

X ≡ total mass of hydrogen
total mass of gas

Y ≡ total mass of helium
total mass of gas

Z ≡ total mass of metals
total mass of gas

.

(24)

(25)

(26)

Clearly, X + Y + Z = 1.
The Gaunt factors, gbf and gff , are quantum-mechanical correction terms first calcu-

lated by J. A. Gaunt. These Gaunt factors are both ≈ 1 for the visible and ultraviolet
wavelengths of interest in stellar atmospheres. The additional correction factor, t , in the
equation for the bound–free opacity is called the guillotine factor and describes the cutoff
of an atom’s contribution to the opacity after it has been ionized. Typical values of t lie
between 1 and 100.

Both of these formulae have the functional form κ = κ0ρ/T 3.5, where κ0 is approxi-
mately constant for a given composition. The first forms of these expressions were derived
by H. A. Kramers (1894–1952) in 1923 using classical physics and the Rosseland mean.
Any opacity having this density and temperature dependence is referred to as a Kramers
opacity law.

Because the cross section for electron scattering is independent of wavelength, the Rosse-
land mean for this case has the particularly simple form

κes = 0.02(1 + X) m2 kg−1. (27)

An estimate of the contribution to the mean opacity provided by the H− ion may also
be included over the temperature range 3000 K ≤ T ≤ 6000 K and for densities between
10−7 kg m−3 ≤ ρ ≤ 10−2 kg m−3 when X ∼ 0.7 and 0.001 < Z < 0.03 (the values of X

and Z are typical of main-sequence stars). Specifically,

κH− ≈ 7.9 × 10−34(Z/0.02)ρ1/2T 9 m2 kg−1. (28)

The total Rosseland mean opacity, κ , is the average of the sum of the individual contrib-
utors to the opacity:

κ = κbb + κbf + κff + κes + κH− .

Figure 10 shows the results of an extensive computer calculation of the Rosseland mean
opacity from first principles using detailed quantum physics. The calculation was carried
out by Carlos Iglesias and Forrest Rogers for a composition with X = 0.70 and Z = 0.02.17

The values of κ are plotted as a function of the temperature for several densities.

1 A specific mixture of elements known as the Anders–Grevesse abundances were used to calculate the opacities
shown.
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FIGURE 10 Rosseland mean opacity for a composition that is 70% hydrogen, 28% helium, and
2% metals by mass. The curves are labeled by the logarithmic value of the density (log10 ρ in kg m−3).
(Data from Iglesias and Rogers, Ap. J., 464, 943, 1996.)

Considering the details of Fig. 10, first notice that the opacity increases with increasing
density for a given temperature. Next, starting at the left-hand side of the figure, follow
a constant-density plot as it rises steeply with increasing temperature. This reflects the
increase in the number of free electrons produced by the ionization of hydrogen and helium.

temperature of 10,000 K, and neutral helium is ionized at about the same temperature. The
decline of the plot after the peak in the opacity roughly follows a Kramers law, κ ∝ T −3.5,
and is due primarily to the bound–free and free–free absorption of photons. The He II ion
loses its remaining electron at a characteristic temperature of 40,000 K for a wide range
of stellar parameters; the slight increase in the number of free electrons produces a small
“bump” seen near that temperature. Another bump, evident above 105 K, is the result of
the ionization of certain metals, most notably iron. Finally, the plot reaches a flat floor at
the right-hand side of the figure. Electron scattering dominates at the highest temperatures,
when nearly all of the stellar material is ionized and there are few bound electrons available
for bound–bound and bound–free processes. The form of Eq. ( 27) for electron scattering,
with no density or temperature dependence, requires that all of the curves in Fig. 10
converge to the same constant value in the high-temperature limit.

3 RADIATIVE TRANSFER

In an equilibrium, steady-state star, there can be no change in the total energy contained
within any layer of the stellar atmosphere or interior.18 In other words, the mechanisms

1 This is not the case for a star that is not in equilibrium. For instance, pulsating stars periodically absorb or “dam up”
the outward flow of energy, driving the oscillations.

,

The  hydrogen partial ionization zone has a characteristic

8
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involved in absorbing and emitting energy must be precisely in balance throughout the
star. In this section, the competition between the absorption and emission processes will be
described, first in qualitative terms and later in more quantitative detail.

Photon Emission Processes

Any process that adds photons to a beam of light will be called emission. Thus emission
includes the scattering of photons into the beam, as well as the true emission of photons
by electrons making downward atomic transitions. Each of the four primary sources of
opacity listed in Section 2 has an inverse emission process: bound–bound and free–bound
emission, free–free emission (bremsstrahlung), and electron scattering. The simultaneous
and complementary processes of absorption and emission hinder the flow of photons through
the star by redirecting the paths of the photons and redistributing their energy. Thus in a star
there is not a direct flow of photons streaming toward the surface, carrying energy outward
at the speed of light. Instead, the individual photons travel only temporarily with the beam
as they are repeatedly scattered in random directions following their encounters with gas
particles.

The Random Walk

As the photons diffuse upward through the stellar material, they follow a haphazard path
called a random walk. Figure 11 shows a photon that undergoes a net vector displacement
d as the result of making a large number N of randomly directed steps, each of length ℓ
(the mean free path):

d = ℓ1 + ℓ2 + ℓ3 + · · · + ℓN.

Taking the vector dot product of d with itself gives

d · d = ℓ1 · ℓ1 + ℓ1 · ℓ2 + · · · + ℓ1 · ℓN

+ ℓ2 · ℓ1 + ℓ2 · ℓ2 + · · · + ℓ2 · ℓN

+ · · · + ℓN · ℓ1 + ℓN · ℓ2 + · · · + ℓN · ℓN

=
N
∑

i=1

N
∑

j=1

ℓi · ℓj ,

or

d2 = Nℓ2 + ℓ2[cos θ12 + cos θ13 + · · · + cos θ1N

+ cos θ21 + cos θ23 + · · · + cos θ2N

+ · · · + cos θN1 + cos θN2 + · · · + cos θN(N−1)]

= Nℓ2 + ℓ2
N
∑

i=1

N
∑

j=1
j ̸=i

cos θij ,
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FIGURE 11 Displacement d of a random-walking photon.

where θij is the angle between the vectors ℓi and ℓj . For a large number of randomly directed
steps, the sum of all the cosine terms approaches zero. As a result, for a random walk, the
displacement d is related to the size of each step, ℓ, by

d = ℓ
√

N. (29)

Thus the transport of energy through a star by radiation may be extremely inefficient.
As a photon follows its tortuous path to the surface of a star, it takes 100 steps to travel
a distance of 10ℓ; 10,000 steps to travel 100ℓ; and one million steps to travel 1000ℓ.20

Because the optical depth at a point is roughly the number of photon mean free paths from
that point to the surface (as measured along a light ray’s straight path), Eq. ( 29) implies
that the distance to the surface is d = τλℓ = ℓ

√
N . The average number of steps needed for

a photon to travel the distance d before leaving the surface is then

N = τ 2
λ , (30)

for τλ ≫ 1. As might be expected, when τλ ≈ 1, a photon may escape from that level of the
star. A more careful analysis (performed in Section 4) shows that the average level in the
atmosphere from which photons of wavelength λ escape is at a characteristic optical depth
of about τλ = 2/3. Looking into a star at any angle, we always look back to an optical
depth of about τλ = 2/3, as measured straight back along the line of sight. In fact, a star’s
photosphere is defined as the layer from which its visible light originates—that is, where
τλ ≈ 2/3 for wavelengths in the star’s continuum.

The realization that an observer looking vertically down on the surface of a star sees
photons from τλ ≈ 2/3 offers an important insight into the formation of spectral lines.

Strictly speaking, an individual photon does not make the entire journey, but rather, along with being scattered,
photons may be absorbed and re-emitted during the “collisions.”

that another transport process, convection, must take over.
The process of transporting energy by radiation is sometimes so inefficient

19

19

20
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Recalling the definition of optical depth, Eq. (17),

τλ =
∫ s

0
κλρ ds,

we see that if the opacityκλ increases at some wavelength, then the actual distance back along
the ray to the level where τλ = 2/3 decreases for that wavelength. One cannot see as far into
murky material, so an observer will not see as deeply into the star at wavelengths where the
opacity is greater than average (i.e., greater than the continuum opacity). This implies that if
the temperature of the stellar atmosphere decreases outward, then these higher regions of the
atmosphere will be cooler. As a result, the intensity of the radiation at τλ ≈ 2/3 will decline
the most for those wavelengths at which the opacity is greatest, resulting in absorption
lines in the continuous spectrum. Therefore, the temperature must decrease outward for the
formation of absorption lines. This is the analog for stellar atmospheres of Kirchhoff’s law
that a cool, diffuse gas in front of a source of a continuous spectrum produces dark spectral
lines in the continuous spectrum.

Limb Darkening

Another implication of receiving radiation from an optical depth of about two-thirds is
shown in Fig. 12. The line of sight of an observer on Earth viewing the Sun is vertically
downward at the center of the Sun’s disk but makes an increasingly larger angle θ with the
vertical near the edge, or limb, of the Sun. Looking near the limb, the observer will not see
as deeply into the solar atmosphere and will therefore see a lower temperature at an optical
depth of two-thirds (compared to looking at the center of the disk). As a result, the limb of

r1

r2 > r1

Line of sight
toward the star's center

&! = 2/3

&! = 2/3

Line of sight "

FIGURE 12 Limb darkening. The distance traversed within the atmosphere of the star to reach
a specified radial distance r from the star’s center increases along the line of sight of the observer
as θ increases. This implies that to reach a specified optical depth (e.g., τλ = 2/3), the line of sight
terminates at greater distances (and cooler temperatures) from the star’s center as θ increases. Note
that the physical scale of the photosphere has been greatly exaggerated for illustration purposes. The
thickness of a typical photosphere is on the order of 0.1% of the stellar radius.
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the Sun appears darker than its center. This limb darkening has been observed in the
light curves of some eclipsing binaries. More detailed information on limb darkening
may be found later in this section.

The Radiation Pressure Gradient

Considering the meandering nature of a photon’s journey to the surface, it may seem sur-
prising that the energy from the deep interior of the star ever manages to escape into space.
At great depth in the interior of the star, the photon’s mean free path is only a fraction of
a centimeter. After a few scattering encounters, the photon is traveling in a nearly random
direction, hundreds of millions of meters from the surface. This situation is analogous to
the motions of air molecules in a closed room. An individual molecule moves about with
a speed of nearly 500 m s−1, and it collides with other air molecules several billion times
per second. As a result, the molecules are moving in random directions. Because there is no
overall migration of the molecules in a closed room, a person standing in the room feels no
wind. However, opening a window may cause a breeze if a pressure difference is established
between one side of the room and the other. The air in the room responds to this pressure
gradient, producing a net flux of molecules toward the area of lower pressure.

In a star the same mechanism causes a “breeze” of photons to move toward the surface of
the star. Because the temperature in a star decreases outward, the radiation pressure is smaller
at greater distances from the center (cf., Eq. 11 for the blackbody radiation pressure). This
gradient in the radiation pressure produces the slight net movement of photons toward the
surface that carries the radiative flux. As we will discover later in this section, this process
is described by

dPrad

dr
= −κρ

c
Frad. (31)

Thus the transfer of energy by radiation is a subtle process involving the slow upward
diffusion of randomly walking photons, drifting toward the surface in response to minute
differences in the radiation pressure. The description of a “beam” or a “ray” of light is
only a convenient fiction, used to define the direction of motion momentarily shared by the
photons that are continually absorbed and scattered into and out of the beam. Nevertheless,
we will continue to use the language of photons traveling in a beam or ray of light, realizing
that a specific photon is in the beam for only an instant.

4 THE TRANSFER EQUATION

In this section, we will focus on a more thorough examination of the flow of radiation
through a stellar atmosphere.21 We will develop and solve the basic equation of radiative
transfer using several standard assumptions. In addition, we will derive the variation of
temperature with optical depth in a simple model atmosphere before applying it to obtain a
quantitative description of limb darkening.

2 Although the focus of this discussion is on stellar atmospheres, much of the discussion is applicable to other
environments as well, such as light traversing an interstellar gas cloud.

1
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The Emission Coefficient

In the following discussions of beams and light rays, the primary consideration is the net
flow of energy in a given direction, not the specific path taken by individual photons. First,
we will examine the emission process that increases the intensity of a ray of wavelength
λ as it travels through a gas. The increase in intensity dIλ is proportional to both ds, the
distance traveled in the direction of the ray, and ρ, the density of the gas. For pure emission
(no absorption of the radiation),

dIλ = jλρ ds, (32)

where jλ is the emission coefficient of the gas. The emission coefficient, which has units
of m s−3 sr−1, varies with the wavelength of the light.

As a beam of light moves through the gas in a star, its specific intensity, Iλ, changes as
photons traveling with the beam are removed by absorption or scattering out of the beam,
and are replaced by photons emitted from the surrounding stellar material, or scattered
into the beam. Combining Eq. ( 13) for the decrease in intensity due to the absorption of
radiation with Eq. ( 32) for the increase produced by emission gives the general result

dIλ = −κλρIλ ds + jλρ ds. (33)

The ratio of the rates at which the competing processes of emission and absorption occur
determines how rapidly the intensity of the beam changes. This is similar to describing the
flow of traffic on an interstate highway. Imagine following a group of cars as they leave Los
Angeles, traveling north on I-15. Initially, nearly all of the cars on the road have California
license plates. Driving north, the number of cars on the road declines as more individuals
exit than enter the highway. Eventually approaching Las Vegas, the number of cars on the
road increases again, but now the surrounding cars bear Nevada license plates. Continuing
onward, the traffic fluctuates as the license plates eventually change to those of Utah, Idaho,
and Montana. Most of the cars have the plates of the state they are in, with a few cars from
neighboring states and even fewer from more distant locales. At any point along the way,
the number of cars on the road reflects the local population density. Of course, this is to be
expected; the surrounding area is the source of the traffic entering the highway, and the rate
at which the traffic changes is determined by the ratio of the number of entering to exiting
automobiles. This ratio determines how rapidly the cars on the road from elsewhere are
replaced by the cars belonging to the local population. Thus the traffic constantly changes,
always tending to resemble the number and types of automobiles driven by the people living
nearby.

The Source Function and the Transfer Equation

In a stellar atmosphere or interior, the same considerations describe the competition between
the rates at which photons are plucked out of a beam of light by absorption, and introduced
into the beam by emission processes. The ratio of the rates of emission and absorption
determines how rapidly the intensity of the beam of light changes and describes the tendency
of the population of photons in the beam to resemble the local source of photons in the
surrounding stellar material. To introduce the ratio of emission to absorption, we divide

Stellar Atmospheres



Eq. (33) by −κλρ ds:

− 1
κλρ

dIλ

ds
= Iλ − jλ

κλ
.

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, Sλ ≡ jλ/κλ. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.2 The source function, Sλ, has the same
units as the intensity, W m−3 sr−1. Therefore, in terms of the source function,

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).23 According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, Iλ = Sλ. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then dIλ/ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature T . The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, Iλ = Bλ. Furthermore, because the intensity is constant throughout the
box, dIλ/ds = 0, and so Iλ = Sλ. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sλ = Bλ.

As mentioned in Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is a net flow of energy from the center to the surface. Deep in the atmosphere, where τλ ≫ 1
as measured along a vertical ray, a random-walking photon will take at least τ 2

λ steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are jλ and κλ individually.
2 It is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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FIGURE 13 Transformation of the intensity of a light ray traveling through a volume of gas. (a) A
light ray entering a volume of gas. (b) Intensity of the light ray. The horizontal axis has units of κλρs,
the number of optical depths traveled into the gas.

temperature scale height, the photons are effectively confined to a limited volume, a region
of nearly constant temperature. The conditions for local thermodynamic equilibrium (LTE)
are satisfied, and so, as already seen, the source function is equal to the Planck function,
Sλ = Bλ. Making the assumption of LTE in a problem means setting Sλ = Bλ. However,
even in LTE, the intensity of the radiation, Iλ, will not necessarily be equal to Bλ unless
τλ ≫ 1. In summary, saying that Iλ = Bλ is a statement that the radiation field is described
by the Planck function, while Sλ = Bλ describes the physical source of the radiation, jλ/κλ,
as one that produces blackbody radiation.

Example 4.1. To see how the intensity of a light ray tends to become equal to the local
value of the source function, imagine a beam of light of initial intensity Iλ,0 at s = 0 entering
a volume of gas of constant density, ρ, that has a constant opacity, κλ, and a constant source
function, Sλ. Then it is left as an exercise to show that the transfer equation (Eq. 34) may
be easily solved for the intensity of the light as a function of the distance s traveled into the
gas:

Iλ(s) = Iλ,0 e−κλρs + Sλ(1 − e−κλρs). (35)

As shown in Fig. 13 for the case of Sλ = 2Iλ,0, this solution describes the transformation
of the intensity of the light ray from its initial value of Iλ,0 to Sλ, the value of the source
function. The characteristic distance for this change to occur is s = 1/κλρ, which is one
photon mean free path (recall Example 2.2), or one optical depth into the gas.

The Assumption of a Plane-Parallel Atmosphere

Although the transfer equation is the basic tool that describes the passage of light through a
star’s atmosphere, a reader seeing it for the first time may be prone to despair. In this trou-
blesome equation, the intensity of the light must depend on the direction of travel to account
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for the net outward flow of energy. And although absorption and emission coefficients are
the same for light traveling in all directions (implying that the source function is indepen-
dent of direction), the absorption and emission coefficients depend on the temperature and
density in a rather complicated way.

However, if astronomers are to learn anything about the physical conditions in stellar
atmospheres, such as temperature or density, they must know where (at what depth) a
spectral line is formed. A vast amount of effort has therefore been devoted to solving and
understanding the implications of the transfer equation, and several powerful techniques
have been developed that simplify the analysis considerably.

We will begin by rewriting Eq. ( 34) in terms of the optical depth τλ, defined by
Eq. ( 15), resulting in

dIλ

dτλ
= Iλ − Sλ. (36)

Unfortunately, because the optical depth is measured along the path of the light ray, neither
the optical depth nor the distance s in Eq. ( 34) corresponds to a unique geometric depth in
the atmosphere. Consequently, the optical depth must be replaced by a meaningful measure
of position.

To find a suitable replacement, we introduce the first of several standard approximations.
The atmospheres of stars near the main sequence are physically thin compared with the size
of the star, analogous to the skin of an onion. The atmosphere’s radius of curvature is thus
much larger than its thickness, and we may consider the atmosphere as a plane-parallel
slab. As shown in Fig. 14, the z-axis is assumed to be in the vertical direction, with z = 0
at the top of this plane-parallel atmosphere.

Next, a vertical optical depth, τλ,v(z), is defined as

τλ,v(z) ≡
∫ 0

z

κλρ dz. (37)

Comparison with Eq. ( 17) reveals that this is just the initial optical depth of a ray traveling

z Light ray

0

"dz ds

&!,v

&!

FIGURE 14 Plane-parallel stellar atmosphere.
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vertically upward from an initial position (z < 0) to the surface (z = 0) where τλ,v = 0.2

However, a ray that travels upward at an angle θ from the same initial position z has farther
to go through the same layers of the atmosphere in order to reach the surface. Therefore, the
optical depth measured along this ray’s path to the surface, τλ, is greater than the vertical
optical depth, τλ,v(z). Since dz = ds cos θ , the two optical depths are related by

τλ = τλ,v

cos θ
= τλ,v sec θ . (38)

The vertical optical depth is a true vertical coordinate, analogous to z, that increases in
the −z-direction. Its value does not depend on the direction of travel of a light ray, and so
it can be used as a meaningful position coordinate in the transfer equation. Replacing τλ by
τλ,v in Eq. ( 36) results in

cos θ
dIλ

dτλ,v
= Iλ − Sλ. (39)

This form of the transfer equation is usually employed when dealing with the approximation
of a plane-parallel atmosphere.

Of course, the value of the vertical optical depth at a level z is wavelength-dependent
because of the wavelength-dependent opacity in Eq. ( 37). In order to simplify the follow-
ing analysis, and to permit the identification of an atmospheric level with a unique value of
τv , the opacity is assumed to be independent of wavelength (we usually take it to be equal
to the Rosseland mean opacity, κ). A model stellar atmosphere, for which the simplifying
assumption is made that the opacity is independent of wavelength, is called a gray atmo-
sphere, reflecting its indifference to the spectrum of wavelengths. If we write κ instead of
κλ in Eq. ( 37), the vertical optical depth no longer depends on wavelength; we can there-
fore write τv instead of τλ,v in the transfer equation (Eq. 39). The remaining wavelength
dependencies may be removed by integrating the transfer equation over all wavelengths,
using

I =
∫ ∞

0
Iλ dλ and S =

∫ ∞

0
Sλ dλ.

With the preceding changes, the transfer equation appropriate for a plane-parallel gray
atmosphere is

cos θ
dI

dτv
= I − S. (40)

This equation leads to two particularly useful relations between the various quantities
describing the radiation field. First, integrating over all solid angles, and recalling that S

depends only on the local conditions of the gas, independent of direction, we get

d

dτv

∫

I cos θ d# =
∫

I d#− S

∫

d#. (41)

2 Recall that as the light approaches the surface (and the observer on Earth), it is traveling through smaller and
smaller values of the optical depth.

4

4
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Using
∫

d# = 4π together with the definitions of the radiative flux Frad (Eq. 8) and the
mean intensity ⟨I ⟩ (Eq. 3), both integrated over all wavelengths, we find

dFrad

dτv
= 4π(⟨I ⟩ − S).

The second relation is found by first multiplying the transfer equation ( 40) by cos θ
and again integrating over all solid angles:

d

dτv

∫

I cos2 θ d# =
∫

I cos θ d#− S

∫

cos θ d#.

The term on the left is the radiation pressure multiplied by the speed of light (recall Eq. 9).
The first term on the right-hand side is the radiative flux. In spherical coordinates, the second
integral on the right-hand side evaluates to

∫

cos θ d# =
∫ 2π

φ=0

∫ π

θ=0
cos θ sin θ dθ dφ = 0.

Thus

dPrad

dτv
= 1

c
Frad. (42)

center of the star, this equation is

dPrad

dr
= −κρ

c
Frad,

which is just Eq. ( 31). As mentioned previously, this result can be interpreted as saying
that the net radiative flux is driven by differences in the radiation pressure, with a “photon
wind” blowing from high to low Prad.

In an equilibrium stellar atmosphere, every process of absorption is balanced by an
inverse process of emission; no net energy is subtracted from or added to the radiation field.
In a plane-parallel atmosphere, this means that the radiative flux must have the same value
at every level of the atmosphere, including its surface.

Frad = constant = Fsurf = σT 4
e . (43)

Because the flux is a constant, dFrad/dτv = 0, so Eq. ( 4) implies that the mean intensity
must be equal to the source function,

⟨I ⟩ = S. (44)

Equation ( 42) may now be integrated to find the radiation pressure as a function of the
vertical optical depth:

Prad = 1
c

Fradτv + C, (45)

where C is the constant of integration.

In a spherical coordinate system with its origin at the
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The Eddington Approximation

If we knew how the radiation pressure varied with temperature for the general case (and
not just for blackbody radiation), we could use Eq. ( 45) to determine the temperature
structure of our plane-parallel gray atmosphere. We would have to assume a description of
the angular distribution of the intensity. In an approximation that we owe to the brilliant
English physicist Sir Arthur Stanley Eddington (1882–1944), the intensity of the radiation
field is assigned one value, Iout, in the +z-direction (outward) and another value, Iin, in the
−z-direction (inward); see Fig. 15. Both Iout and Iin vary with depth in the atmosphere,
and in particular, Iin = 0 at the top of the atmosphere, where τv = 0. It is left as an exercise
to show that with this Eddington approximation,26 the mean intensity, radiative flux, and
radiation pressure are given by

⟨I ⟩ = 1
2

(Iout + Iin) (46)

Frad = π (Iout − Iin) (47)

Prad = 2π
3c

(Iout + Iin) = 4π
3c

⟨I ⟩. (48)

[Note that because the flux is a constant, Eq. ( 47) shows that there is a constant difference
between Iout and Iin at any level of the atmosphere.]

Inserting the last relation for the radiation pressure into Eq. ( 45), we find that

4π
3c

⟨I ⟩ = 1
c

Fradτv + C. (49)

The constant C can be determined by evaluating Eqs. ( 46) and ( 47) at the top of the
atmosphere, where τv = 0 and Iin = 0. The result is that ⟨I (τv = 0)⟩ = Frad/2π . Inserting

Iout

Iin

z

FIGURE 15 The Eddington approximation.

26Actually, there are several more mathematical ways of implementing the Eddington approximation, but they are
all equivalent.
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this into Eq. ( 49) with τv = 0 shows that

C = 2
3c

Frad.

With this value of C, Eq. ( 49) becomes

4π
3

⟨I ⟩ = Frad

(

τv + 2
3

)

. (50)

Of course, we already know that the radiative flux is a constant, given by Eq. ( 43). Using
this results in an expression for the mean intensity as a function of the vertical optical depth:

⟨I ⟩ = 3σ
4π

T 4
e

(

τv + 2
3

)

. (51)

We may now derive the final approximation to determine the temperature structure of our
model atmosphere. If the atmosphere is assumed to be in local thermodynamic equilibrium,
another expression for the mean intensity can be found and combined with Eq. ( 51). By the
definition of LTE, the source function is equal to the Planck function, Sλ = Bλ. Integrating
Bλ over all wavelengths shows that for LTE,

S = B = σT 4

π
,

and so, from Eq. ( 44),

⟨I ⟩ = σT 4

π
. (52)

Equating expressions ( 51) and ( 52) finally results in the variation of the temperature with
vertical optical depth in a plane-parallel gray atmosphere in LTE, assuming the Eddington
approximation:27

T 4 = 3
4

T 4
e

(

τv + 2
3

)

. (53)

This relation is well worth the effort of its derivation, because it reveals some important
aspects of real stellar atmospheres. First, notice that T = Te at τv = 2/3, not at τv = 0.

optical depth of τv ≈ 2/3, averaged over the disk of the star

27You are encouraged to refer to Mihalas, Chapter 3, for a more detailed discussion of the gray atmosphere, includ-
ing a more sophisticated development of the relation T 4 = 3

4 T 4
e [τv + q(τv)], where the Eddington approximation

[q(τv) ≡ 2
3 ] is a special case.

.
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Thus the “surface” of a star, which by definition has temperature Te [recall the  Stefan–
Boltzmann equation], is not at the top of the atmosphere, where  = 0, but deeper 
down, where  = 2/3. This result may be thought of as the average point of origin of the 
 observed photons. Although this result came at the end of a string of assumptions, it can 
be generalized to the statement that when looking at a star, we see down to a vertical

τv

τv



Limb Darkening Revisited

We now move on to take a closer look at limb darkening (recall Fig. 12). A comparison
of theory and observations of limb darkening can provide valuable information about how
the source function varies with depth in a star’s atmosphere. To see how this is done, we
first solve the general form of the transfer equation (Eq. 36),

dIλ

dτλ
= Iλ − Sλ,

at least formally, rather than by making assumptions. (The inevitable assumptions will be
required soon enough.) Multiplying both sides by e−τλ , we have

dIλ

dτλ
e−τλ − Iλe

−τλ = −Sλ e−τλ

d

dτλ
(e−τλIλ) = −Sλ e−τλ

d(e−τλIλ) = −Sλ e−τλ dτλ.

If we integrate from the initial position of the ray, at optical depth τλ,0 where Iλ = Iλ,0,
to the top of the atmosphere, at optical depth τλ = 0 where Iλ = Iλ(0), the result for the
emergent intensity at the top of the atmosphere, Iλ(0), is

Iλ(0) = Iλ,0e
−τλ,0 −

∫ 0

τλ,0

Sλe
−τλ dτλ. (54)

This equation has a very straightforward interpretation. The emergent intensity on the left
is the sum of two positive contributions. The first term on the right is the initial intensity
of the ray, reduced by the effects of absorption along the path to the surface. The second
term, also positive,28 represents the emission at every point along the path, attenuated by
the absorption between the point of emission and the surface.

We now return to the geometry of a plane-parallel atmosphere and the vertical optical
depth, τv . However, we do not assume a gray atmosphere, LTE, or make the Eddington
approximation. As shown in Fig. 16, the problem of limb darkening amounts to determin-
ing the emergent intensity Iλ(0) as a function of the angle θ . Equation ( 54), the formal
solution to the transfer equation, is easily converted to this situation by using Eq. ( 38) to
replace τλ with τλ,v sec θ (the vertical optical depth) to get

I (0) = I0e
−τv,0 sec θ −

∫ 0

τv,0 sec θ
S sec θ e−τv sec θ dτv.

Although both I and τv depend on wavelength, the λ subscript has been dropped to simplify
the notation; the approximation of a gray atmosphere has not been made. To include the
contributions to the emergent intensity from all layers of the atmosphere, we take the value

28Remember that the optical depth, measured along the ray’s path, decreases in the direction of travel, so dτλ is
negative.
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FIGURE 16 Finding I (0) as a function of θ for limb darkening in plane-parallel geometry.

of the initial position of the rays to be at τv,0 = ∞. Then the first term on the right-hand
side vanishes, leaving

I (0) =
∫ ∞

0
S sec θ e−τv sec θ dτv. (55)

If we knew how the source function depends on the vertical optical depth, this equation
could be integrated to find the emergent intensity as a function of the direction of travel,
θ , of the ray. Although the form of the source function is not known, a good guess will be
enough to estimate I (0). Suppose that the source function has the form

S = a + bτv, (56)

where a and b are wavelength-dependent numbers to be determined. Inserting this into
Eq. ( 55) and integrating (the details are left as an exercise) show that the emergent intensity
for this source function is

Iλ(0) = aλ + bλ cos θ, (57)

where the λ subscripts have been restored to the appropriate quantities to emphasize their
wavelength dependence. By making careful measurements of the variation in the specific
intensity across the disk of the Sun, the values of aλ and bλ for the solar source function
can be determined for a range of wavelengths. For example, for a wavelength of 501 nm,
Böhm-Vitense (1989) supplies values of a501 = 1.04 × 1013 W m−3 sr−1 and b501 = 3.52 ×
1013 W m−3 sr−1.

Example 4.2. Solar limb darkening provides an opportunity to test the accuracy of
our “plane-parallel gray atmosphere in LTE using the Eddington approximation.” In the
preceding discussion of an equilibrium gray atmosphere, it was found that the mean intensity
is equal to the source function,

⟨I ⟩ = S

continued
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(Eq. 44). Then, with the additional assumptions of the Eddington approximation and
LTE, Eqs. ( 52) and ( 53) can be used to determine the mean intensity and thus the source
function:

S = ⟨I ⟩ = σT 4

π
= 3σ

4π
T 4

e

(

τv + 2
3

)

.

Taking the source function to have the form of Eq. ( 56), S = a + bτv , as used earlier for
limb darkening (after integrating over all wavelengths), the values of the coefficients are

a = σ

2π
T 4

e and b = 3σ
4π

T 4
e .

The emergent intensity then will have the form of Eq. ( 57), I (0) = a + b cos θ (again
after integrating over all wavelengths). The ratio of the emergent intensity at angle θ , I (θ),
to that at the center of the star, I (θ = 0), is thus

I (θ)

I (θ = 0)
= a + b cos θ

a + b
= 2

5
+ 3

5
cos θ . (58)

We can compare the results of this calculation with observations of solar limb darken-
ing in integrated light (made by summing over all wavelengths). Figure 17 shows both
the observed values of I (θ)/I (θ = 0) and the values from Eq. ( 58). The agreement is
remarkably good, despite our numerous approximations. However, be forewarned that the
agreement is much worse for observations made at a given wavelength (see Böhm-Vitense,
1989) as a consequence of wavelength-dependent opacity effects such as line blanketing.
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FIGURE 17 A theoretical Eddington approximation of solar limb darkening for light integrated
over all wavelengths. The dots are observational data for the Sun. Although a good fit, the Eddington
approximation is not perfect, which implies that a more detailed model must be developed.
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5 THE PROFILES OF SPECTRAL LINES

We now have a formidable theoretical arsenal to bring to bear on the analysis of spectral
lines. The shape of an individual spectral line contains a wealth of information about the
environment in which it was formed.

Equivalent Widths

Figure 18 shows a graph of the radiant flux, Fλ, as a function of wavelength for a typical
absorption line. In the figure, Fλ is expressed as a fraction of Fc, the value of the flux
from the continuous spectrum outside the spectral line. Near the central wavelength, λ0, is
the core of the line, and the sides sweeping upward to the continuum are the line’s wings.
Individual lines may be narrow or broad, shallow or deep. The quantity (Fc − Fλ)/Fc is
referred to as the depth of the line. The strength of a spectral line is measured in terms of
its equivalent width. The equivalent width W of a spectral line is defined as the width of a
box (shaded in Fig. 18) reaching up to the continuum that has the same area as the spectral
line. That is,

W =
∫

Fc − Fλ

Fc

dλ, (59)

where the integral is taken from one side of the line to the other. The equivalent width of a
line in the visible spectrum, shaded in Fig. 18, is usually on the order of 0.01 nm. Another
measure of the width of a spectral line is the change in wavelength from one side of the
line to the other, where its depth (Fc − Fλ)/(Fc − Fλ0) = 1/2; this is called the full width
at half-maximum and will be denoted by (-λ)1/2.

The spectral line shown in Fig. 18 is termed optically thin because there is no wave-
length at which the radiant flux has been completely blocked. The opacity κλ of the stellar

W
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FIGURE 18 The profile of a typical spectral line.
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Processes That Broaden Spectral Lines

Three main processes are responsible for the broadening of spectral lines. Each of these
mechanisms produces its own distinctive line shape or line profile.

1. Natural broadening. Spectral lines cannot be infinitely sharp, even for motionless,

only a brief instant,-t , the orbital’s energy, E, cannot have a precise value. Thus the
uncertainty in the energy, -E, of the orbital is approximately

-E ≈ !

-t
.

(The electron’s lifetime in the ground state may be taken as infinite, so in that case
-E = 0.) Electrons can make transitions from and to anywhere within these “fuzzy”
energy levels, producing an uncertainty in the wavelength of the photon absorbed or
emitted in a transition. Using the following equation for the energy of a photon,
Ephoton = hc/λ, we find that the uncertainty in the photon’s wavelength has a
magnitude of roughly

-λ ≈ λ2

2πc

(

1
-ti

+ 1
-tf

)

, (60)

where -ti is the lifetime of the electron in its initial state and -tf is the lifetime in
the final state. (The proof is left as a problem.)

Example 5.1. The lifetime of an electron in the first and second excited states of
hydrogen is about -t = 10−8 s. The natural broadening of the Hα line of hydrogen,
λ = 656.3 nm, is then

-λ ≈ 4.57 × 10−14 m = 4.57 × 10−5 nm.

A more involved calculation shows that the full width at half-maximum of the
line profile for natural broadening is

(-λ)1/2 = λ2

πc

1
-t0

, (61)
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material is greatest at the wavelength  at the line’s center and decreases moving into the 
wings. This means that the center of the line is formed at higher (and cooler) regions of the 
stellar atmosphere. Moving into the wings from , the line formation occurs at progres-
sively deeper (and hotter) layers of the atmosphere, until it merges with the continuum-
producing region at an optical depth of 2/3.

λ0

λ0

isolated atoms. According to Heisenberg’s uncertainty principle, as the time 
 available for an energy measurement decreases, the inherent uncertainty of the  
result increases. Because an electron in an excited state occupies its orbital for



where -t0 is the average waiting time for a specific transition to occur. This results
in a typical value of

(-λ)1/2 ≃ 2.4 × 10−5 nm,

in good agreement with the preceding estimate.
2. Doppler broadening. In thermal equilibrium, the atoms in a gas, each of mass m,

are moving randomly about with a distribution of speeds that is described by the
Maxwell–Boltzmann distribution function, with the most probable speed given by
vmp = √

2kT /m. The wavelengths of the light absorbed or emitted by the atoms in the
gas are Doppler-shifted according to (nonrelativistic) -λ/λ = ± |vr |/c. Thus the
width of a spectral line due to Doppler broadening should be approximately

-λ ≈ 2λ
c

√

2kT

m
.

Example 5.2. For hydrogen atoms in the Sun’s photosphere (T = 5777 K), the
Doppler broadening of the Hα line should be about

-λ ≈ 0.0427 nm,

roughly 1000 times greater than for natural broadening.

Amore in-depth analysis, taking into account the different directions of the atoms’
motions with respect to one another and to the line of sight of the observer, shows
that the full width at half-maximum of the line profile for Doppler broadening is

(-λ)1/2 = 2λ
c

√

2kT ln 2
m

. (62)

Although the line profile for Doppler broadening is much wider at half-maximum
than for natural broadening, the line depth for Doppler broadening decreases expo-
nentially as the wavelength moves away from the central wavelength λ0. This rapid
decline is due to the high-speed exponential “tail” of the Maxwell–Boltzmann veloc-
ity distribution and is a much faster falloff in strength than for natural broadening.

Doppler shifts caused by the large-scale turbulent motion of large masses of gas (as
opposed to the random motion of the individual atoms) can also be accommodated by
Eq. ( 62) if the distribution of turbulent velocities follows the Maxwell–Boltzmann
distribution. In that case,

(-λ)1/2 = 2λ
c

√

(

2kT

m
+ v2

turb

)

ln 2, (63)

where vturb is the most probable turbulent speed. The effect of turbulence on line
profiles is particularly important in the atmospheres of giant and supergiant stars. In

,

,
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fact, the existence of turbulence in the atmospheres of these stars was first deduced
from the inordinately large effect of Doppler broadening on their spectra.

Other sources of Doppler broadening involve orderly, coherent mass motions,
such as stellar rotation, pulsation, and mass loss. These phenomena can have a sub-
stantial effect on the shape and width of the line profiles but cannot be combined
with the results of Doppler broadening produced by random thermal motions obey-
ing the Maxwell–Boltzmann distribution.

3. Pressure (and collisional) broadening. The orbitals of an atom can be perturbed
in a collision with a neutral atom or by a close encounter involving the electric field
of an ion. The results of individual collisions are called collisional broadening, and
the statistical effects of the electric fields of large numbers of closely passing ions
is termed pressure broadening; however, in the following discussion, both of these
effects will be collectively referred to as pressure broadening. In either case, the out-
come depends on the average time between collisions or encounters with other atoms
and ions.

Calculating the precise width and shape of a pressure-broadened line is quite com-
plicated. Atoms and ions of the same or different elements, as well as free electrons,
are involved in these collisions and close encounters. The general shape of the line,
however, is like that found for natural broadening, Eq. ( 61), and the line profile
shared by natural and pressure broadening is sometimes referred to as a damping
profile (also known as a Lorentz profile), so named because the shape is characteristic
of the spectrum of radiation emitted by an electric charge undergoing damped simple
harmonic motion. The values of the full width at half-maximum for natural and pres-
sure broadening usually prove to be comparable, although the pressure profile can at
times be more than an order of magnitude wider.

An estimate of pressure broadening due to collisions with atoms of a single ele-
ment can be obtained by taking the value of -t0 in Eq. ( 61) to be the average time
between collisions. This time is approximately equal to the mean free path between
collisions divided by the average speed of the atoms. Using Eq. ( 12) for the mean
free path and for the speed, we find that

-t0 ≈ ℓ

v
= 1

nσ
√

2kT /m
,

where m is the mass of an atom, σ is its collision cross section, and n is the number
density of the atoms. Thus the width of the spectral line due to pressure broadening
is on the order of

-λ = λ2

c

1
π-t0

≈ λ2

c

nσ

π

√

2kT

m
. (64)

Note that the width of the line is proportional to the number density n of the atoms.
The physical reason for the Morgan–Keenan luminosity classes is now clear. The

narrower lines observed for the more luminous giant and supergiant stars are due to
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the lower number densities in their extended atmospheres. Pressure broadening (with
the width of the line profile proportional to n) broadens the lines formed in the denser
atmospheres of main-sequence stars, where collisions occur more frequently.

Example 5.3. Again, consider the hydrogen atoms in the Sun’s photosphere,
where the temperature is 5777 K and the number density of hydrogen atoms is about
1.5 × 1023 m−3. Then the pressure broadening of the Hα line should be roughly

-λ ≈ 2.36 × 10−5 nm,

which is comparable to the result for natural broadening found earlier. However, if
the number density of the atoms in the atmosphere of a star is larger, the line width
will be larger as well—more than an order of magnitude larger in some cases.

The Voigt Profile

The total line profile, called a Voigt profile, is due to the contributions of both the Doppler
and damping profiles. The wider line profile for Doppler broadening dominates near the
central wavelength λ0. Farther from λ0, however, the exponential decrease in the line depth
for Doppler broadening means that there is a transition to a damping profile in the wings at
a distance of about 1.8 times the Doppler value of (-λ)1/2 from the center of the line. Thus
line profiles tend to have Doppler cores and damping wings. Figure 19 schematically
shows the Doppler and damping line profiles.
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FIGURE 19 Schematic damping and Doppler line profiles, scaled so they have the same equiv-
alent width.
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Example 5.4.

of τλ = 2/3. The forest of metallic lines (which are already weakened by the low metal
abundance of the subdwarfs) appears even weaker against the brighter continuum. Thus,
as a result of an under-abundance of metals, the spectrum of a subdwarf appears to be that
of a hotter and brighter star of earlier spectral type with less prominent metal lines

This is why it is more accurate to say that these stars are displaced to the left of
the main sequence, toward higher temperatures, rather than one magnitude below the main
sequence.

The simplest model used for calculating a line profile assumes that the star’s photosphere
acts as a source of blackbody radiation and that the atoms above the photosphere remove
photons from this continuous spectrum to form absorption lines. Although this Schuster–
Schwarzschild model is inconsistent with the idea that photons of wavelength λ originate
at an optical depth of τλ = 2/3, it is still a useful approximation. In order to carry out
the calculation, values for the temperature, density, and composition must be adopted for
the region above the photosphere where the line is formed. The temperature and density
determine the importance of Doppler and pressure broadening and are also used in the
Boltzmann and Saha equations.

The calculation of a spectral line depends not only on the abundance of the element
forming the line but also on the quantum-mechanical details of how atoms absorb photons.
Let N be the number of atoms of a certain element lying above a unit area of the photosphere.
N is a column density and has units of m−2. (In other words, suppose a hollow tube with
a cross section of 1 m2 was stretched from the observer to the photosphere; the tube would
then contain N atoms of the specified type.) To find the number of absorbing atoms per unit
area, Na , that have electrons in the proper orbital for absorbing a photon at the wavelength of
the spectral line, the temperature and density are used in the Boltzmann and Saha equations
to calculate the atomic states of excitation and ionization. Our goal is to determine the value
of Na by comparing the calculated and observed line profiles.

This task is complicated by the fact that not all transitions between atomic orbitals are
equally likely. For example, an electron initially in the n = 2 orbital of hydrogen is about
five times more likely to absorb an Hα photon and make a transition to the n = 3 orbital
than it is to absorb an Hβ photon and jump to the n = 4 orbital. The relative probabilities
of an electron making a transition from the same initial orbital are given by the f -values
or oscillator strengths for that orbital. For hydrogen, f = 0.637 for the Hα transition and
f = 0.119 for Hβ. The oscillator strengths may be calculated numerically or measured in
the laboratory, and they are defined so that the f -values for transitions from the same initial

.
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Consider the subdwarfs of luminosity class VI or “sd,” which reside to 
the left of the main sequence The spectra of these subdwarfs show that they are defi-
cient in the atoms of metals (elements heavier than helium). Because ionized met-
als are an important source of electrons in stellar atmospheres, the electron number 
density is reduced. Fewer electrons with which ions may recombine means that a 
higher degree of ionization for all atoms can be achieved at the same temperature. 
Specifically, this reduces the number of H− ions in the atmosphere by ionizing them, 
thereby diluting this dominant source of continuum opacity. As a consequence of a low-
er opacity, we can see longer distances into these stars before reaching an optical depth

.
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FIGURE 20 Voigt profiles of the K line of Ca II. The shallowest line is produced by Na =
3.4 × 1015 ions m−2, and the ions are ten times more abundant for each successively broader line.
(Adapted from Novotny, Introduction to Stellar Atmospheres and Interiors, Oxford University Press,
New York, 1973.)

orbital add up to the number of electrons in the atom or ion. Thus the oscillator strength is
the effective number of electrons per atom participating in a transition, and so multiplying
the number of absorbing atoms per unit area by the f -value gives the number of atoms
lying above each square meter of the photosphere that are actively involved in producing
a given spectral line, f Na . Figure 20 shows the Voigt profiles of the K line of Ca II
(λ = 393.3 nm) for various values of the number of absorbing calcium ions.

The Curve of Growth

The curve of growth is an important tool that astronomers use to determine the value of
Na and thus the abundances of elements in stellar atmospheres. As seen in Fig. 20, the
equivalent width, W , of the line varies with Na . A curve of growth, shown in Fig. 21,
is a logarithmic graph of the equivalent width, W , as a function of the number of absorb-
ing atoms, Na . To begin with, imagine that a specific element is not present in a stellar
atmosphere. As some of that element is introduced, a weak absorption line appears that
is initially optically thin. If the number of the absorbing atoms is doubled, twice as much
light is removed, and the equivalent width of the line is twice as great. So W ∝ Na , and the
curve of growth is initially linear with ln Na . As the number of absorbing atoms continues
to increase, the center of the line becomes optically thick as the maximum amount of flux
at the line’s center is absorbed.29 With the addition of still more atoms, the line bottoms
out and becomes saturated. The wings of the line, which are still optically thin, continue to
deepen. This occurs with relatively little change in the line’s equivalent width and produces
a flattening on the curve of growth where W ∝ √

ln Na . Increasing the number of absorbing
atoms still further increases the width of the pressure-broadening profile [recall Eq. ( 64)],

29The zero flux at the center of the line shown in Fig. 20 is a peculiarity of the Schuster–Schwarzschild model.
Actually, there is always some flux received at the central wavelength, λ0, even for very strong, optically thick
lines. As a rule, the flux at any wavelength cannot fall below Fλ = πSλ(τλ = 2/3), the value of the source function
at an optical depth of 2/3.
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FIGURE 21 The curve of growth for the K line of Ca II. As Na increases, the functional depen-
dence of the equivalent width (W ) changes. At various positions along the curve of growth, W is
proportional to the functional forms indicated. (Figure adapted from Aller, The Atmospheres of the
Sun and Stars, Ronald Press, New York, 1963.)

enabling it to contribute to the wings of the line. The equivalent width grows more rapidly,
although not as steeply as at first, with approximately W ∝ √

Na for the total line profile.
Using the curve of growth and a measured equivalent width, we can obtain the number of
absorbing atoms. The Boltzmann and Saha equations are then used to convert this value
into the total number of atoms of that element lying above the photosphere.

To reduce the errors involved in using a single spectral line, it is advantageous to locate,
on a single curve of growth, the positions of the equivalent widths of several lines formed by
transitions from the same initial orbital.30 This can be accomplished by plotting log10(W/λ)

on the vertical axis and log10[f Na(λ/500 nm)] on the horizontal axis. This scaling results
in a general curve of growth that can be used for several lines. Figure 22 shows a general
curve of growth for the Sun. The use of such a curve of growth is best illustrated by an
example.

Example 5.5. We will use Fig. 22 to find the number of sodium atoms above each
square meter of the Sun’s photosphere from measurements of the 330.238-nm and 588.997-
nm absorption lines of sodium (Table 1). Values of T = 5800 K and Pe = 1 N m−2 were
used for the temperature and electron pressure, respectively, to construct this curve of growth
and will be adopted in the calculations that follow.

Both of these lines are produced when an electron makes an upward transition from the
ground state orbital of the neutral Na I atom, and so these lines have the same value of Na ,

30This is just one of several possible ways of scaling the curve of growth. The assumptions used to obtain such a
scaling are not valid for all broad lines (such as hydrogen) and may lead to inaccurate results.
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FIGURE 22 A general curve of growth for the Sun. The arrows refer to the data used in Exam-
ple 5.5. (Figure adapted fromAller, Atoms, Stars, and Nebulae, Revised Edition, Harvard University
Press, Cambridge, MA, 1971.)

TABLE 1 Data for Solar Sodium Lines. (From Aller, Atoms, Stars, and Nebulae, Revised
Edition, Harvard University Press, Cambridge, MA, 1971.)

λ (nm) W (nm) f log10(W/λ) log10[f (λ/500 nm)]
330.238 0.0088 0.0214 −4.58 −1.85
588.997 0.0730 0.645 −3.90 −0.12

the number of absorbing sodium atoms per unit area above the continuum-forming layer of
the photosphere. This number can be found using the values of log10(W/λ) with the general
curve of growth, Fig. 22, to obtain a value of log10[f Na(λ/500 nm)] for each line. The
results are

log10

(

f Naλ

500 nm

)

= 17.20 for the 330.238 nm line

= 18.83 for the 588.997 nm line.

To obtain the value of the number of absorbing atoms per unit area, Na , we use the measured
values of log10[f (λ/500 nm)] together with

log10 Na = log10

(

f Naλ

500 nm

)

− log10

(

f λ

500 nm

)

,

to find

log10 Na = 17.15 − (−1.85) = 19.00 for the 330.238 nm line
continued
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and

log10 Na = 18.80 − (−0.12) = 18.92 for the 588.997 nm line.

The average value of log10 Na is 18.96; thus there are about 1019 Na I atoms in the ground
state per square meter of the photosphere.

e−(Eb−Ea)/kT = e−hc/λkT

= 5.45 × 10−4 for the 330.238 nm line

= 1.48 × 10−2 for the 588.997 nm line,

so nearly all of the neutral Na I atoms are in the ground state.
All that remains is to determine the total number of sodium atoms per unit area in all

stages of ionization. If there are NI = 1019 neutral sodium atoms per square meter, then the
number of singly ionized atoms, NII, comes from the Saha equation:

NII

NI
= 2kT ZII

PeZI

(

2πmekT

h2

)3/2

e−χI/kT .

Using ZI = 2.4 and ZII = 1.0 for the partition functions andχI = 5.14 eV for the ionization
energy of neutral sodium leads to NII/NI = 2.43 × 103. There are about 2430 singly ionized
sodium atoms for every neutral sodium atom in the Sun’s photosphere,31 so the total number
of sodium atoms per unit area above the photosphere is about

N = 2430NI = 2.43 × 1022 m−2.

The mass of a sodium atom is 3.82 × 10−26 kg, so the mass of sodium atoms above each
square meter of the photosphere is roughly 9.3 × 10−4 kg m−2. (A more detailed analysis
leads to a slightly lower value of 5.4 × 10−4 kg m−2.) For comparison, the mass of hydrogen
atoms per unit area is about 11 kg m−2.

Thus the number of absorbing atoms can be determined by comparing the equivalent
widths measured for different absorption lines produced by atoms or ions initially in the same
state (and so having the same column density in the stellar atmosphere) with a theoretical
curve of growth. A curve-of-growth analysis can also be applied to lines originating from
atoms or ions in different initial states; then applying the Boltzmann equation to the relative
numbers of atoms and ions in these different states of excitation allows the excitation
temperature to be calculated. Similarly, it is possible to use the Saha equation to find either
the electron pressure or the ionization temperature (if the other is known) in the atmosphere
from the relative numbers of atoms at various stages of ionization.

31The ionization energy for Na II is 47.3 eV. This is sufficiently large to guarantee that NIII ≪ NII, so higher states
of ionization can be neglected.
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To find the total number of sodium atoms, the Boltzmann and Saha equations must 
be used. The difference in energy between the final and initial states [Eb − Ea] is just the 
 energy of the emitted photon. The exponential term in the Boltzmann equation is



Computer Modeling of Stellar Atmospheres

The ultimate refinement in the analysis of stellar atmospheres is the construction of a model
atmosphere on a computer. Each atmospheric layer is involved in the formation of line
profiles and contributes to the spectrum observed for the star. All of the ingredients of
the preceding discussion, plus the equations of hydrostatic equilibrium, thermodynamics,
statistical and quantum mechanics, and the transport of energy by radiation and convection,
are combined with extensive libraries of opacities to calculate how the temperature, pressure,
and density vary with depth below the surface. These models not only provide details
regarding line profiles; they also provide information about such fundamental properties
as the effective temperature and surface gravity of the star. Only when the variables of
the model have been “fine-tuned” to obtain good agreement with the observations can
astronomers finally claim to have decoded the vast amount of information carried in the
light from a star.

This basic procedure has led astronomers to an understanding of the abundances of the
elements in the Sun (see Table 2) and other stars. Hydrogen and helium are by far the
most common elements, followed by oxygen, carbon, and nitrogen; for every 1012 atoms
of hydrogen, there are 1011 atoms of helium and about 109 atoms of oxygen. These figures
are in very good agreement with abundances obtained from meteorites, giving astronomers

TABLE 2 The Most Abundant Elements in the Solar Photosphere. The relative abundance of an
element is given by log10(Nel/NH) + 12. (Data from Grevesse and Sauval, Space Science Reviews,
85, 161, 1998.)

Atomic Log Relative
Element Number Abundance
Hydrogen 1 12.00
Helium 2 10.93 ± 0.004
Oxygen 8 8.83 ± 0.06
Carbon 6 8.52 ± 0.06
Neon 10 8.08 ± 0.06
Nitrogen 7 7.92 ± 0.06
Magnesium 12 7.58 ± 0.05
Silicon 14 7.55 ± 0.05
Iron 26 7.50 ± 0.05
Sulfur 16 7.33 ± 0.11
Aluminum 13 6.47 ± 0.07
Argon 18 6.40 ± 0.06
Calcium 20 6.36 ± 0.02
Sodium 11 6.33 ± 0.03
Nickel 28 6.25 ± 0.04

Stellar Atmospheres



confidence in their results.32 This knowledge of the basic ingredients of the universe provides
invaluable observational tests and constraints for some of the most fundamental theories
in astronomy: the nucleosynthesis of light elements as a result of stellar evolution, the pro-
duction of heavier elements by supernovae, and the Big Bang that produced the primordial
hydrogen and helium that started it all.
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PROBLEM SET

1 Evaluate the energy of the blackbody photons inside your eye. Compare this with the visible
energy inside your eye while looking at a 100-W light bulb that is 1 m away. You can assume that
the light bulb is 100% efficient, although in reality it converts only a few percent of its 100 watts
into visible photons. Take your eye to be a hollow sphere of radius 1.5 cm at a temperature of
37◦C. The area of the eye’s pupil is about 0.1 cm2. Why is it dark when you close your eyes?

2 (a) Find an expression for nλ dλ, the number density of blackbody photons (the number of
blackbody photons per m3) with a wavelength between λ and λ+ dλ.

(b) Find the total number of photons inside a kitchen oven set at 400◦F (477 K), assuming a
volume of 0.5 m3.

3 (a) Use the results of Problem 2 above to find the total number density, n,of blackbody photons of
all wavelengths. Also show that the average energy per photon, u/n, is

u

n
= π 4kT

15(2.404)
= 2.70kT . (65)

(b) Find the average energy per blackbody photon at the center of the Sun, where T = 1.57 ×
107 K, and in the solar photosphere, where T = 5777 K. Express your answers in units of
electron volts (eV).

4 Derive Eq. (11) for the blackbody radiation pressure.

5 Consider a spherical blackbody of radius R and temperature T . By integrating Eq. ( 8) for the
radiative flux with Iλ = Bλ over all outward directions, derive the Stefan–Boltzmann equation
in the form of (You will also have to integrate over all
surface area of the sphere.)

6 Using the root-mean-square speed, vrms, estimate the mean free path of the nitrogen molecules
in your classroom at room temperature (300 K). What is the average time between collisions?
Take the radius of a nitrogen molecule to be 0.1 nm and the density of air to be 1.2 kg m−3.
A nitrogen molecule contains 28 nucleons (protons and neutrons).

7 Calculate how far you could see through Earth’s atmosphere if it had the opacity of the solar
photosphere. Use the value for the Sun’s opacity from Example 2.2 from  Stellar Atmospheres

density of Earth’s atmosphere.

Stellar Atmospheres

Prad = 4π
3c

∫ ∞

0
Bλ(T ) dλ = 4σT 4

3c
= 1

3
aT 4 = 1

3
u. (11)

Fλ dλ =
∫

Iλ dλ cos θ d# =
∫ 2π

φ=0

∫ π

θ=0
Iλ dλ cos θ sin θ dθ dφ. (8)

L = 4πR2σT 4
e . wavelengths and

and 1.2 kg m−3 for the

From Chapter 9 of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007

8 In Example 2.3, from  Stellar Atmospheres  suppose that only two
available, made at angles θ1 and θ2.

measurements of the
specific intensity, I1 and I2 , are Determine expressions

by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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(b) Calculate the average time it would take for the photon to escape from the Sun if this mean
free path remained constant for the photon’s journey to the surface. (Ignore the fact that
identifiable photons are constantly destroyed and created through absorption, scattering,
and emission.)

12 If the temperature of a star’s atmosphere is increasing outward, what type of spectral lines would
you expect to find in the star’s spectrum at those wavelengths where the opacity is greatest?

13 Consider a large hollow spherical shell of hot gas surrounding a star. Under what circumstances
would you see the shell as a glowing ring around the star? What can you say about the optical
thickness of the shell?

14 Verify that the emission coefficient, jλ, has units of m s−3 sr−1.

15 Derive Eq. (35) in Example 4.1, which shows how the intensityof from its initial intensity Iλ
to the value Sλ of the source function.

10 By measuring the slope of the curves in Fig. 10, verify that the decline of the curves after the
peak in the opacity follows a Kramers law, κ ∝ T −n, where n ≈ 3.5.

11 According to one model of the Sun, the central density is 1.53 × 105 kg m−3 and the Rosseland
mean opacity at the center is 0.217 m2 kg−1.

(a) Calculate the mean free path of a photon at the center of the Sun.
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FIGURE 10 Rosseland mean opacity for a composition that is 70% hydrogen, 28% helium, and
2% metals by mass. The curves are labeled by the logarithmic value of the density (log10 ρ in kg m−3).
(Data from Iglesias and Rogers, Ap. J., 464, 943, 1996.)

Iλ(s) = Iλ,0 e−κλρs + Sλ(1 − e−κλρs). (35)

16 The transfer equation, Eq. ( 34), is written in terms of the distance, s, measured along the path
of a light ray. In different coordinate systems, the transfer equation will look slightly different,
and care must be taken to include all of the necessary terms.

above Earth’s atmosphere and for the vertical optical depth of
these two measurements.

9 Use the laws of conservation of relativistic energy and momentum to prove that an isolated
electron cannot absorb a photon.

for the intensity Iλ,0 of the light
the atmosphere, τλ,0, in terms of
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22 Consider a horizontal plane-parallel slab of gas of thickness L that is maintained at a constant
temperature T . Assume that the gas has optical depth τλ,0, with τλ = 0 at the top surface of

17 For a plane-parallel atmosphere, show that the Eddington approximation leads to expressions
for the mean intensity, radiative flux, and radiation pressure given by Eqs. (46–48).

18 Using the Eddington approximation for a plane-parallel atmosphere, determine the values of
Iin and Iout as functions of the vertical optical depth. At what depth is the radiation isotropic to
within 1%?

19 Using the results for the plane-parallel gray atmosphere in LTE, determine the ratio of the
effective temperature of a star to its temperature at the top of the atmosphere. If Te = 5777 K,
what is the temperature at the top of the atmosphere?

20 Show that for a plane-parallel gray atmosphere in LTE, the (constant) value of the radiative flux
is equal to π times the source function evaluated at an optical depth of 2/3:

Frad = πS(τv = 2/3).

This function, called the Eddington–Barbier relation, says that the radiative flux received from
the surface of the star is determined by the value of the source function at τv = 2/3.

21 Consider a horizontal plane-parallel slab of gas of thickness L that is maintained at a constant
temperature T . Assume that the gas has optical depth τλ,0, with τλ = 0 at the top surface of
the slab. Assume further that no radiation enters the gas from outside. Use the general solution
of the transfer equation ( 54) to show that when looking at the slab from above, you see
blackbody radiation if τλ,0 ≫ 1 and emission lines (where jλ is large) if τλ,0 ≪ 1. You may
assume that the source function, Sλ, does not vary with position inside the gas. You may also
assume thermodynamic equilibrium when τλ,0 ≫ 1.

(a) Show that in a spherical coordinate system, with the center of the star at the origin, the
transfer equation has the form

−cos θ ′

κλρ

dIλ

dr
= Iλ − Sλ,

where θ ′ is the angle between the ray and the outward radial direction. Note that you cannot
simply replace s with r!

(b) Use this form of the transfer equation to derive Eq. (31).

dPrad

dr
= −κρ

c
Frad. (31)

⟨I ⟩ = 1
2

(Iout + Iin) (46)

Frad = π (Iout − Iin) (47)

Prad = 2π
3c

(Iout + Iin) = 4π
3c

⟨I ⟩. (48)

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

Iλ(0) = Iλ,0e
−τλ,0 −

∫ 0

τλ,0

Sλe
−τλ dτλ. (54)
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Iλ(0) = Iλ,0e
−τλ,0 −

∫ 0

τλ,0

Sλe
−τλ dτλ. (54)

23 Verify that if the source function is Sλ = aλ + bλτλ,v , then the emergent intensity is given by
Eq. ( 57), I (λ 0) = aλ + bλ cos θ .

24 Suppose that the shape of a spectral line is fit with one-half of an ellipse, such that the semimajor
axis a is equal to the maximum depth of the line (let Fλ = 0) and the minor axis 2b is equal to
the maximum width of the line (where it joins the continuum). What is the equivalent width of
this line? Hint: You may find the following useful:

25 Derive Eq. ( 60) for the uncertainty in the wavelength of a spectral line due to Heisenberg’s
uncertainty principle.

26 The two solar absorption lines given in the Table below are produced when an electron makes an

(a) Using the general curve of growth for the Sun, Fig. 22, repeat the procedure of Exam-
ple 5.5 of Stellar Atmospheres  to find Na, the number of absorbing sodium atoms per unit
area of the photosphere.

Iλ(0) = aλ + bλ cos θ, (57)

-λ ≈ λ2

2πc

(

1
-ti

+ 1
-tf

)

, (60)

two cases correspond to the spectral lines formed in the Sun’s photosphere and chromosphere,
respectively.) You may assume that the source function, Sλ, does not vary with position inside
the gas. You may also assume thermodynamic equilibrium when τλ,0 ≫ 1.

A = πab. (4)

upward transition from the ground state orbital of the neutral Na I atom.

see absorption lines superimposed on the spectrum of the incident radiation if Iλ,0 > Sλ and
emission lines superimposed on the spectrum of the incident radiation if Iλ,0 < Sλ. (These latter

(b)

the slab. Assume further that incident radiation of intensity Iλ,0 enters the bottom of the slab
from outside. Use the general solution of the transfer equation ( 54) to show that when looking
at the slab from above, you see blackbody radiation if τλ,0 ≫ 1. If τλ,0 ≪ 1, show that you

“ ”

TABLE 3 Data for Solar Sodium Lines for Problem 26. (Data from Aller, Atoms, Stars, and
Nebulae, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)

λ (nm) W (nm) f

330.298 0.0067 0.0049
589.594 0.0560 0.325

Stellar Atmospheres: Problem Set

Combine your results with those of Example 5.5 of  Stellar Atmospheres to find an aver-
age value of Na . Use this value to plot the positions of the four sodium absorption lines on 
Fig. 22, and confirm that they do all lie on the curve of growth.
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FIGURE 22 A general curve of growth for the Sun. The arrows refer to the data used in Exam-
ple 5.5. (Figure adapted fromAller, Atoms, Stars, and Nebulae, Revised Edition, Harvard University
Press, Cambridge, MA, 1971.)

27 Pressure broadening (due to the presence of the electric fields of nearby ions) is unusually
effective for the spectral lines of hydrogen. Using the general curve of growth for the Sun with
these broad hydrogen absorption lines will result in an overestimate of the amount of hydrogen
present. The following calculation nevertheless demonstrates just how abundant hydrogen is in
the Sun.

The two solar absorption lines given in Table 4 belong to the Paschen series, produced
when an electron makes an upward transition from the n = 3 orbital of the hydrogen atom.

(a) Using the general curve of growth for the Sun, Fig. 22, repeat the procedure of Exam-

(those with electrons initially in the n = 3 orbital).

(b) Use the Boltzmann and Saha equations to calculate the total number of hydrogen atoms
above each square meter of the Sun’s photosphere.

ple 5.5 of Stellar Atmospheres  to find Na, the number of absorbing atoms perhydrogen
unit area of the photosphere.

TABLE 4 Data for Solar Hydrogen Lines for Problem 9.27. (Data from Aller, Atoms, Stars, and
Nebulae, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)

λ (nm) W (nm) f

1093.8 (Paγ ) 0.22 0.0554
1004.9 (Paδ) 0.16 0.0269

“ ”
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FIGURE 22 A general curve of growth for the Sun. The arrows refer to the data used in Exam-
ple 5.5. (Figure adapted fromAller, Atoms, Stars, and Nebulae, Revised Edition, Harvard University
Press, Cambridge, MA, 1971.)

COMPUTER PROBLEMS

28 In this problem, you will use the values of the density and opacity at various points near the
surface of the star to calculate the optical depth of these points. The data in Table 5 were
obtained from the stellar model building program StatStar,
Appendix: StatStar, A Stellar Structure Code. The first point listed is at the surface of the

(a) Find the optical depth at each point by numerically integrating Eq. ( 15). Use a simple
trapezoidal rule such that

dτ = −κρ ds

becomes

τi+1 − τi = −
(

κiρi + κi+1ρi+1

2

)

(ri+1 − ri) ,

where i and i + 1 designate adjacent zones in the model. Note that because s is measured
along the path traveled by the photons, ds = dr .

(b) Make a graph of the temperature (vertical axis) vs. the optical depth (horizontal axis).
(c) For each value of the optical depth, use Eq. ( 53) to calculate the temperature for a plane-

parallel gray atmosphere in LTE. Plot these values of T on the same graph.

stellar model.

dτλ = −κλρ ds, (15)

T 4 = 3
4

T 4
e

(

τv + 2
3

)

. (53)

described in 
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TABLE 5 A 1 M⊙ StatStar Model for Problem 28. Te = 5504 K.

i r (m) T (K) ρ
(

kg m−3) κ
(

m2 kg−1)

0 7.100764E+08 0.000000E+00 0.000000E+00 0.000000E+00
1 7.093244E+08 3.379636E+03 2.163524E−08 2.480119E+01
2 7.092541E+08 3.573309E+03 3.028525E−08 2.672381E+01
3 7.091783E+08 3.826212E+03 4.206871E−08 2.737703E+01
4 7.090959E+08 4.133144E+03 5.814973E−08 2.708765E+01
5 7.090062E+08 4.488020E+03 8.015188E−08 2.625565E+01
6 7.089085E+08 4.887027E+03 1.103146E−07 2.517004E+01
7 7.088019E+08 5.329075E+03 1.517126E−07 2.399474E+01
8 7.086856E+08 5.815187E+03 2.085648E−07 2.281158E+01
9 7.085588E+08 6.347784E+03 2.866621E−07 2.165611E+01

10 7.084205E+08 6.930293E+03 3.939580E−07 2.054686E+01
11 7.082697E+08 7.566856E+03 5.413734E−07 1.948823E+01
12 7.081052E+08 8.262201E+03 7.439096E−07 1.848131E+01
13 7.079259E+08 9.021603E+03 1.022171E−06 1.752513E+01
14 7.077303E+08 9.850881E+03 1.404459E−06 1.661785E+01
15 7.075169E+08 1.075642E+04 1.929644E−06 1.575731E+01
16 7.072843E+08 1.174520E+04 2.651111E−06 1.494128E+01
17 7.070306E+08 1.282486E+04 3.642174E−06 1.416754E+01
18 7.067540E+08 1.400375E+04 5.003513E−06 1.343396E+01
19 7.064524E+08 1.529096E+04 6.873380E−06 1.273849E+01
20 7.061235E+08 1.669643E+04 9.441600E−06 1.207917E+01
21 7.057649E+08 1.823102E+04 1.296880E−05 1.145414E+01
22 7.053741E+08 1.990656E+04 1.781279E−05 1.086165E+01
23 7.049480E+08 2.173599E+04 2.446473E−05 1.030001E+01
24 7.044836E+08 2.373341E+04 3.359882E−05 9.767631E+00
25 7.039774E+08 2.591421E+04 4.614038E−05 9.263005E+00
26 7.034259E+08 2.829519E+04 6.335925E−05 8.784696E+00
27 7.028250E+08 3.089468E+04 8.699788E−05 8.331344E+00
28 7.021704E+08 3.373266E+04 1.194469E−04 7.901659E+00
29 7.014574E+08 3.683096E+04 1.639859E−04 7.494416E+00
30 7.006810E+08 4.021337E+04 2.251132E−04 7.108452E+00
31 6.998356E+08 4.390583E+04 3.089976E−04 6.742665E+00
32 6.989155E+08 4.793666E+04 4.240980E−04 6.396010E+00
33 6.979141E+08 5.233670E+04 5.820105E−04 6.067495E+00
34 6.968247E+08 5.713961E+04 7.986295E−04 5.756179E+00
35 6.956399E+08 6.238205E+04 1.095736E−03 5.461170E+00
36 6.943518E+08 6.810401E+04 1.503169E−03 5.181621E+00
37 6.929517E+08 7.434904E+04 2.061803E−03 4.916730E+00
38 6.914307E+08 8.116461E+04 2.827602E−03 4.665735E+00
39 6.897790E+08 8.860239E+04 3.877181E−03 4.427914E+00
40 6.879861E+08 9.671869E+04 5.315384E−03 4.202584E+00
41 6.860411E+08 1.055748E+05 7.285639E−03 3.989094E+00

(d) The StatStar program utilizes a simplifying assumption that the surface temperature is
zero (see Appendix: StatStar, A Stellar Structure Code).Comment on the validity of the
surface value of T that you found.
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where x = 0.648 and y = 0.207 for solar-type stars (other coefficients are provided for other
types of stars).
(a) Plot Van Hamme’s formula for limb darkening over the range 0 ≤ θ ≤ 90◦. (Be sure to

correctly treat the singularity in the function at θ = 90◦.)
(b) Plot Eq. (58), which is based on the Eddington approximation, on the same graph.

(c) Where is the difference between the two formulae the greatest?
(d) Compare the two curves to the observational data shown in Fig. 17. Which curve best

represents the solar data?

I (θ)

I (θ = 0)
= 1 − x(1 − cos θ) − y cos θ log10(cos θ),

I (θ)

I (θ = 0)
= a + b cos θ

a + b
= 2

5
+ 3

5
cos θ . (58)
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FIGURE 17 A theoretical Eddington approximation of solar limb darkening for light integrated
over all wavelengths. The dots are observational data for the Sun. Although a good fit, the Eddington
approximation is not perfect, which implies that a more detailed model must be developed; see, for
example, Problem 29.

29 The binary star code TwoStars, discussed Appendix: , A Binary  
empirical limb darkening formula developed by W. Van Hamme

1096, 1993):

Star
 

Code
makes use of an (Astrono-
mical Journal, 106,

TwoStarsin
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The Sun

1 The Solar Interior
2 The Solar Atmosphere
3 The Solar Cycle

1 THE SOLAR INTERIOR

theoretical foundations of stellar struc
the star as being composed of an atmosphere and an interior. The distinction
between the two regions is fairly nebulous. Loosely, the atmosphere is considered to be that
region where the optical depth is less than unity and the simple approximation of photons

Due to its proximity to us, the star for which we have the greatest amount of observational
data is our Sun. From ground-based and space-based observatories, we are able to measure
with high precision the composition of our Sun’s surface; its luminosity, effective temper-
ature, radius, magnetic fields, and rotation rates; the oscillation frequencies (vibrations)
throughout its interior; and the rate at which neutrinos are produced via nuclear reactions
in its core. This tremendous wealth of information provides us with rigorous tests of our
understanding of the physical processes operating within stellar atmospheres and interiors.

The Evolutionary History of the Sun

Based on its observed luminosity and effective temperature, our Sun is classified as a
typical main-sequence star of spectral class G2 with a surface composition of X = 0.74,
Y = 0.24, and Z = 0.02 (the mass fractions of hydrogen, helium, and metals, respectively).
To understand how it has evolved to this point, recall that according to the Vogt–Russell
theorem the mass and composition of a star dictate its internal structure. Our Sun has
been converting hydrogen to helium via the pp chain during most of its lifetime, thereby
changing its composition and its structure. By comparing the results of radioactive dating
tests of Moon rocks and meteorites with stellar evolution calculations and the present-day

In investi ating  g ture, we must treat    

From Chapter 1  of An Introduction to Modern Astrophysic Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 
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diffusing through optically thick material is not justified. Instead, atomic line absorption 
and emission must be considered in detail in the stellar atmosphere. On the other hand, nu-
clear reaction processes deep in the stellar interior plays a crucial role in the star’s energy 
output and its inevitable evolution.
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FIGURE 1 The evolution of the Sun on the main sequence. As a result of changes in its internal
composition, the Sun has become larger and brighter. The solid line indicates its luminosity, the dashed
line its radius, and the dash-dot line its effective temperature. The luminosity and radius curves are
relative to present-day values. (Data from Bahcall, Pinsonneault, and Basu, Ap. J., 555, 990, 2001.)

observable Sun, the current age of the Sun is determined to be approximately 4.57 × 109 yr.
Furthermore, as depicted in Fig. 1, since becoming a main-sequence star, the Sun’s
luminosity has increased nearly 48% (from 0.677 L⊙) while its radius has increased 15%
from an initial value of 0.869 R⊙. The Sun’s effective temperature has also increased from
5620 K to its present-day value of 5777 K

You may be wondering what impact this evolution has had on Earth. Interestingly, from
a theoretical standpoint it is not at all clear how this change in solar energy output altered
our planet during its history, primarily because of uncertainties in the behavior of the
terrestrial environment. Understanding the complex interaction between the Sun and Earth
involves the detailed calculation of convection in Earth’s atmosphere, as well as the effects
of the atmosphere’s time-varying composition and the nature of the continually changing
reflectivity, or albedo, of Earth’s surface.

The Present-Day Interior Structure of the Sun

Consistent with the current age of the Sun, a solar model may be constructed for the
present-day Sun using the physical principles discussed in preceding chapters. Table 1
gives the values of the central temperature, pressure, density, and composition for one such

Radioactive dating of the oldest known objects in the Solar System, calcium-aluminum-rich inclusions (CAIs)
in meteorites, leads to a determination of the age of the Solar System of 4.5672 ± 0.0006 Gyr.
The data quoted here and in the following discussion are from the solar model of Bahcall, Pinsonneault, and

Basu, Ap. J., 555, 990, 2001.
Earth’s albedo, the ratio of reflected to incident sunlight, is affected by the amount of surface water and ice.
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TABLE 1 Central Conditions in the Sun. (Data from Bahcall, Pinsonneault, and Basu, Ap. J.,
555, 990, 2001.)

Temperature 1.570 × 107 K
Pressure 2.342 × 1016 N m−2

Density 1.527 × 105 kg m−3

X 0.3397
Y 0.6405

Cool, dark
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Hot, brightrising gas
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FIGURE 2 A schematic diagram of the Sun’s interior.

solar model, and a schematic diagram of the model is shown in Fig. 2. According to
the evolutionary sequence leading to this model, during its lifetime the mass fraction of
hydrogen (X) in the Sun’s center has decreased from its initial value of 0.71 to 0.34, while
the central mass fraction of helium (Y ) has increased from 0.27 to 0.64. In addition, due
to diffusive settling of elements heavier than hydrogen, the mass fraction of hydrogen near
the surface has increased by approximately 0.03, while the mass fraction of helium has
decreased by 0.03.

Because of the Sun’s past evolution, its composition is no longer homogeneous but
instead shows the influence of ongoing nucleosynthesis, surface convection, and elemental
diffusion (settling of heavier elements). The composition structure of the Sun is shown in
Fig. 3 for 1

1H, 3
2He, and 4

2He. Since the Sun’s primary energy production mechanism is
the pp chain, 3

2He is an intermediate species in the reaction sequence. During the conversion
of hydrogen to helium, 3

2He is produced and then destroyed again. At the
top of the hydrogen-burning region where the temperature is lower, 3

2He is relatively more
abundant because it is produced more easily than it is destroyed. At greater depths, the
higher temperatures allow the 3

2He–3
2He interaction to proceed more rapidly, and the 3

2He

Recall that much higher temperatures are required for helium–helium interactions than proton–proton interactions.
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FIGURE 3 The abundances of 1
1H, 3

2He, and 4
2He as a function of radius for the Sun. Note that

the abundance of 3
2He is multiplied by a factor of 100. (Data from Bahcall, Pinsonneault, and Basu,

Ap. J., 555, 990, 2001.)

abundance again decreases (the temperature profile of the Sun is shown in Fig. 4). The
slight ramp in the 1

1H and 4
2He curves near 0.7 R⊙ reflects evolutionary changes in the

position of the base of the surface convection zone, combined with the effects of elemental
diffusion. Within the convection zone, turbulence results in essentially complete mixing and
a homogeneous composition. The base of the present-day convection zone is at 0.714 R⊙.

The largest contribution to the energy production in the Sun occurs at approximately
one-tenth of the solar radius, as can be seen in the Sun’s interior luminosity profile and the
curve of its derivative with respect to radius (Fig. 5). If this result seems unexpected,
consider that the mass conservation equation,

dMr

dr
= 4πr2ρ,

gives

dMr = 4πr2ρ dr = ρ dV, (1)

indicating that the amount of mass within a certain radius interval increases with radius
simply because the volume of a spherical shell, dV = 4πr2 dr , increases with r for a fixed
choice of dr . Of course, the mass contained in the shell also depends on the density of
the gas. Consequently, even if the amount of energy liberated per kilogram of material (ϵ)
decreases steadily from the center outward, the largest contribution to the total luminosity
will occur, not at the center, but in a shell that contains a significant amount of mass. In
the case of the middle-aged Sun, the decrease in the amount of available hydrogen fuel at
its center will also influence the location of the peak in the energy production region.

The Sun
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as a function of radius. (Data from Bahcall, Pinsonneault, and Basu, Ap. J., 555, 990, 2001.)

Figures 4 and 6 show just how rapidly the pressure and density change with radius
in the Sun. These variations are forced on the solar structure by the condition of hydrostatic
equilibrium, the ideal gas law, and the composition structure of the star. Of course,
boundary conditions applied to the stellar structure equations require that both ρ and P

become negligible at the surface.

The Sun
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FIGURE 6 The density profile and the interior mass of the Sun as a function of radius. (Data
from Bahcall, Pinsonneault, and Basu, Ap. J., 555, 990, 2001.)

Figure 6 also shows the interior mass (Mr ) as a function of radius. Notice that 90%
of the mass of the star is located within roughly one-half of its radius. This should not come
as a complete surprise since the density increases significantly as the center of the Sun is
approached. Integration of the density function over the volume of the star from the center
outward (i.e., the integration of Eq. 1) yields the interior mass function.

The question remains as to how the energy generated in the interior is transported out-
ward. stellar interiors, namely that the
temperature gradient become superadiabatic,
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where the “act” and “ad” subscripts designate the actual and adiabatic temperature gradients,
respectively. Under the simplifying assumption of an ideal monatomic gas, this condition
becomes,

d ln P

d ln T
< 2.5.

d ln P/d ln T is plotted versus r/R⊙ in Fig. 7. As can be seen, the Sun is purely
radiative below r/R⊙ = 0.714 and becomes convective above that point. Physically this
occurs because the opacity in the outer portion of the Sun becomes large enough to inhibit the
transport of energy by radiation; recall that the radiative temperature gradient is proportional
to the opacity. When the temperature gradient becomes too large, convection
becomes the more efficient means of energy transport. Throughout most of the region
of convective energy transport, d ln P/d ln T ≃ 2.5, which is characteristic of the nearly
adiabatic temperature gradient of most convection zones. The rapid rise in d ln P/d ln T

A criterion for the onset of convection in

The Sun
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FIGURE 7 The convection condition d ln P/d ln T plotted versus r/R⊙. The dashed horizontal
line represents the boundary between adiabatic convection and radiation for an ideal monatomic gas.
The onset of convection does not exactly agree with the ideal adiabatic case because of the incorpora-
tion of a sophisticated equation of state and a more detailed treatment of convection physics. The rapid
rise in d ln P/d ln T near the surface is associated with the highly superadiabatic nature of convection
in that region (i.e., the adiabatic approximation that convection occurs when d ln P/d ln T < 2.5 is
invalid near the surface of the Sun). [d ln P/d ln T was computed using data from Bahcall, Pinson-
neault, and Basu, Ap. J., 555, 990, 2001. The data for the zones above 0.95 R⊙ are from Cox, Arthur
N. (editor), Allen’s Astrophysical Quantities, Fourth Edition, AIP Press, New York, 2000.]

above 0.95 R⊙ is due to the significant departure of the actual temperature gradient from
an adiabatic one. In this case convection must be described by a more detailed treatment,
such as the mixing-length theory.

Notice that d ln P/d ln T also decreases to almost 2.5 at the center of the Sun. Although
the Sun remains purely radiative in the center, the large amount of energy that must be trans-
ported outward pushes the temperature gradient in the direction of becoming superadiabatic.

tive in their centers because of the stronger temperature dependence of the CNO cycle as
compared to the pp chain.

Clearly, an enormous amount of information is available regarding the solar interior,
as derived from the direct and careful application of the stellar structure equations and
the fundamental physical principles. A very complete and reasonable model of the Sun
can be produced that is consistent with evolutionary timescales and fits the global
characteristics of the star, specifically its mass, luminosity, radius, effective temperature,
and surface composition; precise measurements of oscillation frequencies; and, as we
will see in the next section, its observed surface convection zone.

One aspect of the observed Sun that is not yet fully consistent with the current solar
model is the abundance of lithium. The observed lithium abundance at the Sun’s surface

Stars only slightly more massive than the Sun are convec-
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is actually somewhat less than expected and may imply some need for adjustments in the
model through refined treatments of convection, rotation, and/or mass loss.

The Solar Neutrino Problem: A Detective Story Solved

Another significant discrepancy had existed between observations and the solar model
for several decades, the resolution of which led to an important new understanding of
fundamental physics. The solar neutrino problem was first noticed when Raymond Davis
began measuring the neutrino flux from the Sun in 1970 using a detector located almost
one mile below ground in the Homestake Gold Mine in Lead, South Dakota (Fig. 8).
Because of the very low cross section of neutrino interactions with other matter, neutrinos
can easily travel completely through Earth while other particles originating from space
cannot.As a result, the underground detector was assured of measuring what it was designed
to measure—neutrinos created eight minutes earlier in the solar core.

The Davis neutrino detector contained 615,000 kg of cleaning fluid, C2Cl4 (tetra-
chlorethylene) in a volume of 377,000 liters (100,000 gallons). One isotope of chlorine
(37
17Cl) is capable of interacting with neutrinos of sufficient energy to produce a radioactive

isotope of argon that has a half-life of 35 days,

37
17Cl + νe ! 37

18Ar + e−.

The threshold energy for this reaction, 0.814 MeV, is less than the energies of the neutrinos
produced in every step of the pp chain except the crucial first one, 1

1H + 1
1H → 2

1H + e+ + νe.

FIGURE 8 Raymond Davis’s solar neutrino detector. The tank was located 1478 m (4850 ft)
below ground in the Homestake Gold Mine in Lead, South Dakota, and was filled with 615,000 kg of
C2Cl4 in a volume of 377,000 liters (100,000 gallons). (Courtesy of Brookhaven National Laboratory.)

The Sun



8
5B → 8

4Be + e+ + νe.

Unfortunately, this reaction is very rare, producing only for one pp chain termination in
5000.

John Bahcall (1935–2005), a colleague of Davis, was able to compute the anticipated
rate at which solar neutrinos should have been detected by the chlorine experiment (the
capture rate). The complex calculation was based on the rate of neutrino production by 8

5B
decay in the PP III chain as computed from the solar model, combined with the probability
that a solar neutrino will interact with a chlorine atom in the Homestake experiment.

Once every few months Davis and his collaborators carefully purged the accumulated
argon from the tank and determined the number of argon atoms produced. The capture
rate was measured in terms of the solar neutrino unit, or SNU (1 SNU ≡ 10−36 reactions
per target atom per second). With approximately 2.2 × 1030 atoms of 37

17Cl atoms in the
tank, if only one argon atom was produced each day, this rate would have corresponded to
5.35 SNU.

Results of 108 extractions from the Davis experiment between 1970 and 1994 are shown
in Fig. 9. Bahcall predicted that the experiment should have yielded a capture rate of
7.9 SNU while the actual data gave an average of 2.56 ± 0.16 SNU; only one argon atom
was produced every two days in that 100,000 gallon tank!

Other neutrino experiments, fundamentally different from the 37
17Cl experiment, have

confirmed the discrepancy between the prediction of the solar model and observed neu-
trino counts. Japan’s underground Super-Kamiokande observatory (Fig. 10) detects the
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However, the reaction that accounted for 77% of the neutrinos detected in the Davis
experiment is the decay of 8

5B in the PP III chain,



FIGURE 10 Super-Kamiokande neutrino observatory in Japan contains 4.5 × 107 kg (50,000
tons) of pure water. As neutrinos pass through the water, they scatter electrons at speeds greater
than the speed of light through water. The pale blue Cerenkov light that is produced is detected by
the 11,200 inwardly-directed photomultiplier tubes, signaling the presence of the passing neutrino.
[Photo courtesy of Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University
of Tokyo.]

Cerenkov light that is produced when neutrinos scatter electrons, causing the electrons
to move at speeds greater than the speed of light in water. The number of neutrinos de-
tected by Super-Kamiokande (and Kamiokande II before it) are less than half the number
expected from solar models. The Soviet–American Gallium Experiment (SAGE), located
at the Baksan Neutrino Laboratory (inside a mountain in the Caucasus), and GALLEX (at
the Gran Sasso underground laboratory in Italy) measure the low-energy pp chain neutrinos
that dominate the Sun’s neutrino flux. SAGE and GALLEX make their detections via a
reaction that converts gallium into germanium,

νe + 71
31Ga → 71

32Ge + e−.

After considering the expected number of background counts from sources other than the
Sun, both experiments also confirm the deficit of neutrinos first established by the Davis
detector.

The search for a theoretical resolution to the solar neutrino problem considered two
general approaches: Either some fundamental physical process operating in the solar model
is incorrect, or something happens to the neutrinos on their way from the Sun’s core to Earth.
The first of these possibilities inspired an intense reexamination of a host of features of the

Note that this does not violate Einstein’s special theory of relativity since the special theory applies to the speed
of light in a vacuum. The speed of light in any other medium is always less than the speed of light in a vacuum.
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solar model, including nuclear reaction rates, the opacity of stellar material, the evolution
of the Sun up to its present state, variations in the composition of the solar interior, and
several exotic suggestions (including dark matter in the Sun’s core). However, none of these
suggested solutions was able to satisfy all of the observational constraints simultaneously,
particularly neutrino counts and solar oscillation frequencies.

An elegant solution to the solar neutrino problem proposed that the solar model is essen-
tially correct but that the neutrinos produced in the Sun’s core actually change before they
reach Earth. The Mikheyev–Smirnov–Wolfenstein (or MSW) effect involves the trans-
formation of neutrinos from one type to another. This idea is an extension of the electroweak
theory of particle physics that combines the electromagnetic theory with the theory of weak
interactions governing some types of radioactive decay. The neutrinos produced in the var-
ious branches of the pp chain are all electron neutrinos (νe); however, two other flavors of
neutrinos also exist—the muon neutrino (νµ) and the tau neutrino (ντ ). The MSW effect
suggests that neutrinos oscillate among flavors, being electron neutrinos, muon neutrinos,
and/or tau neutrinos during their passage through the Sun. The neutrino oscillations are
caused by interactions with electrons as the neutrinos travel toward the surface. Because
the chlorine (Davis), water (Kamiokande and Super-Kamiokande), and gallium detectors
(SAGE and GALLEX) have different threshold energies and they are sensitive only to the
electron neutrino, their results were determined to be consistent with the MSW theory.

One testable consequence of the MSW effect is that if neutrinos oscillate between flavors,
they must necessarily have mass. This is because a change of neutrino flavor can occur only
between neutrinos having different masses. The required mass difference needed for the
MSW solution to the solar neutrino problem is much less than the current experimentally
established upper limit on the mass of the electron neutrino of approximately 2.2 eV. Even
though the standard electroweak theory does not predict masses for the neutrinos, many
reasonable extensions of this theory do allow for masses in the right range. These extended
theories, known as grand unified theories (GUTs), are currently the focus of intense
research by high-energy (particle) physicists.

Confirmation of neutrino oscillations came in 1998 when Super-Kamiokande was used
to detect atmospheric neutrinos that are produced when high-energy cosmic rays (charged
particles from space) collide with Earth’s upper atmosphere. Cosmic rays are capable of
creating both electron and muon neutrinos, but not tau neutrinos. The Super-Kamiokande
group was able to determine that the number of muon neutrinos traveling upward after
having traversed the diameter of Earth was significantly reduced relative to the number
traveling downward. The difference in numbers is in excellent agreement with the theory
of neutrino mixing (neutrinos oscillating among the three flavors), demonstrating for the
first time that neutrinos are not massless particles.

Thus, after several decades of study, the solar neutrino problem was resolved by a
profound advance in our understanding of particle physics and the nature of the fundamental
forces.As a result of their contributions to this important scientific detective story, Raymond
Davis and Masatoshi Koshiba, director of the Kamiokande research group that confirmed
the neutrino detections, were two of the recipients of the 2002 Nobel Prize in physics.

The third recipient of the 2002 Nobel Prize, Riccardo Giacconi, used a rocket experiment to detect X-rays in
space. Giacconi later designed the Uhuru and Einstein X-ray observatories and also served as the first director of
the Space Telescope Science Institute.
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In 2004, John Bahcall wrote of the efforts to solve the solar neutrino problem:

I am astonished when I look back on what has been accomplished in the field
of solar neutrino research over the past four decades. Working together, an
international community of thousands of physicists, chemists, astronomers,
and engineers has shown that counting radioactive atoms in a swimming pool
full of cleaning fluid in a deep mine on Earth can tell us important things about
the center of the Sun and about the properties of exotic fundamental particles
called neutrinos. If I had not lived through the solar neutrino saga, I would not
have believed it was possible.

2 THE SOLAR ATMOSPHERE

When we observe the Sun visually, it appears as though there is a very abrupt and clear
edge to this hot, gaseous ball (Fig. 11). Of course, an actual “surface” does not exist;
rather, what we are seeing is a region where the solar atmosphere is optically thin and
photons originating from that level travel unimpeded through space. Even this region is not
clearly defined, however, since some photons can always escape when the optical depth is
somewhat greater than unity while others may be absorbed when the optical depth is less
than unity, but the odds of a photon leaving the solar atmosphere diminish rapidly as the
optical depth increases. Consequently, the Sun’s atmosphere changes from being optically
thin to optically thick in only about 600 km. This relatively small distance (about 0.09% of
the Sun’s radius) is what gives the “edge” of the Sun its sharp appearance.

The Photosphere

The region where the observed optical photons originate is known as the solar photosphere.
Defining the base of the photosphere is somewhat arbitrary since some photons can originate
from an optical depth significantly greater than unity. For instance, if 1% of the photons
originating from a layer reach us, the optical depth would be approximately 4.5 at that level
(e−4.5 ∼ 0.01); if 0.1% reach us, the optical depth would be about 6.9. Of course, since the
opacity and optical depth are wavelength dependent, the base of the photosphere is also
wavelength dependent if it is defined in terms of the optical depth. Given the arbitrariness
of the definition, the base of the photosphere for the Sun is sometimes simply defined to be
100 km below the level where the optical depth at a wavelength of 500 nm is unity. At this
depth, τ500 ≃ 23.6 and the temperature is approximately 9400 K.

Moving upward through the solar photosphere, the temperature of the gas decreases
from its base value to a minimum of 4400 K about 525 km above the τ500 = 1 level. It is
this temperature minimum that defines the top of the photosphere. Above this point, the
temperature begins to rise again. The approximate thicknesses of the various components
of the Sun’s atmosphere to be discussed in this section are depicted in Fig. 12.

n average the solar flux is emitted from an optical depth
of τ = 2/3 (the Eddington approximation). This leads to the identification of the effective
temperature with the temperature of the gas at this depth, or Te = Tτ=2/3 = 5777 K.

“Solving the Mystery of the Missing Neutrinos,” John N. Bahcall (2004), Nobel e-Museum,
http://nobelprize.org/physics/articles/bahcall/.
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FIGURE 11 The solar disk appears sharp because of the rapid increase in optical depth with
distance through the photosphere. Sunspots are visible on the surface of the disk in this image taken
by SOHO/MDI on March 29, 2001. [SOHO (ESA & NASA)]
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FIGURE 12 The thicknesses of the components of the Sun’s atmosphere.

portions of the spectrum.
This observation suggests that there exists a source of opacity that is basically

continuous across wavelength. The continuum opacity is due in part to the presence of the
H− ions in the photosphere.

Using the Saha equation, we can determine the ratio of the number of H− ions
to neutral hydrogen atoms. It is left as an exercise to show that in the Sun’s photosphere,

The Sun radiates predominantly as a blackbody in the visible and infrared

The Sun



only about one in 107 hydrogen atoms actually forms an H− ion. The importance of H− in
the Sun is due to the fact that even though the abundance of the ion is quite low, neutral
hydrogen is not capable of contributing significantly to the continuum.

Of course, optical depth is a function not only of the distance that a photon must travel
to the surface of the Sun, but also of the wavelength-dependent opacity of the solar material.

Consequently, photons can originate from or be absorbed at different physical
depths in the atmosphere, depending upon their wavelengths. Since a spectral line is not

Absorption lines, including Fraunhofer lines, are produced in the photosphere.
According to Kirchhoff’s laws, the absorption lines must be produced where the

gas is cooler than the bulk of the continuum-forming region. Line formation must also
occur between the observer and the region where much of the continuum is produced. In
reality, the Fraunhofer lines are formed in the same layers where H− produces the contin-
uum. However, the darkest part of the line (its center) originates from regions higher in the
photosphere, where the gas is cooler. This is because the opacity is greatest in the center
of the line, making it more difficult to see deeper into the photosphere. Moving away from
the central wavelength toward the wing of the line implies that absorption is occurring at
progressively deeper levels. At wavelengths sufficiently far from the central peak, the edge
of the line merges with the continuum being produced at the base of the photosphere. This
effect is illustrated in Fig. 13.
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FIGURE 13 The relationship between absorption line strength and depth in the photosphere for
a typical spectral line. The wings of the line are formed deeper in the photosphere than is the center
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The Sun

infinitesimally thin, but actually covers a range of wavelengths, even different parts of the 
same line are formed at different levels of the atmosphere. Thus solar observations with 
high-wavelength resolution can be used to probe the atmosphere at various depths, provid-
ing a wealth of information about its structure.



Solar Granulation

When the base of the photosphere is observed (see Fig. 14), it appears as a patchwork of
bright and dark regions that are constantly changing, with individual regions appearing and
then disappearing. With a spatial extent of roughly 700 km, the characteristic lifetime for
one of these regions is five to ten minutes. This patchwork structure is known as granulation
and is the top of the convection zone protruding into the base of the photosphere.

Figure 15 shows a high-resolution spectrum of solar granulation spanning a number
of convection cells. The appearance of wiggles in the absorption lines occurs because some
parts of the region are Doppler blueshifted while others are redshifted.

FIGURE 14 Granulation at the base of the photosphere is due to the rising and falling gas
bubbles produced by the underlying convection zone. (This three-dimensional image is from the
Swedish 1-m Solar Telescope, operated on the island of La Palma by the Institute for Solar Physics of
the Royal Swedish Academy of Sciences in the Spanish Observatorio del Roque de los Muchachos
of the Instituto de Astrofísica de Canarias.)

FIGURE 15 A spectrum of a portion of the photospheric granulation showing absorption lines
that indicate the presence of radial motions. Wiggles to the left are toward shorter wavelengths and are
blueshifted while wiggles to the right are redshifted. The wavelengths shown at the top of the image are
given in angstroms. (Courtesy of W. Livingston and the National Optical Astronomy Observatories.)
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FIGURE 16 The rotation period of the Sun varies with latitude and depth. &, the angular fre-
quency, has units of radians per second. (Adapted from a figure courtesy of NSF’s National Solar
Observatory.)

that radial velocities of 0.4 km s−1 are common; brighter regions produce the blueshifted
sections of the lines while darker regions produce the redshifted sections. Thus the bright
cells are the vertically rising hot convective bubbles carrying energy from the solar interior.
When those bubbles reach the optically thin photosphere, the energy is released via photons
and the resulting cooler, darker gas sinks back into the interior. The lifetime of a typical
granule is the amount of time needed for a convective eddy to rise and fall the distance of
one mixing length. Solar granulation provides us with a visual verification of the results of
the stellar structure equations applied to our Sun.

Differential Rotation

Photospheric absorption lines may also be used to measure the rotation rate of the Sun.
By measuring Doppler shifts at the solar limb, we find that the Sun rotates differentially
(i.e., the rate of rotation depends on the latitude being observed). At the equator the rotation
period is approximately 25 days, increasing to 36 days at the poles.

Observations of solar oscillations have revealed that the Sun’s rotation also varies with
radius; see Fig. 16. Near the base of the convection zone, the differing rotation rates
with latitude converge in a region known as the tachocline. The strong shear that is set
up in this region is believed to result in electric currents in the highly conducting plasma,
which in turn generate the Sun’s magnetic field. Thus the tachocline is probably the source
of the Sun’s magnetic field. (The complex manifestations of the Sun’s dynamic magnetic
field will be discussed extensively in Section 3.)

The Chromosphere

The chromosphere, with an intensity that is only about 10−4 of the value for the pho-
tosphere, is that portion of the solar atmosphere that lies just above the photosphere and
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extends upward for approximately 1600 km (2100 km above τ500 = 1). Analysis of the light
produced in the chromosphere indicates that the gas density drops by more than a factor of
104 and that the temperature begins to increase with increasing altitude, from 4400 K to
about 10,000 K.

Reference to the Boltzmann and Saha equations shows that lines that are not produced
at the lower temperatures and higher densities of the photosphere can form in the
environment of the chromosphere. For instance, along with the hydrogen Balmer lines,
the lines of He II, Fe II, Si II, Cr II, and Ca II (in particular, the Ca II H and K lines,
396.8 nm and 393.3 nm, respectively) can appear in the spectrum.

Although certain Fraunhofer lines appear as absorption lines in the visible and near
ultraviolet portions of the spectrum, others begin to appear as emission lines at shorter (and
much longer) wavelengths. Again Kirchhoff’s laws offer an explanation, suggesting that
a hot, low-density gas must be responsible. Because the interior of the Sun is optically
thick below the base of the photosphere, the area of emission line production must occur
elsewhere. With the peak of the blackbody spectrum near 500 nm, the strength of the
continuum decreases rapidly at shorter and longer wavelengths. As a result, emission
lines produced outside of the visible portion of the spectrum are not overwhelmed by the
blackbody radiation.

Visible wavelength emission lines are not normally seen against the bright solar disk, but
they can be observed near the limb of the Sun for a few seconds at the beginning and end
of a total eclipse of the Sun; this phenomenon is referred to as a flash spectrum. During
this period, the portion of the Sun that is still visible takes on a reddish hue because of the
dominance of the Balmer Hα emission line, a line that is normally observed only as an
absorption line in the Sun’s atmosphere.

Using filters that restrict observations to the wavelengths of the emission lines produced
in the chromosphere (particularly Hα), it is possible to see a great deal of structure in this
portion of the atmosphere. Supergranulation becomes evident on scales of 30,000 km,
showing the continued effects of the underlying convection zone. Doppler studies again
reveal convective velocities on the order of 0.4 km s−1, with gas rising in the centers of
the supergranules and sinking at their edges. Also present are vertical filaments of gas,
known as spicules, extending upward from the chromosphere for 10,000 km (Fig. 17).
An individual spicule may have a lifetime of only 15 minutes, but at any given moment
spicules cover several percent of the surface of the Sun. Doppler studies show that mass
motions are present in spicules, with material moving outward at approximately 15 km s−1.

The Transition Region

Above the chromosphere, the temperature rises very rapidly within approximately 100 km
(see Fig. 18), reaching more than 105 K before the temperature gradient flattens some-
what. The temperature then continues to rise more slowly, eventually exceeding 106 K.
This transition region may be selectively observed at various altitudes in the ultraviolet
and extreme ultraviolet parts of the electromagnetic spectrum. For instance, the 121.6-nm
Lyman-alpha (Lyα) emission line of hydrogen (n = 2 → n = 1) is produced at the top of
the chromosphere at 20,000 K, the C III 97.7-nm line originates at a level where the tem-
perature is 90,000 K, the 103.2-nm line of O VI occurs at 300,000 K, and Mg X creates a
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FIGURE 17 Spicules in the chromosphere of the Sun. In addition, small sunspots are visible in
the upper left quadrant of the image, and brighter areas known as plage regions are also visible. The
observations were made using the Hα emission line. Features as small as 130 km are evident in this
image. (Courtesy of the Royal Swedish Academy of Sciences.)

62.5-nm line at 1.4 × 106 K. Figure 19 shows images of the Sun at various wavelengths
and heights above the base of the photosphere.

The Corona

When the Moon fully occults the photosphere during a total solar eclipse, the radiation from
the faint corona becomes visible (Fig. 20). The corona, located above the transition re-
gion, extends out into space without a well-defined outer boundary and has an energy output
that is nearly 106 times less intense than that of the photosphere. The number density of
particles at the base of the corona is typically 1015 particles m−3, whereas in the vicinity of
Earth, the number density of particles originating from the Sun (solar wind particles) have
a characteristic value of 107 particles m−3 (this can be compared with 1025 particles m−3

at sea level in Earth’s atmosphere). Because the density of the corona is so low, it is essen-
tially transparent to most electromagnetic radiation (except long radio wavelengths) and
is not in local thermodynamic equilibrium (LTE). For gases that are not in LTE, a unique
temperature is not strictly definable. However, the temperatures obtained by considering
thermal motions, ionization levels, and radio emissions do give reasonably consistent
results. For instance, the presence of Fe XIV lines indicates temperatures in excess of
2 × 106 K, as do line widths produced by thermal Doppler broadening.

Based on the radiation coming from the corona, three distinct structural components can
be identified:

• The K corona (from Kontinuierlich, the German word for “continuous”) produces
the continuous white light emission that results from photospheric radiation scattered
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FIGURE 18 Logarithmic plots of the temperature structure (solid line) and mass density structure
(dashed line) of the upper atmosphere of the Sun. The altitudes observed at various wavelengths are
also depicted. [Figure adapted from Avrett, in Encyclopedia of Astronomy and Astrophysics, Paul
Murdin (ed.), Institute of Physics Publishing, Bristol, 2001, page 2480.]

by free electrons. Contributions to the coronal light due to the K corona primarily
occur between 1 and 2.3 R⊙ from the center of the Sun. The spectral lines evident
in the photosphere are essentially blended by the large Doppler shifts that are caused
by the high thermal velocities of the electrons.

• The Fcorona (for Fraunhofer) comes from the scattering of photospheric light by dust
grains that are located beyond 2.3 R⊙. Because dust grains are much more massive
and slower than electrons, Doppler broadening is minimal and the Fraunhofer lines
are still detectable. The F corona actually merges with the zodiacal light, the faint
glow found along the ecliptic that is a reflection of the Sun’s light from interplanetary
dust.

• The E corona is the source of the emission lines that are produced by the highly
ionized atoms located throughout the corona; the E corona overlaps the K and F
coronas. Since the temperatures are extremely high in the corona, the exponential term
in the Saha equation encourages ionization because thermal energies are comparable
to ionization potentials. The very low number densities also encourage ionization
since the chance of recombination is greatly reduced.

The Sun



FIGURE 19 Visible features of the Sun at various wavelengths. The central image is a three-
color composite of the corona obtained by TRACE at 17.1 nm, 19.5 nm, and 28.4 nm. Clockwise
starting from the top are a SOHO/MDI magnetic map, white light, TRACE 170 nm continuum,TRACE
Lyα, TRACE 17.1 nm, TRACE 19.5 nm, TRACE 28.4 nm, and a Yohkoh/SXT X-ray image. [The
Transition Region and Coronal Explorer, TRACE, is a mission of the Stanford-Lockheed Institute
for Space Research (a joint program of the Lockheed-Martin Advanced Technology Center’s Solar
and Astrophysics Laboratory and Stanford’s Solar Observatories Group) and part of the NASA Small
Explorer program.]

The low number densities allow forbidden transitions to occur, producing spectral lines
that are generally seen only in astrophysical environments where gases are extremely thin.

The Sun

Forbidden transitions occur from atomic energy levels that are metastable; electrons do 
not readily make transitions from metastable states to lower energy states without assist-
ance. Whereas allowed transitions occur on timescales on the order of s, spontane-
ous forbidden transitions may require one second or longer. In gases at higher densities, 
electrons are able to escape from metastable states through collisions with other atoms or 
ions, but in the corona these collisions are rare. Consequently, given enough time, some 
electrons will be able to make spontaneous transitions from metastable states to lower 
energy states, accompanied by the emission of photons.

10−8



(a) (b)

FIGURE 20 (a) The quiet solar corona seen during a total solar eclipse in 1954. The shape of
the corona is elongated along the Sun’s equator. (Courtesy of J. D. R. Bahng and K. L. Hallam.)
(b) The active corona tends to have a very complex structure. This image of the July 11, 1991, eclipse
is a composite of five photographs that was processed electronically. (Courtesy of S. Albers.)

Since the blackbody continuum emission from the Sun decreases like λ−2 for sufficiently

Photospheric emissions are negligible in the X-ray wavelength range as well. In this
case the blackbody continuum decreases very rapidly, dropping off like λ−5e−hc/λkT . Con-
sequently, any emission in X-ray wavelengths from the corona will completely overwhelm
the output from the photosphere. In fact, because of the high temperatures of the corona, its
X-ray spectrum is very rich in emission lines. This is due to the high degree of ionization
that exists for all of the elements present, together with the ability of the corona to excite
a large number of atomic transitions. Given the many electrons that are present in heavy
elements such as iron and the vast number of available energy levels, each such element
is capable of producing an extensive emission spectrum. Figure 21 shows a section of
the X-ray emission spectrum of the solor corona. It displays a sample of the lines that are
observed in one portion of the X-ray wavelength band, along with the ions responsible for
their production.

The Sun

long wavelengths, the amount of photospheric radio emission is negligible. The solar co-
rona, however, is a source of radio-wavelength radiation that is not associated with the 
blackbody continuum. Some radio emission arises from free–free transitions of electrons 
that pass near atoms and ions. During these close encounters, photons may be emitted as 
the electrons’ energies are decreased slightly. From the conservation of energy, the greater 
the change in the energy of an electron, the more energetic the resulting photon and the 
shorter its wavelength. Clearly, the closer an electron comes to an ion, the more likely it 
is that the electron’s energy will change appreciably. Since more frequent and closer en-
counters are expected if the number density is larger, shorter-wavelength radio emissions 
should be observed nearer the Sun. Radio wavelengths of 1 to 20 cm are observed from 
the chromosphere through the lower corona, while longer wavelength radiation originates 
from the outer corona. It is important to note that synchrotron radiation by relativistic elec-
trons also contributes to the observed radio emission from the solar corona.
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FIGURE 21 A section of the X-ray emission spectrum of the solar corona. (Figure adapted from
Parkinson, Astron. Astrophys., 24, 215, 1973.)

Coronal Holes and the Solar Wind

An image of the X-ray Sun is shown in Fig. 22. This fascinating picture indicates that X-
ray emission is not uniform. Active (bright and hot) regions exist, along with darker, cooler
regions known as coronal holes. Moreover, even in the coronal holes, localized bright spots
of enhanced X-ray emission appear and disappear on a timescale of several hours. Smaller
features are also apparent within the regions of generally bright X-ray emission.

The weaker X-ray emission coming from coronal holes is characteristic of the lower
densities and temperatures that exist in those regions, as compared to the rest of the corona.
The explanation for the existence of coronal holes is tied to the Sun’s magnetic field and the
generation of the fast solar wind, a continuous stream of ions and electrons escaping from
the Sun and moving through interplanetary space at speeds of approximately 750 km s−1.
A gusty, slow solar wind, with speeds of roughly one-half those of the fast wind appears to
be produced by streamers in the corona associated with closed magnetic fields.

Just like the magnetic field that is produced by a current loop, the magnetic field of the
Sun is generally that of a dipole, at least on a global scale (Fig. 23). Although its value
can differ significantly in localized regions (as we will see in the next section), the strength
of the field is typically a few times 10−4 T near the surface. Coronal holes correspond
to those parts of the magnetic field where the field lines are open, while the X-ray bright
regions are associated with closed field lines; open field lines extend out to great distances
from the Sun, while closed lines form loops that return to the Sun.

The magnetic field near the surface of Earth is approximately 6 × 10−5 T.

8
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FIGURE 22 An X-ray image of the Sun obtained by the Soft X-Ray Telescope on the Yohkoh
Solar Observatory, May 8, 1992. Bright regions are hotter X-ray regions and darker regions are cooler.
A dark coronal hole is evident at the top of the image. (From the Yohkoh mission of ISAS, Japan.
The X-ray telescope was prepared by the Lockheed Palo Alto Research Laboratory, the National
Astronomical Observatory of Japan, and the University of Tokyo with the support of NASA and
ISAS.)

The Lorentz force equation,

F = q (E + v × B) , (2)

describing the force exerted on a charged particle of velocity v in an electric field E and a
magnetic field B states that the force due to the magnetic field is always mutually perpendic-
ular to both the direction of the velocity vector and the field (the cross product). Providing
that electric fields are negligible, charged particles are forced to spiral around magnetic
field lines and cannot actually cross them except by collisions (Fig. 24). This implies
that closed magnetic field lines tend to trap charged particles, not allowing them to escape.
In regions of open field lines, however, particles can actually follow the lines out away
from the Sun. Consequently, the solar wind originates from the regions of open magnetic
field lines, namely the coronal holes. The details observed in the X-ray-bright regions, as
well as the localized bright spots in the coronal holes, are due to the higher densities of the
electrons and ions that are trapped in large and small magnetic field loops.

The existence of ongoing mass loss from the Sun was deduced long before it was ever
detected directly, as evidenced by the tails of comets. The tails are generally composed of
two parts, a curved dust tail and a straight ion tail, both of which are always pointed away
from the Sun (Fig. 25). The force exerted on dust grains by photons (radiation pressure)

The Sun



I

(a)

(b)

North

South

FIGURE 23 (a) The characteristic dipole magnetic field of a current loop. (b) A generalized
depiction of the global magnetic field of the Sun. The dashed lines show the field of a perfect magnetic
dipole.
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FIGURE 24 A charged particle is forced to spiral around a magnetic field line because the
Lorentz force is mutually perpendicular to both the velocity of the particle and the direction of the
magnetic field.

is sufficient to push the dust tail back; the curvature of the tail is due to the different orbital
speeds of the individual dust grains, which, according to Kepler’s third law, are a function of
their varying distances from the Sun. However, the ion tail cannot be explained by radiation
pressure; the interaction between photons and the ions is not efficient enough. Rather, it is
the electric force between the ions of the solar wind and the ions in the comet that counts
for the direction of the ion tail. This interaction allows momentum to be transferred to the
cometary ions, driving them straight away from the Sun.
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FIGURE 25 Comet Mrkos in 1957. The dust tail of a comet is curved and its ion tail is straight.
(Courtesy of Palomar/Caltech.)

FIGURE 26 Aurora australis seen over the South Pole. (NASA)

The aurora borealis and the aurora australis (the northern and southern lights, respec-
tively) are also products of the solar wind (see Fig. 26). As the ions from the Sun interact
with Earth’s magnetic field, they become trapped in it. Bouncing back and forth between
the north magnetic pole and the south magnetic pole, these ions form the Van Allen radi-
ation belts. Ions that are sufficiently energetic will collide with the atoms in Earth’s upper
atmosphere near the magnetic poles, causing the atmospheric atoms to become excited or
ionized. The resulting de-excitations or recombinations emit the photons that produce the
spectacular light displays observed from high northern and southern latitudes.

The Sun



Using rockets and satellites, characteristics of the two solar winds can be measured as they
pass near Earth. In addition, the Ulysses spacecraft, placed in a polar orbit around the Sun,
was able to detect the wind well out of the plane of Earth’s orbit. At a distance of 1 AU from
the Sun, the solar wind velocity ranges from approximately 200 km s−1 to 750 km s−1, with
a typical density of 7 × 106 ions m−3 and characteristic kinetic temperatures of 4 × 104 K
for protons and 105 K for electrons. Although the winds are composed primarily of protons
and electrons, heavier ions are present as well.

Example 2.1. The mass loss rate of the Sun may be estimated from the data given
above. We know that all of the mass leaving the Sun must also pass through a sphere of
radius 1 AU centered on the Sun; otherwise it would collect at some location in space. If
we further assume (for simplicity) that the mass loss rate is spherically symmetric, then the
amount of mass crossing a spherical surface of radius r in an amount of time t is just the
mass density of the gas multiplied by the volume of the shell of gas that can travel across
the sphere during that time interval, or

dM = ρ dV = (nmH)(4πr2 v dt),

where n is the number density of ions (mostly hydrogen), mH is approximately the mass
of a hydrogen ion, v is the ion velocity, and dV = A dr ≃ 4πr2 v dt is the volume of a
shell that crosses a spherical surface in an amount of time dt . Dividing both sides by dt ,
we obtain the mass loss rate,

dM

dt
= 4πr2 nmHv = 4πr2 ρv. (3)

By convention, stellar mass loss rates are generally given in solar masses per year and sym-
bolized by Ṁ ≡ dM/dt . Using v = 500 km s−1, r = 1 AU, and n = 7 × 106 protons m−3,
we find that

Ṁ⊙ ≃ 3 × 10−14 M⊙ yr−1.

At this rate it would require more than 1013 yr before the entire mass of the Sun is
dissipated. However, the interior structure of the Sun is changing much more rapidly than
this, so the effect of the present-day solar wind on the evolution of the Sun is minimal.

As an interesting aside, in 1992 both Voyagers I and II detected radio noise at frequencies
of 1.8 to 3.5 kHz originating from the outer reaches of the Solar System. It is believed
that the noise is produced where particles from the solar wind collide with the interstellar
medium, producing a termination shock.

The 1992 observations represented the first detection
of the heliopause, the outer limit of the Sun’s electromagnetic influence. In 2005, when
Voyager I was about 95 AU from Earth and traveling at 3.6 AU per year, it passed through
the termination shock into the region known as the heliosheath. The strongest evidence that
Voyager I did in fact cross the termination shock comes from the measurement of a sudden
significant increase in the strength of the magnetic field that is carried by the solar wind.
This increased magnetic field strength is due to the slowing of the solar wind particles and
the resulting increase in particle density.

The Sun



The Parker Wind Model

We now consider how the expansion of the solar corona produces the solar wind. This is a
result of the corona’s high temperature, together with the high thermal conductivity of the
ionized gas, referred to as a plasma. The ability of the plasma to conduct heat implies that
the corona is almost isothermal (recall Fig. 18).

In 1958 Eugene Parker developed an approximately isothermal model of the solar wind
that has been successful in describing many of its basic features. To see why the solar wind
is inevitable, begin by considering the condition of hydrostatic equilibriu . If the mass
of the corona is insignificant compared to the total mass of the Sun, then Mr ≃ M⊙
in that region and the hydrostatic equilibrium equation becomes

dP

dr
= −GM⊙ρ

r2
. (4)

Next, assuming for simplicity that the gas is completely ionized and composed entirely of
hydrogen, the number density of protons is given by

n ≃ ρ

mp

since mp ≃ mH . From the ideal gas law, the pressure of the gas may be written as

P = 2nkT ,

where µ = 1/2 for ionized hydrogen and mH ≃ mp. Substituting expressions for the pres-
sure and density into Eq. (4), the hydrostatic equilibrium equation becomes

d

dr
(2nkT ) = −GM⊙nmp

r2
. (5)

Making the assumption that the gas is isothermal, Eq. ( 5) can be integrated directly
to give an expression for the number density (and therefore the pressure) as a function of
radius. It is left as an exercise to show that

n(r) = n0e
−λ(1−r0/r), (6)

where

λ ≡ GM⊙mp

2kT r0

and n = n0 at some radius r = r0. Note that λ is approximately the ratio of a proton’s
gravitational potential energy and its thermal kinetic energy at a distance r0 from the center
of the Sun. We now see that the pressure structure is just

P(r) = P0e
−λ(1−r0/r),

where P0 = 2n0kT .

m
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An immediate consequence of Eq. ( 2) is that in our isothermal approximation the
pressure does not approach zero as r goes to infinity. To estimate the limiting values of n(r)

and P(r), let T = 1.5 × 106 K and n0 = 3 × 1013 m−3 at about r0 = 1.4 R⊙, values typical
of the inner corona. Thenλ ≃ 5.5, n(∞) ≃ 1.2 × 1011 m−3, and P(∞) ≃ 5 × 10−6 N m−2.
However, with the exception of localized clouds of material, the actual densities and
pressures of interstellar dust and gas are much lower than those just derived.

Given the inconsistency that exists between the isothermal, hydrostatic solution to the
structure of the corona and the conditions in interstellar space, at least one of the assump-
tions made in the derivation must be incorrect. Although the assumption that the corona is
approximately isothermal is not completely valid, it is roughly consistent with observations.
Recall that near Earth (r ∼ 215 R⊙), the solar wind is characterized by temperatures on
the order of 105 K, indicating that the temperature of the gas is not decreasing rapidly with
distance. It can be shown that solutions that allow for a realistically varying temperature
structure still do not eliminate the problem of a predicted gas pressure significantly in excess
of the interstellar value. Apparently, it is the assumption that the corona is in hydrostatic
equilibrium that is wrong. Since P(∞) greatly exceeds the pressures in interstellar space,
material must be expanding outward from the Sun, implying the existence of the solar wind.

The Hydrodynamic Nature of the Upper Solar Atmosphere

If we are to develop an understanding of the structure of the solar atmosphere, the simple
approximation of hydrostatic equilibrium must be replaced by a set of hydrodynamic
equations that describe the flow. In particular, when we write

d2r

dt2
= dv

dt
= dv

dr

dr

dt
= v

dv

dr
,

ρv
dv

dr
= −dP

dr
− G

Mrρ

r2
, (7)

where v is the velocity of the flow. With the introduction of a new variable (velocity),
another expression that describes the conservation of mass flow across boundaries must
also be included, specifically

4πr2ρv = constant,

which is just the relationship that was used in Example 2.1 to estimate the Sun’s mass
loss rate. This expression immediately implies that

d(ρvr2)

dr
= 0.

At the top of the convection zone, the motion of the hot, rising gas and the return flow of
the cool gas sets up longitudinal waves (pressure waves) that propagate outward through the
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photosphere and into the chromosphere. The outward flux of wave energy, FE , is governed
by the expression

FE = 1
2
ρv2

wvs, (8)

where vs is the local sound speed and vw is the velocity amplitude of the oscillatory wave
motion for individual particles being driven about their equilibrium positions by the “piston”
of the convection zone.

he sound speed is given by

vs =
√

γP/ρ.

Since, according to the ideal gas law, P = ρkT /µmH , the sound speed may also be written
as

vs =
√

γ kT

µmH

∝
√

T

for fixed γ and µ.
When the wave is first generated at the top of the convection zone, vw < vs . However,

the density of the gas that these waves travel through decreases significantly with altitude,
dropping by four orders of magnitude in approximately 1000 km. If we assume that very little
mechanical energy is lost in moving through the photosphere (i.e., 4πr2 FE is approximately
constant) and that vs remains essentially unchanged since the temperature varies by only
about a factor of two across the photosphere and chromosphere, the rapid decrease in density
means that vw must increase significantly (approximately two orders of magnitude). As a
result, the wave motion quickly becomes supersonic (vw > vs) as particles in the wave try
to travel through the medium faster than the local speed of sound. The result is that the
wave develops into a shock wave, much like the shock waves that produce sonic booms
behind supersonic aircraft.

A shock wave is characterized by a very steep density change over a short distance,
called the shock front. As a shock moves through a gas, it produces a great deal of
heating via collisions, leaving the gas behind the shock highly ionized. This heating comes
at the expense of the mechanical energy of the shock, and the shock quickly dissipates. Thus
the gas in the chromosphere and above is effectively heated by the mass motions created in
the convection zone.

Magnetohydrodynamics and Alfvén Waves

It should be noted that our discussion of the hydrodynamic equations has failed to account
for the influence of the Sun’s magnetic field. It is believed that the temperature structure
throughout the outer solar atmosphere, including the very steep positive temperature gra-
dient in the transition region, is due at least in part to the presence of the magnetic field,
coupled with mass motions produced by the convection zone. Magnetohydrodynamics

T
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(usually mercifully shortened to MHD) is the study of the interactions between magnetic
fields and plasmas. Owing to the great complexity of the problem, a complete solution to
the set of MHD equations applied to the outer atmosphere of the Sun does not yet exist.
However, some aspects of the solution can be described.

The presence of the magnetic field allows for the generation of a second kind of wave
motion. These waves may be thought of as transverse waves that propagate along the
magnetic field lines as a consequence of the restoring force of tension associated with the
magnetic field lines. To understand the origin of this restoring force, recall that establishing a
magnetic field (which is always generated by moving electric charges, or currents) requires
that energy be expended. The energy used to establish the field can be thought of as being
stored within the magnetic field itself; thus the space containing the magnetic field also
contains a magnetic energy density. The value of the magnetic energy density is given by

um = B2

2µ0
. (9)

If a volume V of plasma containing a number of magnetic field lines is compressed in
a direction perpendicular to the lines, the density of field lines necessarily increases. But
the density of field lines is just a description of the strength of the magnetic field itself,
so the energy density of the magnetic field also increases during compression. An amount
of mechanical work must therefore have been done in compressing the field lines in the
gas. Since work is given by W =

∫

P dV , the compression of the plasma must imply the
existence of a magnetic pressure. It can be shown that the magnetic pressure is numerically
equal to the magnetic energy density, or

Pm = B2

2µ0
. (10)

When a magnetic field line gets displaced by some amount perpendicular to the direction
of the line, a magnetic pressure gradient becomes established; the pressure in the direction
of the displacement increases as indicated by an increase in the number density of field
lines, while at the same time the pressure in the opposite direction decreases. This pressure
change then tends to push the line back again, restoring the original density of field lines.
This process may be thought of as analogous to the oscillations that occur in a string when
a portion of the string is displaced; it is the tension in the string that pulls it back when
it is plucked. The “tension” that restores the position of the magnetic field line is just the
magnetic pressure gradient.

As with the traveling motion of a wave on a string, a disturbance in the magnetic field line
can also propagate down the line. This transverse MHD wave is called an Alfvén wave.1

f the electric field is negligible, charged particles must spiral around field lines. This implies that if
the charged particles are pushed, they drag the field lines with them; the field lines are said to be “frozen in” the
plasma.
1 Alfvén waves are named for Hannes Olof Gösta Alfvén, (1908–1995), who was awarded the Nobel Prize in
1970 for his fundamental studies in magnetohydrodynamics.
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The speed of propagation of the Alfvén wave may be estimated by making a comparison
with the sound speed in a gas. Since the adiabatic sound speed is given by

vs =
√

γPg

ρ
,

where γ is of order unity, by analogy the Alfvén speed should be approximately

vm ∼
√

Pm

ρ
= B√

2µ0ρ
.

A more careful treatment gives the result

vm = B√
µ0ρ

. (11)

Example 2.2. Using Eq (11), the sound speed and Alfvén speed may be compared
for the photosphere. The gas pressure at the top of the photosphere is roughly 140 N m−2,
with a density of 4.9 × 10−6 kg m−3. Assuming an ideal monatomic gas for which
γ = 5/3,

vs ≃ 7000 m s−1.

pparently, the sound speed is much larger in the Sun’s interior.
Taking a typical surface magnetic field strength to be 2 × 10−4 T, the magnetic pressure

is (from Eq. 10)

Pm ≃ 0.02 N m−2,

and the Alfvén speed is

vm ≃ 10 m s−1.

The magnetic pressure may generally be neglected in photospheric hydrostatic consid-
erations since it is smaller than the gas pressure by roughly four orders of magnitude.
However, we will see in the next section that much larger magnetic field strengths can exist
in localized regions on the Sun’s surface.

Since Alfvén waves can propagate along magnetic field lines, they may also transport
energy outward. According to Maxwell’s equations, a time-varying magnetic field produces
an electric field, which in turn creates electrical currents in the highly conductive plasma.
This implies that some resistive Joule heating will occur in the ionized gas, causing the
temperature to rise. Thus MHD waves can also contribute to the temperature structure of
the upper solar atmosphere.

A
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FIGURE 27 The Sun’s rotation creates a spiral pattern in the solar magnetic field in interplanetary
space, known as the Parker spiral. The drag produced by the spiraling magnetic field causes angular
momentum to be transferred away from the Sun. This diagram shows the heliospheric current sheet
that separates regions of space where the magnetic field points toward or away from the Sun. The
orbits of the planets out to Jupiter are depicted. (Courtesy of Prof. John M. Wilcox and NASA artist
Werner Heil.)

Because of the Sun’s rotation, its open magnetic field lines are dragged along through
interplanetary space (Fig. 27). Since the solar wind is forced to move with the field lines,
a torque is produced that actually slows the Sun’s rotation. Said another way, the solar wind
is transferring angular momentum away from the Sun. As a result, the Sun’s rotation rate
will decrease significantly over its lifetime. Interestingly, the differential rotation present in
the photosphere is not manifested in the corona. Apparently, the magnetic field, which so
strongly influences the structure of the corona, does not exhibit differential rotation at this
height.

The Outer Atmospheres of Other Stars

Although this chapter is devoted to our Sun, the most thoroughly studied of all stars, the outer
atmospheres of other stars can be investigated as well. For instance, observations indicate
that the rotation rates of solar-type stars seem to decrease with age. Furthermore, late main-
sequence stars, with their convective envelopes, generally have much slower rotation rates
than stars on the upper end of the main sequence. Perhaps winds are transferring angular
momentum away from these lower-mass stars as well.

Ahost of satellites such as EUVE, FUSE, ROSAT,ASCA, XMM-Newton, and the Chan-
dra X-Ray Observatory have also provided us with valuable UV and X-ray observations of
other stars. It appears that stars along the main sequence that are cooler than spectral class
F have emission lines in the ultraviolet that are similar to those observed coming from the
Sun’s chromosphere and transition region. In addition, X-ray observations indicate corona-
like emissions. These stars are also those for which stellar structure calculations indicate that
surface convection zones should exist. Apparently, the same mechanisms that are heating
the outer atmosphere of our Sun are also in operation in other stars.

The Sun



3 THE SOLAR CYCLE

Some of the most fascinating and complex features of the solar atmosphere are transient in
nature. However, as we will learn in this section, many observational features of the solar
atmosphere are also cyclic.

Sunspots

It was Galileo who made the first telescopic observations of sunspots (recall Fig. 11).
Sunspots are even visible occasionally with the unaided eye, but making such observations
is strongly discouraged because of the potential for eye damage.

Reliable observations made over the past two centuries indicate that the number of
sunspots is approximately periodic, going from minimum to maximum and back to mini-
mum again nearly every 11 years (Fig. 28). The average latitude of sunspot formation is
also periodic, again over an 11-year cycle. A plot of sunspot location as a function of time
is shown in Fig. 29, along with a plot of the percentage of the solar surface covered by
sunspots. Because of its wing-like appearance, the top portion of Fig. 29 has come to
be known as the butterfly diagram. Individual sunspots are short-lived features, typically
surviving no more than a month or so. During its lifetime, a sunspot will remain at a constant
latitude, although succeeding sunspots tend to form at progressively lower latitudes. As the
last sunspots of one cycle vanish near the Sun’s equator, a new cycle begins near ±40◦

(north and south) of the equator. The largest number of spots (sunspot maximum) typically
occurs at intermediate latitudes.

The key to understanding sunspots lies in their strong magnetic fields. A typical sunspot
is shown in Fig. 30. The darkest portion of the sunspot is known as the umbra and
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FIGURE 28 The number of sunspots between 1700 and 2005 indicates an 11-year periodicity.
(Data from the World Data Center for the Sunspot Index at the Royal Observatory of Belgium.)
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FIGURE 29 The upper figure depicts the butterfly diagram, showing sunspot latitudes with time.
The lower figure shows the percentage of the Sun’s surface covered by sunspots as a function of time.
(Courtesy of Dr. David H. Hathaway, NASA/Marshall Space Flight Center.)

may measure as much as 30,000 km in diameter. (For reference, the diameter of Earth
is 12,756 km.) The umbra is usually surrounded by a filament-like structure, called the
penumbra, whose mere appearance suggests the presence of magnetic lines of force. The
existence of a strong magnetic field can be verified by observing individual spectral lines

Sunspots are generally located in groups. Typically, a dominant sunspot leads in the
direction of rotation, and one or more sunspots follow. During an 11-year cycle, the lead
sunspot will always have the same polarity in one hemisphere—say, a north pole in the
geographic northern hemisphere—while the lead sunspot in the other hemisphere will have
the opposite polarity (e.g., a south pole in the geographic southern hemisphere); trailing
sunspots have the opposite polarity. Even when a large collection of trailing spots exist,
resulting from a tangled magnetic field pattern, a basically bipolar field is present. During the
next 11-year cycle, polarities will be reversed; the sunspot with a magnetic south polarity will
lead in the northern hemisphere, and vice versa in the southern hemisphere. Accompanying
this local polarity reversal is a global polarity reversal: the overall dipole field of the Sun

The Sun

produced within the spot. The strength and polarity of magnetic fields can be measured 
by observing the Zeeman effect, the splitting of spectral lines that results from removing 
the degeneracy inherent in atomic energy levels.The amount of splitting is proportional 
to the strength of the magnetic field, whereas the polarization of the light corresponds to 
the direction of the field. Figure 31 shows an example of the splitting of a spectral line 
measured across a sunspot. Magnetic field strengths of several tenths of a tesla and greater 
have been measured in the centers of umbral regions, with field strengths decreasing across 
penumbral regions. Furthermore, polarization measurements indicate that the direction of 
a typical umbral magnetic field is vertical, becoming horizontal across the penumbra.



FIGURE 30 A typical sunspot group. The dark umbra of the central sunspot is clearly evident, as
is the filamentary structure of its penumbra. (Courtesy of the Royal Swedish Academy of Sciences.)

will change so that the magnetic north pole of the Sun will switch from the geographic north
pole to the geographic south pole. Polarity reversal always occurs during sunspot minimum,
when the first sunspots are beginning to form at the highest latitudes. When the polarity
reversal is considered, the Sun is said to have a 22-year cycle. This important magnetic
behavior is illustrated in Fig. 32.

The dark appearance of sunspots is due to their significantly lower temperatures. In the
central portion of the umbra the temperature may be as low as 3900 K, compared with
the Sun’s effective temperature of 5777 K. his implies a surface bolometric
flux that is a factor of (5777/3900)4 = 4.8 lower than that of the surrounding photosphere.1

Observations obtained from the Solar Maximum Mission satellite (SMM) have shown that
this decrease in surface flux affects the overall energy output of the Sun. When a number of
large sunspots exist, the solar luminosity is depressed by roughly 0.1%. Since convection
is the principal energy transport mechanism just below the photosphere, and since strong

1 A 3900-K blackbody is very bright, of course. However, when seen through a filter dark enough to make viewing
the rest of the 5777-K photosphere comfortable, the sunspot appears dark.
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FIGURE 31 The Zeeman splitting of the Fe 525.02-nm spectral line due to the presence of
a strong magnetic field in a sunspot. The spectrograph slit was aligned vertically across a sunspot,
resulting in a wavelength dependence that runs from left to right in the image. The slit extended beyond
the image of the sunspot. (Courtesy of the National Optical Astronomy Observatories/National Solar
Observatory.)
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FIGURE 32 The global magnetic field orientation of the Sun, along with the magnetic polarity
of sunspots during successive 11-year periods.

magnetic fields inhibit motion through the “freezing in” of field lines in a plasma, it is likely
that the mass motion of convective bubbles is inhibited in sunspots, thereby decreasing the
flow of energy through the sunspots.

Along with luminosity variations on a timescale of months (the typical lifetime of an
individual sunspot), the Sun’s luminosity seems to experience variability on a much longer
timescale, as does the number of sunspots. For instance, very few sunspots were observed
between 1645 and 1715; this time interval has come to be called the Maunder minimum
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FIGURE 33 An unusually small number of sunspots were observed between 1645 and 1715
(the Maunder minimum). (Adapted from a figure courtesy of J. A. Eddy, High Altitude Observatory.)

(see Fig. 33).1 Surprisingly, during this period the average temperature in Europe was
significantly lower, consistent with the solar luminosity being a few tenths of a percent less
than it is today. John Eddy has proposed that there is a very long-term periodicity on which
the solar cycle is superimposed. This long-period variation goes through grand sunspot
maxima and minima that may last for centuries. Evidence in support of this suggestion
is found on Earth in the relative numbers of atmospheric carbon dioxide molecules that
contain radioactive carbon atoms (14

6C), as preserved in the 7000-year-long record of tree
rings. The importance of 14

6C in long-term sunspot studies lies in an inverse correlation
between sunspots and the amount of 14

6C present in Earth’s atmosphere. 14
6C is a radioactive

isotope of carbon that is produced when extremely energetic charged particles from space,
called cosmic rays, collide with atmospheric nitrogen. Cosmic rays are affected by the
magnetic field of the Sun, which in turn is affected by solar activity. During the Maunder
minimum, the amount of atmospheric 14

6C increased significantly and was incorporated into
the rings of living trees. The amount of 14

6C also seems to correlate well with the advance
and retreat of glaciers over the past 5000 years.

Plages

A variety of other phenomena are also associated with sunspot activity. Plages (from the
French word for beach) are chromospheric regions of bright Hα emission located near

1 With the development and continual improvement of the telescope beginning during the early phase of the
Maunder minimum (recall that Galileo died in 1642 and Newton was born in the same year), the Maunder
minimum was not a manifestation of poor observations.

2

2

The Sun

With lower temperatures in sunspots, the gas pressure is necessarily lower than in the 
surrounding material. However, the gravitational force is essentially the same. From these 
considerations alone, it seems as though the gas within a sunspot ought to sink into the 
interior of the star, an effect that is not observed. Without the benefit of a sufficiently large 
gas pressure gradient to support a sunspot, another component to the pressure must exist. 
As we have already seen in the last section, a magnetic field is accompanied by a pressure 
term. It is this extra magnetic pressure that provides the support necessary to keep a sun-
spot from sinking or being compressed by the surrounding gas pressure.



active sunspots (recall Fig. 17). They usually form before the sunspots appear and usually
disappear after the sunspots vanish from a particular area. Plages have higher densities than
the surrounding gas and are products of the magnetic fields. Apparently the cause of the
decreased brightness of sunspots does not play an important role in plages.

Solar Flares

Solar flares are eruptive events that are known to release from 1017 J of energy at the
lower detection limit to as much as 1025 J of energy over time intervals ranging from
milliseconds to more than an hour.1 The physical dimensions of a flare are enormous,
with a large flare reaching 100,000 km in length (see Fig. 34a). During an eruption,
the hydrogen Balmer line, Hα, appears locally in emission rather than in absorption, as
is usually the case, implying that photon production occurs above much of the absorbing
material. When observed in Hα, a flare is often seen on the disk as two ribbons of light
(Fig. 34b). Along with Hα, other types of electromagnetic radiation are produced that
can range from kilometer-wavelength nonthermal radio waves due to synchrotron radiation
to very short-wavelength hard X-ray and gamma-ray emission lines.

Charged particles are also ejected outward at high speeds, many escaping into interplan-
etary space as solar cosmic rays. In the largest flares the ejected charged particles, mostly
protons and helium nuclei, may reach Earth in 30 minutes, disrupting some communica-
tions and posing a very serious threat to any unprotected astronauts. Shock waves are also
generated and can occasionally propagate several astronomical units before dissipating.

(a) (b)

FIGURE 34 (a) A solar flare seen at the limb of the Sun, observed by the Yohkoh Soft X-ray
Telescope, March 18, 1999, 16:40 UT. (From the Yohkoh mission of ISAS, Japan. The X-ray telescope
was prepared by the Lockheed PaloAlto Research Laboratory, the NationalAstronomical Observatory
of Japan, and the University of Tokyo with the support of NASA and ISAS.) (b) A two-ribbon flare
seen in Hα on October 19, 1989. (Courtesy of the National Optical Astronomy Observatories.)

1 For comparison, a one-megaton bomb releases approximately 1016 J.
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FIGURE 35 A model of the January 13, 1992, Masuda solar flare. Note the two hard X-ray
(HXR) footpoint sources associated with Hα flare ribbons [see Fig. 34(b)]. Electrons are accelerated
downward along the magnetic field lines until they collide with the chromosphere. The soft X-ray
(SXR) loop may be compared to Fig. 34(a). (Figure adapted from Aschwanden, et al., Ap. J., 464,
985, 1996.)

The answer to the question of what powers solar flares lies in the location of the flare
eruption. Flares develop in regions where the magnetic field intensity is great, namely
in sunspot groups. From the discussion of the previous section, the creation of magnetic
fields results in energy being stored in those magnetic fields (Eq. 9). If a magnetic field
disturbance could quickly release the stored energy, a flare might develop. It is left as an
exercise to show that both the amount of energy stored in the magnetic field and the timescale
involved in perturbing it via Alfvén waves are consistent with the creation of a solar flare.
However, details of the energy conversion, such as particle acceleration, are still a matter
of active research.

A model of a solar flare is illustrated in Fig. 35. The general mechanism of a solar flare
involves the reconnection of magnetic field lines. A disturbance in magnetic field loops
(perhaps due to the Sun’s convection zone) causes the creation of a sheet of current in the
highly conducting plasma (recall Lenz’s law). The finite resistance in the plasma results
in Joule heating of the gas, causing temperatures to reach 107 K. Particles accelerated
away from the reconnection point and away from the Sun may escape entirely, producing
solar cosmic rays. Radio-wavelength radiation is generated by the synchrotron process of
charged particles spiraling around the magnetic field lines. Soft X-ray emission results from
the high temperatures in the loop below the acceleration (reconnection) point. Hα emission
at the base of the magnetic field lines (the two Hα ribbons) is produced by recombining
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electrons and protons that are accelerated away from the reconnection point, toward the
chromosphere.

In addition, high-energy particles accelerated toward the chromosphere produce hard
X-rays and gamma rays due to surface nuclear reactions. Examples of important nuclear
reactions associated with solar flares are spallation reactions that break heavier nuclei into
lighter nuclei, such as

1
1H + 16

8O → 12
6C∗ + 4

2He + 1
1H,

where C∗ represents a carbon nucleus in an excited state, followed by the de-excitation
reaction

12
6C∗ → 12

6C + γ ,

with Eγ = 4.438 MeV, or

1
1H + 20

10Ne → 16
8O∗ + 4

2He + 1
1H,

followed by the de-excitation reaction

16
8O∗ → 16

8O + γ ,

with Eγ = 6.129 MeV. Other examples of reactions produced by flares on the Sun’s surface
include electron–positron annihilation,

e− + e+ → γ + γ

where Eγ = 0.511 MeV, and the production of deuterium by

1
1H + n → 2

1H∗ → 2
1H + γ ,

where Eγ = 2.223 MeV.

Solar Prominences

Solar prominences are also related to the Sun’s magnetic field. Quiescent prominences
are curtains of ionized gas that reach well into the corona and can remain stable for weeks
or months. The material in the prominence has collected along the magnetic field lines of
an active region, with the result that the gas is cooler (with a typical temperature of 8000 K)
and more dense than the surrounding coronal gas. This causes the gas to “rain” back down
into the chromosphere. When viewed in Hα at the limb of the Sun, quiescent prominences
appear as bright structures against the thin corona. However, when viewed in the continuum
against the solar disk, a quiescent prominence appears as a dark filament, absorbing the
light emitted from below. An example of a quiescent prominence is shown in Fig. 36(a).

An eruptive (or active) prominence (Fig. 36b) may exist for only a few hours and
may abruptly develop from a quiescent prominence. It appears as though a relatively stable
magnetic field configuration can suddenly become unstable, causing the prominence to lift
away from the Sun. Although the mechanism is related to that of a solar flare, the outcome
is somewhat different; rather than most of the energy going into electromagnetic radiation,
the energy of an eruptive prominence is converted into mass motions as gas is ejected
from the Sun.

The Sun



(b)

(a)

FIGURE 36 (a) A quiescent hedgerow prominence. (Courtesy of Big Bear Solar Observatory,
California Institute of Technology.) (b) An eruptive prominence observed by the SOHO Extreme
Ultraviolet Imaging Telescope (EIT) on July 24, 1999. [SOHO (ESA & NASA)]

Coronal Mass Ejections

Even more spectacular is a coronal mass ejection (CME). CMEs have been observed
since the early 1970s using spacecraft such as NASA’s seventh Orbiting Solar Observatory
(OSO 7) and Skylab. Most recently, CMEs have been observed routinely by SOHO’s Large
Angle Spectrometric COronograph (LASCO); see Fig. 37. LASCO uses an occulting
disk to create an artificial solar eclipse, allowing it to observe the white-light corona from
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FIGURE 37 A coronal mass ejection observed by the SOHO LASCO instrument on June 2,
1998. Note the intricacy of the magnetic field lines within the CME. The white circle on the occulting
disk represents the size of the Sun out to the photosphere. [SOHO (ESA & NASA)]

a few solar radii out to 30 R⊙. With the detection of thousands of CMEs it appears that
there is about one CME per day when averaged over the 11-year sunspot cycle. When the
Sun is more active (i.e., near sunspot maximum) the frequency may be about 3.5 events per
day, and during sunspot minimum the number of events may decrease to roughly one every
five days. During a CME event, between 5 × 1012 kg and 5 × 1013 kg of material may be
ejected from the Sun at speeds ranging from 400 km s−1 to over 1000 km s−1. CMEs appear
to be associated with eruptive prominences approximately 70% of the time, and with flares
only about 40% of the time. One can think of a CME as a magnetic bubble lifting off of
the Sun’s surface after a magnetic reconnection event, carrying a significant fraction of the
mass of the solar corona with it.

The Time-Dependent Shape of the Corona

Yet another feature of the solar cycle involves the shape of the corona itself. During a period
of little solar activity, when there are few sunspots and few, if any, flares or prominences,
the quiet corona is generally more extended at the equator than at the poles, consistent
with a nearly dipole magnetic field. Near sunspot maximum, the active corona is more
complex in shape, as is the structure of the magnetic field. Examples of the shape of the
corona during sunspot minimum and maximum are seen in Figs. 20(a) and 20(b),
respectively. Evidently, the changing shape of the corona, like other solar activity, is due to
the dynamic structure of the Sun’s magnetic field.

The Sun



The Magnetic Dynamo Theory

A magnetic dynamo model describing many of the components of the solar cycle was first
proposed by Horace Babcock in 1961. Despite its general success in describing the major
features of the solar cycle, the model is not yet able to provide adequate explanations of
many of the important details of solar activity. Any complete picture of the solar cycle will
require a full treatment of the MHD equations in the solar environment, including differing
rotation rates with latitude and depth in the Sun, convection, solar oscillations, heating of
the upper atmosphere, and mass loss. Of course, not all of these processes are likely to play
equally important roles in the study of the solar cycle, but it is important to understand the
degree to which each of them contributes to the particular phenomenon under investigation.

As depicted in Fig. 38, because the magnetic field lines are “frozen into” the gas, the
differential rotation of the Sun drags the lines along, converting a poloidal field (essentially
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FIGURE 38 The magnetic dynamo model of the solar cycle. (a) The solar magnetic field is
initially a poloidal field. (b) Differential rotation drags the “frozen-in” magnetic field lines around
the Sun, converting the poloidal field into a toroidal field. (c) Turbulent convection twists the field
lines into magnetic ropes, causing them to rise to the surface as sunspots, the polarity of the lead
spots corresponding to the original polarity of the poloidal field. (d) As the cycle progresses, succes-
sive sunspot groups migrate toward the equator where magnetic field reconnection reestablishes the
poloidal field, but with the original polarity reversed.
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a simple magnetic dipole) to one that has a significant toroidal component (field lines that
are wrapped around the Sun). The turbulent convection zone then has the effect of twisting
the lines, creating regions of intense magnetic fields, called magnetic ropes. The buoyancy
produced by magnetic pressure (Eq. 10) causes the ropes to rise to the surface, appearing
as sunspot groups. The polarity of the sunspots is due to the direction of the magnetic field
along the ropes; consequently, every lead spot in one hemisphere will have the same polarity
while the lead spots in the other hemisphere will have the opposite polarity.

Initially, the little twisting that does develop occurs at higher latitudes; during sunspot
minimum. As the differential rotation continues to drag the field lines along and convective
turbulence ties them in knots, more sunspots develop at intermediate latitudes, producing
a sunspot maximum. It would seem that ultimately the greatest amount of twisting and the
largest number of sunspots should develop near the equator. However, sunspots from the
two hemispheres tend to cancel out near the equator since the polarities of their leading
spots are opposed. As a result, the number of sunspots appearing near the equator is small.
Finally, the cancelation of magnetic fields near the equator causes the poloidal field to
be reestablished, but with its original polarity reversed. This process takes approximately
11 years. The entire procedure repeats continuously, with the polarity of the magnetic field
returning to its original orientation every other cycle. Hence, the entire solar cycle is actually
22 years long when magnetic field polarities are considered.

As we have already seen, details related to specific phenomena, such as the cause of
the decreased flux coming from sunspots or the exact process of flare generation, are not
yet well understood. The same situation also holds for the more fundamental magnetic
dynamo itself. Although the preceding discussion describes the behavior of the solar cycle
in an approximate way, even such basic results as the timescales involved have not yet
been accurately modeled. A successful magnetic dynamo model must not only produce the
general location and numbers of sunspots and flares, but it must also do so with the observed
22-year periodicity. Moreover, the dynamo model must replicate the much slower variation
that appears to be responsible for the Maunder minimum.

Evidence of Magnetic Activity in Other Stars

Fortunately, some evidence does exist that the basic ideas behind the solar cycle are correct.
Observations of other cool main-sequence stars indicate that they possess activity cycles
much like the solar cycle. It was pointed out in the last section that late main-sequence stars
exhibit observational characteristics consistent with the existence of hot coronae. It was also
mentioned that angular momentum is apparently lost via stellar winds. Both phenomena
agree with the theoretical onset of surface convection in low-mass stars, a major component
of the dynamo theory.

Other forms of magnetic activity have also been seen in some stars. Observations indicate
the existence of flare stars, main-sequence stars of class M that demonstrate occasional,
rapid fluctuations in brightness. If flares the size of those on the Sun were to occur on the
much dimmer M stars, the flares would contribute significantly to the total luminosity of
those stars, producing the short-term changes that are observed. Much larger flares may
also be generated by other stars as well: On April 24, 2004, the star GJ 3685A released a
flare that was roughly one million times more energetic than a large solar flare. The event
was detected serendipitously by NASA’s Galaxy Evolution Explorer.
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FIGURE 39 The light curve of BD + 26◦730, a BY Dra star. SAO 76659 is a nearby reference
star. (Figure from Hartmann et al., Ap. J., 249, 662, 1981.)

Starspots are also observed to exist on stars other than the Sun. Starspots are revealed by
their effect on the luminosity of a star, which can be measured at a level of 1%. Two classes
of stars, RS Canum Venaticorum and BY Draconis stars,1 show significant long-term
variations that are attributed to starspots covering appreciable fractions of their surfaces.
For example, Fig. 39 shows a variation of over 0.6 magnitude in the B band for the BY
Draconis star, BD + 26◦730. Starspots can even be used to measure stellar rotation.

Magnetic fields have also been detected directly on several cool main-sequence stars by
measuring Zeeman-broadened spectral lines. Analysis of the data indicates field strengths
of several tenths of a tesla over significant fractions of the stellar surfaces. The existence of
the strong fields correlates with their observed luminosity variations.

From our discussion in this chapter, it should be clear that astrophysics has had a great
deal of success in explaining many of the features of our Sun. The stellar structure equations
describe the major aspects of the solar interior, and much of the Sun’s complex atmosphere
is also understood. But many other important issues remain to be resolved, such as the
surface abundance of lithium, the intricate details of the solar cycle, and the interaction
between the Sun and Earth’s climate. Much exciting and challenging work remains to be
done before we can feel confident that we fully understand the star that is closest to us.

1 Classes of stars that show light variations, variable stars, are usually named after the first star discovered that
exhibits the specific characteristics. RS CVn and BY Dra are main-sequence stars of spectral classes F–G and
K–M, respectively. The letters RS and BY indicate that these are variable stars; Canum Venaticorum and Draconis
are the constellations in which the stars are located.
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PROBLEM SET

1 Using Fig. 1, verify that the change in the Sun’s effective temperature over the past 4.57 bil-
lion years is consistent with the variations in its radius and luminosity.

2 (a) At what rate is the Sun’s mass decreasing due to nuclear reactions? Express your answer
in solar masses per year.

(b) Compare your answer to part (a) with the mass loss rate due to the solar wind.
(c) Assuming that the solar wind mass loss rate remains constant, would either mass loss process

significantly affect the total mass of the Sun over its entire main-sequence lifetime?

3 Using the Saha equation, calculate the ratio of the number of H− ions to neutral hydrogen atoms
in the Sun’s photosphere. Take the temperature of the gas to be the effective temperature, and
assume that the electron pressure is 1.5 N m−2. Note that the Pauli exclusion principle requires
that only one state can exist for the ion because its two electrons must have opposite spins.

4 The Paschen series of hydrogen (n = 3) can contribute to the visible continuum for the Sun
since the series limit occurs at 820.8 nm. However, it is the contribution from the H− ion that
dominates the formation of the continuum. Using the results of Problem 3 above, along with the
Boltzmann equation, estimate the ratio of the number of H− ions to hydrogen atoms in the
n = 3 state.
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FIGURE 1 The evolution of the Sun on the main sequence. As a result of changes in its internal
composition, the Sun has become larger and brighter. The solid line indicates its luminosity, the dashed
line its radius, and the dash-dot line its effective temperature. The luminosity and radius curves are
relative to present-day values. (Data from Bahcall, Pinsonneault, and Basu, Ap. J., 555, 990, 2001.)
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6 Estimate the thermally Doppler-broadened line widths for the hydrogen Lyα, C III, O VI, and
Mg X lines given below; use the temperatures provided. Take the masses of H, C, O, and
Mg to be 1 u, 12 u, 16 u, and 24 u, respectively.

7 (a) Using the below equation, show that in the Sun’s photosphere,

ln (Ba/Bb) ≈ 11.5 + hc

kT

(

1
λb

− 1
λa

)

where Ba/Bb is the ratio of the amount of blackbody radiation emitted at λa = 10 nm to
the amount emitted at λb = 100 nm, centered in a wavelength band 0.1 nm wide.

(b) What is the value of this expression for the case where the temperature is taken to be the
effective temperature of the Sun?

(c) Writing the ratio in the form Ba/Bb = 10x , determine the value of x.

8 The gas pressure at the base of the photosphere is approximately 2 × 104 N m−2 and the mass
density is 3.2 × 10−4 kg m−3. Estimate the sound speed at the base of the photosphere, and
compare your answer with the values at the top of the photosphere and averaged throughout
the Sun.

9 Suppose that you are attempting to make observations through an optically thick gas that
has a constant density and temperature. Assume that the density and temperature of the gas
are 2.2 × 10−4 kg m−3 and 5777 K, respectively, typical of the values found in the Sun’s
photosphere. If the opacity of the gas at one wavelength (λ1) is κλ1 = 0.026 m2 kg−1 and the
opacity at another wavelength (λ2) is κλ2 = 0.030 m2 kg−1, calculate the distance into the gas
where the optical depth equals 2/3 for each wavelength. At which wavelength can you see
farther into the gas? How much farther? This effect allows astronomers to probe the Sun’s
atmosphere at different depths (see Fig. 13).

(b) Using Hα redshift data for solar granulation, estimate the full width at half-maximum when
convective turbulent motions are included with thermal motions.

(c) What is the ratio of v2
turb to 2kT /m?

(d) Determine the relative change in the full width at half-maximum due to Doppler broadening
when turbulence is included. Does turbulence make a significant contribution to (+λ)1/2

in the solar photosphere?

Lyman-alpha (Lyα) emission line of hydrogen (n= 2 → n =1) is produced
the chromosphere at 20,000 K, the CIII 97.7-nm line originates at a level where the

temperature is 90,000 K, the 103.2-nm line of O VI occurs at 300,000 K, and Mg X creates a
62.5-nm line at 1.4 × 106 K.

The121.6-nm

(-λ)1/2 = 2λ
c

√

(

2kT

m
+ v2

turb

)

ln 2,

5 (a) Using the below equation and neglecting turbulence, estimate the full width at half-maximum
α absorption line due to random thermal motions in the Sun’s photosphere.

Assume that the temperature is the Sun’s effective temperature.
of the hydrogen H
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Bλ(T ) = 2hc2/λ5

ehc/λkT − 1
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FIGURE 13 The relationship between absorption line strength and depth in the photosphere for
a typical spectral line. The wings of the line are formed deeper in the photosphere than is the center
of the line.

10 (a) Using the data given in Example 2  of The Sun, estimate the pressure scale height at

(b) Assuming that the ratio of the mixing length to the pressure scale height is 2.2, use the
measured Doppler velocity of solar granulation to estimate the amount of time required for
a convective bubble to travel one mixing length. Compare this value to the characteristic
lifetime of a granule.

11 Show that Eq. (6) follows directly from Eq. (5).

12 Calculate the magnetic pressure in the center of the umbra of a large sunspot. Assume that the
magnetic field strength is 0.2 T. Compare your answer with a typical value of 2 × 104 N m−2

for the gas pressure at the base of the photosphere.

13 Assume that a large solar flare erupts in a region where the magnetic field strength is 0.03 T
and that it releases 1025 J in one hour.

(a) What was the magnetic energy density in that region before the eruption began?

(b) What minimum volume would be required to supply the magnetic energy necessary to fuel
the flare?

(c) Assuming for simplicity that the volume involved in supplying the energy for the flare
eruption was a cube, compare the length of one side of the cube with the typical size of a
large flare.

(d) How long would it take an Alfvén wave to travel the length of the flare?

the base of the photosphere.

d

dr
(2nkT ) = −GM⊙nmp

r2
. (5)

n(r) = n0e
−λ(1−r0/r) (6)

(e) What can you conclude about the assumption that magnetic energy is the source of solar
flares, given the physical dimensions and timescales involved?
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with the annual mass loss from the solar wind. Express your answer as a percentage of CME
mass loss to solar wind mass loss.

15 Assume that the velocity of a CME directed toward Earth is 400 km s−1 and that the mass of
the CME is 1013 kg.
(a) Estimate the kinetic energy contained in the CME, and compare your answer to the energy

released in a large flare. Express your answer as a percentage of the energy of the flare.
(b) Estimate the transit time for the CME to reach Earth.
(c) Briefly explain how astronomers are able to “predict” the occurrence of aurorae in advance

of magnetic storms on Earth.

16 (a) Calculate the frequency shift produced by the normal Zeeman effect in the center of a
sunspot that has a magnetic field strength of 0.3 T.

(b) By what fraction would the wavelength of one component of the 630.25-nm Fe I spectral
line change as a consequence of a magnetic field of 0.3 T?

17 From the data given in Fig. 16, estimate the rotation period of the solar interior at the base
of the tachocline.

18 Argue from Eq. (9) and the work integral that magnetic pressure is given by Eq. (10).
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FIGURE 16 The rotation period of the Sun varies with latitude and depth. &, the angular fre-
quency, has units of radians per second. (Adapted from a figure courtesy of NSF’s National Solar
Observatory.)

(9)

(10)

14 Assuming that an average of one coronal mass ejection occurs per day and that a typical CME
ejects 1013 kg of material, estimate the annual mass loss from CMEs and compare your answer
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um = B2

2µ0
.

Pm = B2

2µ0
.



From Chapter 10 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 

The Interiors of Stars

by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.



The Interiors of Stars

1 Hydrostatic Equilibrium
2 Pressure Equation of State
3 Stellar Energy Sources
4 Energy Transport and Thermodynamics
5 Stellar Model Building
6 The Main Sequence

1 HYDROSTATIC EQUILIBRIUM

Determining the Internal Structures of Stars

To deduce the detailed internal structure of stars requires the generation of computer models
that are consistent with all known physical laws and that ultimately agree with observable
surface features. Although much of the theoretical foundation of stellar structure was un-
derstood by the first half of the twentieth century, it wasn’t until the 1960s that sufficiently
fast computing machines became available to carry out all of the necessary calculations.
Arguably one of the greatest successes of theoretical astrophysics has been the detailed
computer modeling of stellar structure and evolution. However, despite all of the successes
of such calculations, numerous questions remain unanswered. The solution to many of these
problems requires a more detailed theoretical understanding of the physical processes in
operation in the interiors of stars, combined with even greater computational power.

The theoretical study of stellar structure, coupled with observational data, clearly shows
that stars are dynamic objects, usually changing at an imperceptibly slow rate by human
standards, although they can sometimes change in very rapid and dramatic ways, such
as during a supernova explosion. That such changes must occur can be seen by simply
considering the observed energy output of a star. In the Sun, 3.839 × 1026 J of energy is

Analysis of stellar spectra, collected by ground-based and space - based telescopes, ena-
bles astronomers to determine a variety of quantities related to the outer layers of stars, 
such as effective temperature, luminosity, and composition. However, with the exceptions 
of the ongoing detection of neutrinos from the Sun (which will be discussed later in this 
chapter and the one-time detection from Supernova 1987A, no direct way exists to observe 
the central regions of stars.



emitted every second. This rate of energy output would be sufficient to melt a 0◦C block of
ice measuring 1 AU × 1 mile × 1 mile in only 0.3 s, assuming that the absorption of the
energy was 100% efficient. Because stars do not have infinite supplies of energy, they must
eventually use up their reserves and die. Stellar evolution is the result of a constant fight
against the relentless pull of gravity.

The Derivation of the Hydrostatic Equilibrium Equation

The gravitational force is always attractive, implying that an opposing force must exist if a
star is to avoid collapse. This force is provided by pressure. To calculate how the pressure
must vary with depth, consider a cylinder of mass dm whose base is located a distance
r from the center of a spherical star (see Fig. 1). The areas of the top and bottom of
the cylinder are each A and the cylinder’s height is dr . Furthermore, assume that the only
forces acting on the cylinder are gravity and the pressure force, which is always normal to
the surface and may vary with distance from the center of the star. Using Newton’s second
law F = ma, we have the net force on the cylinder:

dm
d2r

dt2
= Fg + FP,t + FP,b,

where Fg < 0 is the gravitational force directed inward and FP,t and FP,b are the pressure
forces on the top and bottom of the cylinder, respectively. Note that since the pressure
forces on the side of the cylinder will cancel, they have been explicitly excluded from the
expression. Because the pressure force is always normal to the surface, the force exerted on
the top of the cylinder must necessarily be directed toward the center of the star (FP,t < 0),

drdm

FP,b

FP,t

A

Toward
surface

FIGURE 1 In a static star the gravitational force on a mass element is exactly canceled by the
outward force due to a pressure gradient in the star. A cylinder of mass dm is located at a distance r

from the center of the star. The height of the cylinder is dr , and the areas of the top and bottom are
both A. The density of the gas is assumed to be ρ at that position.
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whereas the force on the bottom is directed outward (FP,b > 0). Writing FP,t in terms of
FP,b and a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b + dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass

The Interiors of Stars
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If we assume further that the star is static, then the acceleration must be zero. In this case
Eq. (5) reduces to

dP

dr
= −G

Mrρ

r2
= −ρg, (6)

where g ≡ GMr/r2 is the local acceleration of gravity at radius r . Equation ( 6), the
condition of hydrostatic equilibrium, represents one of the fundamental equations of
stellar structure for spherically symmetric objects under the assumption that accelerations
are negligible. Equation ( 6) clearly indicates that in order for a star to be static, a pressure
gradient dP/dr must exist to counteract the force of gravity. It is not the pressure that
supports a star, but the change in pressure with radius. Furthermore, the pressure must
decrease with increasing radius; the pressure is necessarily larger in the interior than it is
near the surface.

Example 1.1. To obtain a very crude estimate of the pressure at the center of the
Sun, assume that Mr = 1 M⊙, r = 1 R⊙, and ρ = ρ⊙ = 1410 kg m−3 is the average solar
density Assume also that the surface pressure is exactly zero. Then, converting the
differential equation to a difference equation, the left hand side of Eq. ( 6) becomes

dP

dr
∼ Ps − Pc

Rs − 0
∼ − Pc

R⊙
,

where Pc is the central pressure, and Ps and Rs are the surface pressure and radius, respec-
tively. Substituting into the equation of hydrostatic equilibrium and solving for the central
pressure, we find

Pc ∼ G
M⊙ρ⊙

R⊙
∼ 2.7 × 1014 N m−2.

To obtain a more accurate value, we need to integrate the hydrostatic equilibrium equa-
tion from the surface to the center, taking into consideration the change in the interior mass
Mr at each point, together with the variation of density with radius ρr ≡ ρ(r), giving

∫ Pc

Ps

dP = Pc = −
∫ Rc

Rs

GMrρ

r2
dr.

Actually carrying out the integration requires functional forms of Mr and ρ. Unfortunately,
such explicit expressions are not available, implying that further relationships between such
quantities must be developed.

From a more rigorous calculation, a standard solar model gives a central pressure of
nearly 2.34 × 1016 N m−2. This value is much larger than the one obtained from our crude
estimate because of the increased density near the center of the Sun. As a reference, one
atmosphere of pressure is 1 atm = 1.013 × 105 N m−2; therefore, the more realistic model
predicts a central pressure of 2.3 × 1011 atm!

.
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r

dMr

dr

FIGURE 2 A spherically symmetric shell of mass dMr having a thickness dr and located a
distance r from the center of the star. The local density of the shell is ρ.

The Equation of Mass Conservation

Asecond relationship involving mass, radius, and density also exists.Again, for a spherically
symmetric star, consider a shell of mass dMr and thickness dr , located a distance r from
the center, as in Fig. 2. Assuming that the shell is sufficiently thin (i.e., dr ≪ r), the
volume of the shell is approximately dV = 4πr2 dr . If the local density of the gas is ρ, the
shell’s mass is given by

dMr = ρ(4πr2dr).

Rewriting, we arrive at the mass conservation equation,

dMr

dr
= 4πr2ρ, (7)

which dictates how the interior mass of a star must change with distance from the center.
Equation (7) is the second of the fundamental equations of stellar structure.

2 PRESSURE EQUATION OF STATE

Up to this point no information has been provided about the origin of the pressure term
required by Eq. ( 6). To describe this macroscopic manifestation of particle interactions, it
is necessary to derive a pressure equation of state of the material. Such an equation of state
relates the dependence of pressure on other fundamental parameters of the material. One
well-known example of a pressure equation of state is the ideal gas law, often expressed as

PV = NkT,

The Interiors of Stars



where V is the volume of the gas, N is the number of particles, T is the temperature, and
k is Boltzmann’s constant.

Although this expression was first determined experimentally, it is informative to derive
it from fundamental physical principles. The approach used here will also provide a general
method for considering environments where the assumptions of the ideal gas law do not
apply, a situation frequently encountered in astrophysical problems.

The Derivation of the Pressure Integral

Consider a cylinder of gas of length #x and cross-sectional area A, as in Fig. 3. The
gas contained in the cylinder is assumed to be composed of point particles, each of mass
m, that interact through perfectly elastic collisions only—in other words, as an ideal gas.
To determine the pressure exerted on one of the ends of the container, examine the result of
an impact on the right wall by an individual particle. Since, for a perfectly elastic collision,
the angle of reflection from the wall must be equal to the angle of incidence, the change in
momentum of the particle is necessarily entirely in the x-direction, normal to the surface.
From Newton’s second law1 (f = ma = dp/dt) and third law, the impulse f#t delivered
to the wall is just the negative of the change in momentum of the particle, or

f#t = −#p = 2px î,

where px is the component of the particle’s initial momentum in the x-direction. Now the
average force exerted by the particle over a period of time can be determined by evaluating
the time interval between collisions with the right wall. Since the particle must traverse
the length of the container twice before returning for a second reflection, the time interval
between collisions with the same wall by the same particle is given by

#t = 2
#x

vx

,

m p

A

y

z

x

Dx

(a) (b)

m

m

pf

pi

!

!

FIGURE 3 (a) A cylinder of gas of length #x and cross-sectional area A. Assume that the gas
contained in the cylinder is an ideal gas. (b) The collision of an individual point mass with one of the
ends of the cylinder. For a perfectly elastic collision, the angle of reflection must equal the angle of
incidence.

1Note that a lowercase f is used here to indicate that the force is due to a single particle.
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so that the average force exerted on the wall by a single particle over that time period is
given by

f = 2px

#t
= pxvx

#x
,

where it is assumed that the direction of the force vector is normal to the surface.
Now, because px ∝ vx , the numerator is proportional to v2

x . To evaluate this, recall that
the magnitude of the velocity vector is given by v2 = v2

x + v2
y + v2

z . For a sufficiently large
collection of particles in random motion, the likelihood of motion in each of the three
directions is the same, or v2

x = v2
y = v2

z = v2/3. Substituting 1
3pv for pxvx , the average

force per particle having momentum p is

f (p) = 1
3

pv

#x
.

It is usually the case that the particles have a range of momenta. If the number of
particles with momenta between p and p + dp is given by the expression Np dp, then the
total number of particles in the container is

N =
∫ ∞

0
Np dp.

The contribution to the total force, dF(p), by all particles in that momentum range is given
by

dF(p) = f (p)Np dp = 1
3

Np

#x
pv dp.

Integrating over all possible values of the momentum, the total force exerted by particle
collisions is

F = 1
3

∫ ∞

0

Np

#x
pv dp.

Dividing both sides of the expression by the surface area of the wall A gives the pressure
on the surface as P = F/A. Noting that#V = A#x is just the volume of the cylinder and
defining np dp to be the number of particles per unit volume having momenta between p

and p + dp, or

np dp ≡ Np

#V
dp,

we find that the pressure exerted on the wall is

P = 1
3

∫ ∞

0
nppv dp. (8)

This expression, which is sometimes called the pressure integral, makes it possible to
compute the pressure, given some distribution function, np dp.
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The Ideal Gas Law in Terms of the Mean Molecular Weight

Equation ( 8) is valid for both massive and massless particles (such as photons) traveling
at any speed. For the special case of massive, nonrelativistic particles, we may use p = mv

to write the pressure integral as

P = 1
3

∫ ∞

0
mnvv

2 dv, (9)

where nv dv = np dp is the number of particles per unit volume having speeds between v

and v + dv.
The function nv dv is dependent on the physical nature of the system being described.

In the case of an ideal gas, nv dv is the Maxwell–Boltzmann velocity distribution

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv,

where n =
∫∞

0 nv dv is the particle number density. Substituting into the pressure integral
finally gives

Pg = nkT (10)

Since n ≡ N/V , Eq. ( 10) is just the familiar ideal gas law.

In astrophysical applications it is often convenient to express the ideal gas law in an
alternative form. Since n is the particle number density, it is clear that it must be related to
the mass density of the gas. Allowing for a variety of particles of different masses, it is then
possible to express n as

n = ρ

m
,

where m is the average mass of a gas particle. Substituting, the ideal gas law becomes

Pg = ρkT

m
.

We now define a new quantity, the mean molecular weight, as

µ ≡ m

mH

,

where mH = 1.673532499 × 10−27 kg is the mass of the hydrogen atom. The mean molec-
ular weight is just the average mass of a free particle in the gas, in units of the mass of
hydrogen. The ideal gas law can now be written in terms of the mean molecular weight as

Pg = ρkT

µmH

. (11)

,
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The mean molecular weight depends on the composition of the gas as well as on the
state of ionization of each species. The level of ionization enters because free electrons
must be included in the average mass per particle m. This implies that a detailed analysis of
the Saha equation is necessary to calculate the relative numbers of ionization states.
When the gas is either completely neutral or completely ionized, the calculation simplifies
significantly, however.

For a completely neutral gas,

mn =

∑

j

Njmj

∑

j

Nj

, (12)

where mj and Nj are, respectively, the mass and the total number of atoms of type j that
are present in the gas, and the sums are assumed to be carried out over all types of atoms.
Dividing by mH yields

µn =

∑

j

NjAj

∑

j

Nj

,

where Aj ≡ mj/mH . Similarly, for a completely ionized gas,

µi ≃

∑

j

NjAj

∑

j

Nj (1 + zj )
,

where 1 + zj accounts for the nucleus plus the number of free electrons that result from
completely ionizing an atom of type j . (Do not confuse zj with Z, the mass fraction of
metals.)

By inverting the expression for m, it is possible to write alternative equations for
µ in terms of mass fractions. Recalling that m = µmH , Eq. (12) for a neutral gas gives

1
µnmH

=

∑

j

Nj

∑

j

Njmj

= total number of particles
total mass of gas
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=
∑

j

number of particles from j

mass of particles from j
· mass of particles from j

total mass of gas

=
∑

j

Nj

NjAjmH

Xj

=
∑

j

1
AjmH

Xj ,

where Xj is the mass fraction of atoms of type j . Solving for 1/µn, we have

1
µn

=
∑

j

1
Aj

Xj . (13)

Thus, for a neutral gas,

1
µn

≃ X + 1
4
Y +

〈

1
A

〉

n

Z. (14)

⟨1/A⟩n is a weighted average of all elements in the gas heavier than helium. For solar
abundances, ⟨1/A⟩n ∼ 1/15.5.

The mean molecular weight of a completely ionized gas may be determined in a similar
way. It is necessary only to include the total number of particles contained in the sample,
both nuclei and electrons. For instance, each hydrogen atom contributes one free electron,
together with its nucleus, to the total number of particles. Similarly, one helium atom
contributes two free electrons plus its nucleus. Therefore, for a completely ionized gas,
Eq. ( 13) becomes

1
µi

=
∑

j

1 + zj

Aj

Xj . (15)

Including hydrogen and helium explicitly, we have

1
µi

≃ 2X + 3
4
Y +

〈

1 + z

A

〉

i

Z. (16)

For elements much heavier than helium, 1 + zj ≃ zj , where zj ≫ 1 represents the number
of protons (or electrons) in an atom of type j . It also holds that Aj ≃ 2zj , the relation being
based on the facts that sufficiently massive atoms have approximately the same number of
protons and neutrons in their nuclei and that protons and neutrons have verysimilar masses.
Thus

〈

1 + z

A

〉

i

≃ 1
2
.

If we assume that X = 0.70, Y = 0.28, and Z = 0.02, a composition typical of younger
stars, then with these expressions for the mean molecular weight, µn = 1.30 and µi = 0.62.
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The Average Kinetic Energy Per Particle

Further investigation of the ideal gas law shows that it is also possible to combine Eq. ( 10)
with the pressure integral (Eq. 9) to find the average kinetic energy per particle. Equating,
we see that

nkT = 1
3

∫ ∞

0
mnvv

2 dv.

This expression can be rewritten to give

1
n

∫ ∞

0
nvv

2 dv = 3kT

m
.

However, the left-hand side of this expression is just the integral average of v2 weighted
by the Maxwell–Boltzmann distribution function. Thus

v2 = 3kT

m
,

or

1
2
mv2 = 3

2
kT . (17)

It is worth noting that the factor of 3 arose from averaging particle velocities over the three
coordinate directions (or degrees of freedom) Thus the average kinetic energy of a particle
is 1

2kT per degree of freedom.

Fermi–Dirac and Bose–Einstein Statistics

As has already been mentioned, there are stellar environments where the assumptions of
the ideal gas law do not hold even approximately. For instance, in the pressure integral it
was assumed that the upper limit of integration for velocity was infinity. Of course, this
cannot be the case since, from Einstein’s theory of special relativity, the maximum possible
value of velocity is c, the speed of light. Furthermore, the effects of quantum mechanics
were also neglected in the derivation of the ideal gas law. When the Heisenberg uncertainty
principle and the Pauli exclusion principle are considered, a distribution function different
from the Maxwell–Boltzmann distribution results. The Fermi–Dirac distribution function
considers these important principles and leads to a very different pressure equation of
state when applied to extremely dense matter such as that found in white dwarf stars and
neutron stars.

Fermi–Dirac
statistics are called fermions.

Another statistical distribution function is obtained if it is assumed that the presence
of some particles in a particular state enhances the likelihood of others being in the same
state, an effect somewhat opposite to that of the Pauli exclusion principle. Bose–Einstein
statistics has a variety of applications, including understanding the behavior of photons.
Particles that obey Bose–Einstein statistics are known as bosons.

Just as special relativity and quantum mechanics must give classical results in the appro-
priate limits, Fermi–Dirac and Bose–Einstein statistics also approach the classical regime at

.

Particles such as electrons, protons, and neutrons that obey
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sufficiently low densities and velocities. In these limits both distribution functions become
indistinguishable from the classical Maxwell–Boltzmann distribution function.

The Contribution Due to Radiation Pressure

using an identity for the distribution function, np dp = nν dν, the general pressure integral,
Eq. ( 8), now describes the effect of radiation, giving

Prad = 1
3

∫ ∞

0
hνnν dν.

At this point, the problem again reduces to finding an appropriate expression for nν dν.
Since photons are bosons, the Bose–Einstein distribution function would apply. However,
the problem may also be solved by realizing that nν dν represents the number density of
photons having frequencies lying in the range between ν and ν + dν. Multiplying by the
energy of each photon in that range would then give the energy density over the frequency
interval, or

Prad = 1
3

∫ ∞

0
uν dν, (18)

where uν dν = hνnν dν. But the energy density distribution function is found from the
Planck function for blackbody radiation Substituting into Eq. ( 18) and performing the
integration lead to

Prad = 1
3
aT 4, (19)

where a is the radiation constant
In many astrophysical situations the pressure due to photons can actually exceed by a

significant amount the pressure produced by the gas. In fact it is possible that the magnitude
of the force due to radiation pressure can become sufficiently great that it surpasses the
gravitational force, resulting in an overall expansion of the system.

Combining both the ideal gas and radiation pressure terms, the total pressure becomes

Pt = ρkT

µmH

+ 1
3
aT 4. (20)

Example 2.1. Using the results of Example 1.1, we can estimate the central tem-
perature of the Sun. Neglecting the radiation pressure term, the central temperature is found

continued
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Because photons possess momentum pγ = hv /c, they are capable of delivering an 
 impulse to other particles during absorption or reflection. Consequently, electro-
magnetic radiation results in another form of pressure. It is instructive to rederive the 
 expression for radiation pressure by making use of the pressure integral. Substituting 
the speed of light for the velocity v, using the expression for photon momentum, and



from the ideal gas law equation of state to be

Tc = PcµmH

ρk
.

Using ρ⊙, a value of µi = 0.62 appropriate for complete ionization, and the estimated
value for the central pressure, we find that

Tc ∼ 1.44 × 107 K

which is in reasonable agreement with more detailed calculations. One standard solar model
gives a central temperature of 1.57 × 107 K. At this temperature, the pressure due to
radiation is only 1.53 × 1013 N m−2, 0.065% of the gas pressure.

3 STELLAR ENERGY SOURCES

As we have already seen, the rate of energy output of stars (their luminosities) is very large.
However, the question of the source of that energy has not yet been addressed. Clearly, one
measure of the lifetime of a star must be related to how long it can sustain its power output.

Gravitation and the Kelvin–Helmholtz Timescale

One likely source of stellar energy is gravitational potential energy. tional potential
energy of a system of two particles is given by

U = −G
Mm

r
.

As the distance between M and m diminishes, the gravitational potential energy becomes
more negative, implying that energy must have been converted to other forms, such as
kinetic energy. If a star can manage to convert its gravitational potential energy into heat
and then radiate that heat into space, the star may be able to shine for a significant period

Calculating the gravitational potential energy of a star requires consideration of the
interaction between every possible pair of particles. This is not as difficult as it might first
seem. The gravitational force on a point mass dmi located outside of a spherically symmetric
mass Mr is

dFg,i = G
Mr dmi

r2

Since, as we will see in the next chapter, the Sun has already converted a significant amount of its core hydrogen
into helium via nuclear reactions, the actual value of µi is closer to 0.84.

2

The gravita

2
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of time. However, we must also remember that by the virial theorem the total energy of a 
system of particles in equilibrium is one-half of the system’s potential energy. Therefore, 
only one-half of the change in gravitational potential energy of a star is actually available 
to be radiated away; the remaining potential energy supplies the thermal energy that heats 
the star.



and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius

continued
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was Ri , where Ri ≫ 1 R⊙, then the energy radiated away during collapse would be

#Eg = −
(

Ef − Ei

)

≃ −Ef ≃ 3
10

GM2
⊙

R⊙
≃ 1.1 × 1041 J.

Assuming also that the luminosity of the Sun has been roughly constant throughout its
lifetime, it could emit energy at that rate for approximately

tKH = #Eg

L⊙
(24)

∼ 107 yr.

tKH is known as the Kelvin–Helmholtz timescale. Based on radioactive dating techniques,
however, the estimated age of rocks on the Moon’s surface is over 4 × 109 yr. It seems
unlikely that the age of the Sun is less than the age of the Moon! Therefore, gravitational
potential energy alone cannot account for the Sun’s luminosity throughout its entire lifetime.
As we shall see in later chapters, however, gravitational energy can play an important role
during some phases of the evolution of stars.

Another possible energy source involves chemical processes. However, since chemical
reactions are based on the interactions of orbital electrons in atoms, the amount of energy
available to be released per atom is not likely to be more than 1–10 electron volts, typical

The Nuclear Timescale

The nuclei of atoms may also be considered as sources of energy. Whereas electron orbits
involve energies in the electron volt (eV) range, nuclear processes generally involve energies
millions of times larger (MeV). Just as chemical reactions can result in the transformation
of atoms into molecules or one kind of molecule into another, nuclear reactions change one
type of nucleus into another.

The nucleus of a particular element is specified by the number of protons, Z, it contains
(not to be confused with the mass fraction of metals), with each proton carrying a charge of
+e. Obviously, in a neutral atom the number of protons must exactly equal the number of
orbital electrons. An isotope of a given element is identified by the number of neutrons, N ,
in the nucleus, with neutrons being electrically neutral, as the name implies. (All isotopes
of a given element have the same number of protons.) Collectively, protons and neutrons
are referred to as nucleons, the number of nucleons in a particular isotope being A =
Z + N . Since protons and neutrons have very similar masses and greatly exceed the mass
of electrons, A is a good indication of the mass of the isotope and is often referred to as the
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of the atomic energy levels in hydrogen and helium. Given the number of atoms present in 
a star, the amount of chemical energy available is also far too low to account for the Sun’s 
luminosity over a reasonable period of time.



mass number. The masses of the proton, neutron, and electron are, respectively,

mp = 1.67262158 × 10−27 kg = 1.00727646688 u

mn = 1.67492716 × 10−27 kg = 1.00866491578 u

me = 9.10938188 × 10−31 kg = 0.0005485799110 u.

It is often convenient to express the masses of nuclei in terms of atomic mass units;
1 u = 1.66053873 × 10−27 kg, exactly one-twelfth the mass of the isotope carbon-12. The
masses of nuclear particles are also frequently expressed in terms of their rest mass energies,
in units of MeV. Using Einstein’s E = mc2, we find 1 u = 931.494013 MeV/c2. When
masses are expressed simply in terms of rest mass energies, as is often the case, the factor
c2 is implicitly assumed.

The simplest isotope of hydrogen is composed of one proton and one electron and has a
mass of mH = 1.00782503214 u. This mass is actually very slightly less than the combined
masses of the proton and electron taken separately. In fact, if the atom is in its ground state,
the exact mass difference is 13.6 eV, which is just its ionization potential. Since mass is
equivalent to a corresponding amount of energy, and the total mass–energy of the system
must be conserved, any loss in energy when the electron and proton combine to form an
atom must come at the expense of a loss in total mass.

Similarly, energy is also released with an accompanying loss in mass when nucleons
are combined to form atomic nuclei. A helium nucleus, composed of two protons and
two neutrons, can be formed by a series of nuclear reactions originally involving four
hydrogen nuclei (i.e., 4H → He + low mass remnants). Such reactions are known as fusion
reactions, since lighter particles are “fused” together to form a heavier particle. (Conversely,
a fission reaction occurs when a massive nucleus is split into smaller fragments.) The
total mass of the four hydrogen atoms is 4.03130013 u, whereas the mass of one helium
atom is mHe = 4.002603 u. Neglecting the contribution of low-mass remnants such as
neutrinos, the combined mass of the hydrogen atoms exceeds the mass of the helium atom
by #m = 0.028697 u, or 0.7%. Therefore, the total amount of energy released in forming
the helium nucleus is Eb = #mc2 = 26.731 MeV. This is known as the binding energy of
the helium nucleus. If the nucleus were to be broken apart into its constituent protons and
neutrons, the amount of energy required to accomplish the task would be 26.731 MeV.

Example 3.2. Is this source of nuclear energy sufficient to power the Sun during its
lifetime? For simplicity, assume also that the Sun was originally 100% hydrogen and that
only the inner 10% of the Sun’s mass becomes hot enough to convert hydrogen into helium.

Since 0.7% of the mass of hydrogen would be converted to energy in forming a helium
nucleus, the amount of nuclear energy available in the Sun would be

Enuclear = 0.1 × 0.007 × M⊙c2 = 1.3 × 1044 J.

continued

The quantity Aj is approximately equal to the mass number.

3

3
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This gives a nuclear timescale of approximately

tnuclear = Enuclear

L⊙
(25)

∼ 1010 yr,

more than enough time to account for the age of Moon rocks.

Quantum Mechanical Tunneling

Apparently, sufficient energy is available in the nuclei of atoms to provide a source for stellar
luminosities, but can nuclear reactions actually occur in the interiors of stars? For a reaction
to occur, the nuclei of atoms must collide, forming new nuclei in the process. However,
all nuclei are positively charged, meaning that a Coulomb potential energy barrier must
be overcome before contact can occur. Figure 4 shows the characteristic shape of the
potential energy curve that an atomic nucleus would experience when approaching another
nucleus. The curve is composed of two parts: The portion outside of the nucleus is the
potential energy that exists between two positively charged nuclei, and the portion inside
the nucleus forms a potential well governed by the strong nuclear force that binds the
nucleus together. The strong nuclear force is a very short-range force that acts between all
nucleons within the atom. It is an attractive force that dominates the Coulomb repulsion
between protons. Clearly, if such a force did not exist, a nucleus would immediately fly
apart.
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FIGURE 4 The potential energy curve characteristic of nuclear reactions. The Coulomb repul-
sion between positive nuclei results in a barrier that is inversely proportional to the separation between
nuclei and is proportional to the product of their charges. The nuclear potential well inside the nucleus
is due to the attractive strong nuclear force.
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If we assume that the energy required to overcome the Coulomb barrier is provided by
the thermal energy of the gas, and that all nuclei are moving nonrelativistically, then the
temperature Tclassical required to overcome the barrier can be estimated. Since all of the
particles in the gas are in random motion, it is appropriate to refer to the relative velocity
v between two nuclei and their reduced mass, µm (note that we are not referring here to
the mean molecular weight, µ). Equating the initial kinetic energy of the reduced mass to
the potential energy of the barrier gives the position of the classical “turn-around point.”
Now, using Eq. ( 17) yields

1
2
µmv2 = 3

2
kTclassical = 1

4πϵ0

Z1Z2e
2

r
,

where Tclassical denotes the temperature required for an average particle to overcome the
barrier, Z1 and Z2 are the numbers of protons in each nucleus, and r is their distance of
separation. Assuming that the radius of a typical nucleus is on the order of 1 fm = 10−15 m,
the temperature needed to overcome the Coulomb potential energy barrier is approximately

Tclassical = Z1Z2e
2

6πϵ0kr
(26)

∼ 1010 K

for a collision between two protons (Z1 = Z2 = 1). However, the central temperature of the
Sun is only 1.57 × 107 K, much lower than required here. Even taking into consideration
the fact that the Maxwell–Boltzmann distribution indicates that a significant number of
particles have speeds well in excess of the average speed of particles in the gas, classical
physics is unable to explain how a sufficient number of particles can overcome the Coulomb
barrier to produce the Sun’s observed luminosity.

uantum mechanics tells us that it is never possible
to know both the position and the momentum of a particle to unlimited accuracy. The
Heisenberg uncertainty principle states that the uncertainties in position and momentum
are related by

#x#px ≥ !

2
.

The uncertainty in the position of one proton colliding with another may be so large that even
though the kinetic energy of the collision is insufficient to overcome the classical Coulomb
barrier, one proton might nevertheless find itself within the central potential well defined by
the strong force of the other.This quantum mechanical tunneling hasnoclassicalcounterpart.  

As a crude estimate of the effect of tunneling on the temperature necessary to sus-
tain nuclear reactions, assume that a proton must be within approximately one de Broglie
wavelength of its target in order to tunnel through the Coulomb barrier. Recalling that the

Q
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Of course, the greater the ratio of the potential energy barrier height to the particle’s kinetic 
energy or the wider the barrier, the less likely tunneling becomes.



wavelength of a massive particle is given by λ = h/p rewriting the kinetic energy in
terms of momentum,

1
2
µmv2 = p2

2µm

,

and setting the distance of closest approach equal to one wavelength (where the potential
energy barrier height is equal to the original kinetic energy) give

1
4πϵ0

Z1Z2e
2

λ
= p2

2µm

= (h/λ)2

2µm

.

Solving for λ and substituting r = λ into Eq. ( 26), we find the quantum mechanical
estimate of the temperature required for a reaction to occur:

Tquantum = Z2
1Z

2
2e

4µm

12π2ϵ2
0h

2k
. (27)

Again assuming the collision of two protons, µm = mp/2 and Z1 = Z2 = 1. Substituting,
we find that Tquantum ∼ 107 K. In this case, if we assume the effects of quantum mechan-
ics, the temperature required for nuclear reactions is consistent with the estimated central
temperature of the Sun.

Nuclear Reaction Rates and the Gamow Peak

Now that the possibility of a nuclear energy source has been established, we need a more
detailed description of nuclear reaction rates in order to apply them to the development of
stellar models. For instance, not all particles in a gas of temperature T will have sufficient
kinetic energy and the necessary wavelength to tunnel through the Coulomb barrier suc-
cessfully. Consequently, the reaction rate per energy interval must be described in terms
of the number density of particles having energies within a specific range, combined with
the probability that those particles can actually tunnel through the Coulomb barrier of the
target nucleus. The total nuclear reaction rate is then integrated over all possible energies.

that particles are initially sufficiently far apart that the potential energy may be neglected,
the nonrelativistic kinetic energy relation describes the total energy of the particles, or
K = E = µmv2/2. Solving for the velocity and substituting, we can write the Maxwell–
Boltzmann distribution in terms of the number of particles with kinetic energies between
E and E + dE as

nE dE = 2n

π1/2

1
(kT )3/2

E1/2e−E/kT dE (28)

In astrophysical processes, nuclei are usually nonrelativistic, except in the extreme environment of neutron stars.
Because of the much smaller masses of electrons, it cannot be assumed that they are also nonrelativistic, however.

,

4

4
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First consider the number density of nuclei within a specified energy interval.  
As we have seen, the Maxwell–Boltzmann distribution relates the number density of 
particles with velocities between v and v + d v to the temperature of the gas. Assuming
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ds = v (E)dt

FIGURE 5 The number of reactions per unit time between particles of type i and a target x of
cross sectionσ (E) may be thought of in terms of the number of particles in a cylinder of cross-sectional
area σ (E) and length ds = v(E) dt that will reach the target in a time interval dt .

Equation ( 28) gives the number of particles per unit volume that have energies in the
range dE, but it does not describe the probability that particles will actually interact. To
account for this factor, the idea of a cross section is re-introduced. Define the cross section
σ (E) to be the number of reactions per target nucleus per unit time, divided by the flux of
incident particles, or

σ (E) ≡ number of reactions/nucleus/time
number of incident particles/area/time

.

Although σ (E) is strictly a measure of probability, it can be thought of as roughly the
cross-sectional area of the target particle; any incoming particle that strikes within that
area, centered on the target, will result in a nuclear reaction.

To find the reaction rate in units of reactions volume−1 time−1, consider the number of
particles that will hit a target of cross-sectional area σ (E), assuming that all of the incident
particles are moving in one direction. Let x denote a target particle and i denote an incident
particle. If the number of incident particles per unit volume having energies between E and
E + dE is niE dE, then the number of reactions, dNE , is the number of particles that can
strike x in a time interval dt with a velocity v(E) = √

2E/µm.
The number of incident particles is just the number contained within a cylinder of volume

σ (E)v(E) dt (see Fig. 5), or

dNE = σ (E)v(E)niE dE dt.

Now, the number of incident particles per unit volume with the appropriate velocity (or
kinetic energy) is some fraction of the total number of particles in the sample,

niE dE = ni

n
nE dE,

where ni =
∫∞

0 niE dE, n =
∫∞

0 nE dE, and nE dE is given by Eq. ( 28). Therefore, the
number of reactions per target nucleus per time interval dt having energies between E and
E + dE is

reactions per nucleus
time interval

= dNE

dt
= σ (E)v(E)

ni

n
nE dE.
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Finally, if there are nx targets per unit volume, the total number of reactions per unit volume
per unit time, integrated over all possible energies, is

rix =
∫ ∞

0
nxniσ (E)v(E)

nE

n
dE. (29)

To evaluate Eq. ( 29) we must know the functional form of σ (E). Unfortunately, σ (E)

changes rapidly with energy, and its functional form is complicated. It is also important to
compare σ (E) with experimental data. However, stellar thermal energies are quite low
compared to energies found in laboratory experimentation, and significant extrapolation is
usually required to obtain comparison data for stellar nuclear reaction rates.

The process of determining σ (E) can be improved somewhat if the terms most strongly
dependent on energy are factored out first. We have already suggested that the cross section
can be roughly thought of as being a physical area. Moreover, the size of a nucleus, measured
in terms of its ability to “touch” target nuclei, is approximately one de Broglie wavelength
in radius (r ∼ λ). Combining these ideas, the cross section of the nucleus σ (E) should be
proportional to

σ (E) ∝ πλ2 ∝ π

(

h

p

)2

∝ 1
E

.

To obtain the last expression, we have again used the nonrelativistic relation, K = E =
µmv2/2 = p2/2µm.

We have also mentioned previously that the ability to tunnel through the Coulomb barrier
is related to the ratio of the barrier height to the initial kinetic energy of the incoming
nucleus, a factor that must be considered in the cross section. If the barrier height Uc is
zero, the probability of successfully penetrating it necessarily equals one (100%). As the
barrier height increases relative to the initial kinetic energy of the incoming nucleus, the
probability of penetration must decrease, asymptotically approaching zero as the potential
energy barrier height goes to infinity. In fact, the tunneling probability is exponential in
nature. Since σ (E) must be related to the tunneling probability, we have

σ (E) ∝ e−2π2Uc/E. (30)

The factor of 2π2 arises from the strict quantum mechanical treatment of the problem.Again
assuming that r ∼ λ = h/p, taking the ratio of the barrier potential height Uc to particle
kinetic energy E gives

Uc

E
= Z1Z2e

2/4πϵ0r

µmv2/2
= Z1Z2e

2

2πϵ0hv
.

After some manipulation, we find that

σ (E) ∝ e−bE−1/2
, (31)

where

b ≡ πµ
1/2
m Z1Z2e

2

21/2ϵ0h
.
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FIGURE 6 The likelihood that a nuclear reaction will occur is a function of the kinetic energy of
the collision. The Gamow peak arises from the contribution of the e−E/kT Maxwell–Boltzmann high-
energy tail and the e−bE−1/2

Coulomb barrier penetration term. This particular example represents the
collision of two protons at the central temperature of the Sun. (Note that e−bE−1/2

and e−bE−1/2
e−E/kT

have been multiplied by 103 and 106, respectively, to more readily illustrate the functional dependence
on energy.)

Clearly, b depends on the masses and electric charges of the two nuclei involved in the
interaction.

Combining the previous results and defining S(E) to be some (we hope) slowly varying
function of energy, we may now express the cross section as

σ (E) = S(E)

E
e−bE−1/2

. (32)

Substituting Eqs. ( 28) and ( 32) into Eq. ( 29) and simplifying, the reaction rate
integral becomes

rix =
(

2
kT

)3/2
ninx

(µmπ)1/2

∫ ∞

0
S(E) e−bE−1/2

e−E/kT dE. (33)

In Eq. ( 33), the term e−E/kT represents the high-energy wing of the Maxwell–
Boltzmann distribution, and the term e−bE−1/2

comes from the penetration probability. As
can be seen in Fig. 6, the product of these two factors produces a strongly peaked curve,
known as the Gamow peak after George Gamow (1904–1968), the physicist who first

The angular momentum of the interacting particles also plays a role in nuclear reaction rates, but it is generally
a minor component for reactions of astrophysical significance.

5

5
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FIGURE 7 A hypothetical example of the effect of resonance on S(E).

investigated Coulomb barrier penetration. The top of the curve occurs at the energy

E0 =
(

bkT

2

)2/3

. (34)

As a consequence of the Gamow peak, the greatest contribution to the reaction rate integral
comes in a fairly narrow energy band that depends on the temperature of the gas, together
with the charges and masses of the constituents of the reaction.

Assuming that S(E) is indeed slowly varying across the Gamow peak, it may be ap-
proximated by its value at E0 [S(E) ≃ S(E0) = constant] and removed from inside of
the integral. Also, it is generally much easier to extrapolate laboratory results if they are
expressed in terms of S(E).

Resonance

In some cases, however, S(E) can vary quite rapidly, peaking at specific energies, as il-
lustrated schematically in Fig. 7. These energies correspond to energy levels within the
nucleus, analogous to the orbital energy levels of electrons. It is a resonance between the
energy of the incoming particle and differences in energy levels within the nucleus that
accounts for these strong peaks. A detailed discussion of these resonance peaks is beyond
the scope of this book.

Electron Screening

Yet another factor influencing reaction rates is electron screening. On average, the elec-
trons liberated when atoms are ionized at the high temperatures of stellar interiors produce a

See Clayton (1983) or Arnett (1996) for excellent and detailed discussions of resonance peaks.

6
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“sea” of negative charge that partially hides the target nucleus, reducing its effective positive
charge. The result of this reduced positive charge is a lower Coulomb barrier to the incom-
ing nucleus and an enhanced reaction rate. By including electron screening, the effective
Coulomb potential becomes

Ueff = 1
4πϵ0

Z1Z2e
2

r
+ Us(r),

where Us(r) < 0 is the electron screening contribution. Electron screening can be signifi-
cant, sometimes enhancing the helium-producing reactions by 10% to 50%.

Representing Nuclear Reaction Rates Using Power Laws

It is often illuminating to write the complicated reaction rate equations in the form of a
power law centered at a particular temperature. Neglecting the screening factor, in the case
of a two-particle interaction, the reaction rate would become

rix ≃ r0XiXxρ
α′
T β,

where r0 is a constant, Xi and Xx are the mass fractions of the two particles, and α′ and β
are determined from the power law expansion of the reaction rate equations. Usually α′ = 2
for a two-body collision, and β can range from near unity to 40 or more.

By combining the reaction rate equation with the amount of energy released per reaction,
we can calculate the amount of energy released per second in each kilogram of stellar
material. If E0 is the amount of energy released per reaction, the amount of energy liberated
per kilogram of material per second becomes

ϵix =
(

E0

ρ

)

rix,

or, in the form of a power law,

ϵix = ϵ′
0XiXxρ

αT β, (35)

where α = α′ − 1. ϵix has units of W kg−1 and the sum of ϵix for all reactions is the total
nuclear energy generation rate. This form of the nuclear energy generation rate will be used
later to show the dependence of energy production on temperature and density for several
reaction sequences typically operating in stellar interiors.

The Luminosity Gradient Equation

To determine the luminosity of a star, we must now consider all of the energy generated by
stellar material. The contribution to the total luminosity due to an infinitesimal mass dm is
simply

dL = ϵ dm,

where ϵ is the total energy released per kilogram per second by all nuclear reactions and
by gravity, or ϵ = ϵnuclear + ϵgravity. It is worth noting that ϵgravity could be negative if the
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star is expanding, a point to be discussed later. For a spherically symmetric star, the mass
of a thin shell of thickness dr is just dm = dMr = ρ dV = 4πr2ρ dr (recall Fig. 2).
Substituting and dividing by the shell thickness, we have

dLr

dr
= 4πr2ρϵ, (36)

where Lr is the interior luminosity due to all of the energy generated within the star’s
interior out to the radius r . Equation ( 36) is another of the fundamental stellar structure
equations.

Stellar Nucleosynthesis and Conservation Laws

The remaining problem in understanding nuclear reactions is the exact sequence of steps
by which one element is converted into another, a process known as nucleosynthesis. Our
estimate of the nuclear timescale for the Sun was based on the assumption that four hydrogen
nuclei are converted into helium. However, it is highly unlikely that this could occur via
a four-body collision (i.e., all nuclei hitting simultaneously). For the process to occur, the
final product must be created by a chain of reactions, each involving much more probable
two-body interactions. In fact, we derived the reaction rate equation under the assumption
that only two nuclei would collide at any one time.

The process by which a chain of nuclear reactions leads to the final product cannot
happen in a completely arbitrary way, however; a series of particle conservation laws must
be obeyed. In particular, during every reaction it is necessary to conserve electric charge,
the number of nucleons, and the number of leptons. The term lepton means a “light thing”
and includes electrons, positrons, neutrinos, and antineutrinos.

Although antimatter is extremely rare in comparison with matter, it plays an important
role in subatomic physics, including nuclear reactions. Antimatter particles are identical to
their matter counterparts but have opposite attributes, such as electric charge. Antimatter
also has the characteristic (often used in science fiction) that a collision with its matter coun-
terpart results in complete annihilation of both particles, accompanied by the production of
energetic photons. For instance,

e− + e+ → 2γ ,

where e−, e+, and γ denote an electron, positron, and photon, respectively. Note that two
photons are required to conserve both momentum and energy simultaneously.

ν ν

These particles were originally proposed by Wolfgang Pauli in 1930, in order that energy and momentum might
be conserved in certain reaction processes. In 1934, they were given the name neutrinos (“little neutral ones”) by
Italian physicist Enrico Fermi (1901–1954).

7
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Neutrinos and antineutrinos (symbolized by  and , respectively) are 
an  interesting class of particles in their own right 7 Neutrinos are electrical-
ly neutral and have a very small but non-zero mass (m  < 2.2 eV/c2). One of 
the  interesting characteristics of a neutrino is its extremely small cross sec-
tion for interactions with other matter, making it very difficult to detect. Typically

ν
.



σν ∼ 10−48 m2, implying that at densities common to stellar interiors, a neutrino’s mean
free path is on the order of 1018 m ∼ 10 pc, or nearly 109 R⊙! After being produced in the
deep interior, neutrinos almost always successfully escape from the star. One exception to
this transparency of stellar material to neutrinos occurs with important consequences during
a supernova explosion

Since electrons and positrons have charges equal in magnitude to that of a proton, these
leptons will contribute to the charge conservation requirement while their total lepton
numbers must also be conserved. Note that in counting the number of leptons involved in
a nuclear reaction, we treat matter and antimatter differently. Specifically, the total number
of matter leptons minus the total number of antimatter leptons must remain constant.

To assist in counting the number of nucleons and the total electric charge, nuclei will be
represented in this text by the symbol

A
ZX,

where X is the chemical symbol of the element (H for hydrogen, He for helium, etc.), Z is
the number of protons (the total positive charge, in units of e), and A is the mass number
(the total number of nucleons, protons plus neutrons).

The Proton–Proton Chains

Applying the conservation laws, one chain of reactions that can convert hydrogen into
helium is the first proton–proton chain (PPI). It involves a reaction sequence that ultimately
results in

4 1
1H → 4

2He + 2e+ + 2νe + 2γ

through the intermediate production of deuterium (2
1H) and helium-3 (3

2He). The entire PP I
reaction chain is

1
1H + 1

1H → 2
1H + e+ + νe

2
1H + 1

1H → 3
2He + γ (38)

3
2He + 3

2He → 4
2He + 2 1

1H. (39)

Each step of the PP I chain has its own reaction rate, since different Coulomb barriers and
cross sections are involved. The slowest step in the sequence is the initial one, because it
involves the decay of a proton into a neutron via p+ → n + e+ + νe. Such a decay involves
the weak force, another of the four known forces.1

Since an element is uniquely determined by the number of protons (Z) in the nucleus, specifying both X and Z

is redundant. As a result, some texts use the less cumbersome notation AX. However, this notation makes it more
difficult to keep track of the electric charge in a nuclear reaction.

Approximately 0.4% of the time, the first reaction step is accomplished by the so-called pep reaction: 1
1H +

e− + 1
1H → 2

1H + νe .
1 Each of the four forces has now been mentioned: the gravitational force, which involves all particles with mass–
energy; the electromagnetic force, associated with photons and electric charge; the strong force that binds nuclei
together; and the weak force of radioactive beta (electron/positron) decay.

(37)

.
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The production of helium-3 nuclei in the PP I chain also provides for the possibility of
their interaction directly with helium-4 nuclei, resulting in a second branch of the proton–
proton chain. In an environment characteristic of the center of the Sun, 69% of the time a
helium-3 interacts with another helium-3 in the PP I chain, whereas 31% of the time the
PP II chain occurs:

3
2He + 4

2He → 7
4Be + γ (40)

7
4Be + e− → 7

3Li + νe (41)

7
3Li + 1

1H → 2 4
2He. (42)

Yet another branch, the PP III chain, is possible because the capture of an electron by
the beryllium-7 nucleus in the PP II chain competes with the capture of a proton (a proton
is captured only 0.3% of the time in the center of the Sun):

7
4Be + 1

1H → 8
5B + γ (43)

8
5B → 8

4Be + e+ + νe (44)

8
4Be → 2 4

2He. (45)

The three branches of the proton–proton (pp) chain, along with their branching ratios, are
summarized in Fig. 8.

69% 31%

(PP I)

(PP II)

(PP III)

99.7% 0.3%

1
1H + 11H 2

1H + e+ + #e

3
2He + 32He 4

2He + 2 11H

7
4Be + e– 7

3Li + #e
7
4Be + 11H

7
3Li + 11H 2 42He

3
2He + 42He 7

4Be + $

8
5B + $

8
5B 8

4Be + e+ + #e

8
4Be 2 42He

2
1H + 11H 3

2He + $

FIGURE 8 The three branches of the pp chain, along with the branching ratios appropriate for
conditions in the core of the Sun.
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Beginning with Eq. ( 33), the nuclear energy generation rate for the combined pp chain
is calculated to be

ϵpp = 0.241ρX2fppψppCppT
−2/3

6 e−33.80T
−1/3

6 W kg−1, (46)

where T6 is a dimensionless expression of temperature in units of 106 K (or T6 ≡ T/106 K).
fpp = fpp(X, Y, ρ, T ) ≃ 1 is the pp chain screening factor, ψpp = ψpp(X, Y, T ) ≃ 1 is a
correction factor that accounts for the simultaneous occurrence of PP I, PP II, and PP III,
and Cpp ≃ 1 involves higher-order correction terms.1

When written as a power law (e.g., Eq. 35) near T = 1.5 × 107 K, the energy
generation rate has the form

ϵpp ≃ ϵ′
0,ppρX2fppψppCppT 4

6 , (47)

where ϵ′
0,pp = 1.08 × 10−12 W m3 kg−2. The power law form of the energy generation rate

demonstrates a relatively modest temperature dependence of T 4 near T6 = 15.

The CNO Cycle

A second, independent cycle also exists for the production of helium-4 from hydrogen. This
cycle was proposed by Hans Bethe (1906–2005) in 1938, just six years after the discovery
of the neutron. In the CNO cycle, carbon, nitrogen, and oxygen are used as catalysts, being
consumed and then regenerated during the process. Just as with the pp chain, the CNO cycle
has competing branches. The first branch culminates with the production of carbon-12 and
helium-4:

12
6C + 1

1H → 13
7N + γ (48)

13
7N → 13

6C + e+ + νe (49)
13
6C + 1

1H → 14
7N + γ (50)

14
7N + 1

1H → 15
8O + γ (51)

15
8O → 15

7N + e+ + νe (52)
15
7N + 1

1H → 12
6C + 4

2He. (53)

The second branch occurs only about 0.04% of the time and arises when the last reaction
(Eq. 53) produces oxygen-16 and a photon, rather than carbon-12 and helium-4:

15
7N + 1

1H → 16
8O + γ (54)

16
8O + 1

1H → 17
9F + γ (55)

17
9F → 17

8O + e+ + νe (56)
17
8O + 1

1H → 14
7N + 4

2He. (57)

1 Expressions for the various correction terms are given in the stellar structure code StatStar, described in 
Appendix:

 
, A Binary

1

1

Star Code.
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The energy generation rate for the CNO cycle is given by

ϵCNO = 8.67 × 1020ρXXCNOCCNOT
−2/3

6 e−152.28T
−1/3

6 W kg−1, (58)

where XCNO is the total mass fraction of carbon, nitrogen, and oxygen, and CCNO is a higher-
order correction term. When written as a power law centered about T = 1.5 × 107 K (see
Eq. 35), this energy equation becomes

ϵCNO ≃ ϵ′
0,CNOρXXCNOT 19.9

6 , (59)

where ϵ′
0,CNO = 8.24 × 10−31 W m3 kg−2. As shown by the power law dependence, the

CNO cycle is much more strongly temperature-dependent than is the pp chain. This property
implies that low-mass stars, which have smaller central temperatures, are dominated by the
pp chains during their “hydrogen burning” evolution, whereas more massive stars, with
their higher central temperatures, convert hydrogen to helium by the CNO cycle. The
transition in stellar mass between stars dominated by the pp chain and those dominated
by the CNO cycle occurs for stars slightly more massive than our Sun. This difference in
nuclear reaction processes plays an important role in the structure of stellar interiors, as will
be seen in the next section.

When hydrogen is converted into helium by either the pp chain or the CNO cycle, the
mean molecular weight µ of the gas increases. If neither the temperature nor the density
of the gas changes, the ideal gas law predicts that the central pressure will necessarily
decrease. As a result, the star would no longer be in hydrostatic equilibrium and would
begin to collapse. This collapse has the effect of actually raising both the temperature and
the density to compensate for the increase in µ When the temperature and density become
sufficiently high, helium nuclei can overcome their Coulomb repulsion and begin to “burn.”

The Triple Alpha Process of Helium Burning

The reaction sequence by which helium is converted into carbon is known as the triple
alpha process. The process takes its name from the historical result that the mysterious
alpha particles detected in some types of radioactive decay were shown by Rutherford to
be helium-4 (4

2He) nuclei. The triple alpha process is

4
2He + 4

2He ! 8
4Be (60)

8
4Be + 4

2He → 12
6C + γ . (61)

In the triple alpha process, the first step produces an unstable beryllium nucleus that will
rapidly decay back into two separate helium nuclei if not immediately struck by another
alpha particle. As a result, this reaction may be thought of as a three-body interaction, and
therefore, the reaction rate depends on (ρY )3. The nuclear energy generation rate is given
by

ϵ3α = 50.9ρ2Y 3T −3
8 f3αe

−44.027T −1
8 W kg−1, (62)

.
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where T8 ≡ T/108 K and f3α is the screening factor for the triple alpha process. Written
as a power law centered on T = 108 K (see Eq. 35), it demonstrates a very dramatic
temperature dependence:

ϵ3α ≃ ϵ′
0,3αρ

2Y 3f3αT
41.0

8 . (63)

With such a strong dependence, even a small increase in temperature will produce a large
increase in the amount of energy generated per second. For instance, an increase of only
10% in temperature raises the energy output rate by more than 50 times!

Carbon and Oxygen Burning

In the high-temperature environment of helium burning, other competing processes are also
at work. After sufficient carbon has been generated by the triple alpha process, it becomes
possible for carbon nuclei to capture alpha particles, producing oxygen. Some of the oxygen
in turn can capture alpha particles to produce neon.

12
6C + 4

2He → 16
8O + γ (64)

16
8O + 4

2He → 20
10Ne + γ (65)

At helium-burning temperatures, the continued capture of alpha particles leading to progres-
sively more massive nuclei quickly becomes prohibitive due to the ever higher Coulomb
barrier.

If a star is sufficiently massive, still higher central temperatures can be obtained and
many other nuclear products become possible. Examples of available reactions include
carbon burning reactions near 6 × 108 K,

12
6C + 12

6C →

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

16
8O + 2 4

2He ***

20
10Ne + 4

2He

23
11Na + p+

23
12Mg + n ***

24
12Mg + γ

(66)

and oxygen burning reactions near 109 K,

16
8O + 16

8O →

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

24
12Mg + 2 4

2He ***

28
14Si + 4

2He

31
15P + p+

31
16S + n

32
16S + γ

(67)
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Reactions marked by *** are ones for which energy is absorbed rather than released and
are referred to as being endothermic; energy-releasing reactions are exothermic. In en-
dothermic reactions the product nucleus actually possesses more energy per nucleon than
did the nuclei from which it formed. Such reactions occur at the expense of the energy
released by exothermic reactions or by gravitational collapse (the virial theorem). In gen-
eral, endothermic reactions are much less likely to occur than exothermic reactions under
conditions that normally prevail in stellar interiors.

The Binding Energy Per Nucleon

A useful quantity in understanding the energy release in nuclear reactions is the binding
energy per nucleon, Eb/A, where

Eb = #mc2 =
[

Zmp + (A − Z)mn − mnucleus
]

c2.

Figure 9 shows Eb/A versus the mass number. It is apparent that for relatively small
values of A (less than 56), several nuclei have abnormally high values of Eb/A relative to
others of similar mass. Among these unusually stable nuclei are 4

2He and 16
8O, which, along

with 1
1H, are the most abundant nuclei in the universe. This unusual stability arises from

an inherent shell structure of the nucleus, analogous to the shell structure of atomic energy
levels that accounts for the chemical nature of elements. These unusually stable nuclei are
called magic nuclei.

It is believed that shortly after the Big Bang the early universe was composed primarily
of hydrogen and helium, with no heavy elements. Today, Earth and its inhabitants contain
an abundance of heavier metals. The study of stellar nucleosynthesis strongly suggests that

1
1H

2
1H

3
2He

6
3Li

4
2He

12
6C
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8O

12Mg24

20Ca40
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FIGURE 9 The binding energy per nucleon, Eb/A, as a function of mass number, A. Notice that
several nuclei, most notably 4

2He (see also 12
6 C and 16

8O), lie well above the general trend of the other
nuclei, indicating unusual stability. At the peak of the curve is 56

26Fe, the most stable of all nuclei.
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these heavier nuclei were generated in the interiors of stars. It can be said that we are all
“star dust,” the product of heavy element generation within previous generations of stars.

Another important feature of Fig. 9 is the broad peak around A = 56. At the top of
the peak is an isotope of iron, 56

26Fe, the most stable of all nuclei. As successively more
massive nuclei are created in stellar interiors, the iron peak is approached from the left.
These fusion reactions result in the liberation of energy.1 Consequently, the ultimate result
of successive chains of nuclear reactions within stars is the production of iron, assuming
sufficient energy is available to overcome the Coulomb barrier. If a star is massive enough
to create the central temperatures and densities necessary to produce iron, the results are
spectacular

Considering what we have learned in this section about stellar nucleosynthesis, it should
come as no surprise that the most abundant nuclear species in the cosmos are, in order, 1

1H,
4
2He, 16

8O, 12
6C, 20

10Ne, 14
7N, 24

12Mg, 28
14Si, and 56

26Fe The abundances are the result of the
dominant nuclear reaction processes that occur in stars, together with the nuclear
configurations that result in the most stable nuclei.

4 ENERGY TRANSPORT AND THERMODYNAMICS

One stellar structure equation remains to be developed. We have already related the funda-
mental quantities P , M , and L to the independent variable r through differential equations
that describe hydrostatic equilibrium, mass conservation, and energy generation, respec-
tively; see Eqs. ( 6), ( 7), and ( 36). However, we have not yet found a differential
equation relating the basic parameter of temperature, T , to r . Moreover, we have not explic-
itly developed equations that describe the processes by which heat generated via nuclear
reactions or gravitational contraction is carried from the deep interior to the surface of the
star.

Three Energy Transport Mechanisms

Three different energy transport mechanisms operate in stellar interiors. Radiation allows
the energy produced by nuclear reactions and gravitation to be carried to the surface via
photons, the photons being absorbed and re-emitted in nearly random directions as they

1 Energy is also released when the peak is approached from the right via fission reactions that produce nuclei
of smaller mass, again resulting in more stable nuclei. This type of reaction process is important in the fission
reactors of nuclear power plants.
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encounter matter. This suggests that the opacity of the material must play an important 
role, as one would expect. Convection can be a very efficient transport mechanism in 
many regions of a star, with hot, buoyant mass elements carrying excess energy out-
ward while cool elements fall inward. Finally, conduction transports heat via colli-
sions  between particles. Although conduction can play an important role in some stellar 
 environments, it is generally insignificant in most stars throughout the majority of their 
lifetimes and will not be discussed further here.



The Radiative Temperature Gradient

First consider radiation transport. he radiation pressure gradient is given by

dPrad

dr
= −κρ

c
Frad,

where Frad is the outward radiative flux. However, from Eq. ( 19), the radiation pressure
gradient may also be expressed as

dPrad

dr
= 4

3
aT 3 dT

dr
.

Equating the two expressions, we have

dT

dr
= − 3

4ac

κρ

T 3
Frad.

Frad = Lr

4πr2
,

the temperature gradient for radiative transport becomes

dT

dr
= − 3

4ac

κρ

T 3

Lr

4πr2
. (68)

As either the flux or the opacity increases, the temperature gradient must become steeper
(more negative) if radiation is to transport all of the required luminosity outward. The same
situation holds as the density increases or the temperature decreases.

The Pressure Scale Height

If the temperature gradient becomes too steep, convection can begin to play an important role
in the transport of energy. Physically, convection involves mass motions: hot parcels of mat-
ter move upward as cooler, denser parcels sink. Unfortunately, convection is a much more
complex phenomenon than radiation at the macroscopic level. In fact, no truly satisfactory
prescription yet exists to describe it adequately in stellar environments. Fluid mechanics,
the field of physics describing the motion of gases and liquids, relies on a complicated set of
three-dimensional equations known as the Navier–Stokes equations. However, at present,
due in large part to the current limitations in computing power,13 most stellar structure
codes are one-dimensional (i.e., depend on r only). It becomes necessary, therefore, to ap-
proximate an explicitly three-dimensional process by a one-dimensional phenomenological

1 This limitation is being overcome to some extent with the development of ever faster computers with more
memory, and through the implementation of more sophisticated numerical techniques.

T ,
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Finally, if we use the expression for the radiative flux written in terms of the local radia-
tive luminosity of the star at radius r,

,



theory. To complicate the situation even more, when convection is present in a star, it is gen-
erally quite turbulent, requiring a detailed understanding of the amount of viscosity (fluid
friction) and heat dissipation involved. Also, a characteristic length scale for convection,
typically referred to in terms of the pressure scale height, is often comparable to the size
of the star. Lastly, the timescale for convection, taken to be the amount of time required
for a convective element to travel a characteristic distance, is in some cases approximately
equal to the timescale for changes in the structure of the star, implying that convection is
strongly coupled to the star’s dynamic behavior. The impact of these complications on the
behavior of the star is not yet fundamentally understood.

The situation is not completely hopeless, however. Despite the difficulties encountered
in attempting to treat stellar convection exactly, approximate (and even reasonable) results
can usually be obtained. To estimate the size of a convective region in a star, consider the
pressure scale height, HP , defined as

1
HP

≡ − 1
P

dP

dr
. (69)

If we assume for the moment that HP is a constant, we can solve for the variation of pressure
with radius, giving

P = P0e
−r/HP .

Obviously, if r = HP , then P = P0e
−1, so that HP is the distance over which the gas

pressure decreases by a factor of e. To find a convenient general expression for HP , recall
that from the equation for hydrostatic equilibrium (Eq. 6), dP/dr = −ρg, where g =
GMr/r2 is the local acceleration of gravity. Substituting into Eq. ( 69), the pressure scale
height is simply

HP = P

ρg
. (70)

Example 4.1. To estimate a typical value for the pressure scale height in the Sun,
assume that P = Pc/2, where Pc is the central pressure, ρ⊙ is the average solar density,
and

g = G(M⊙/2)

(R⊙/2)2
= 550 m s−2.

Then we have

HP ≃ 1.8 × 108 m ∼ R⊙/4.

Detailed calculations show that HP ∼ R⊙/10 is more typical.

Internal Energy and the First Law of Thermodynamics

Understanding convective heat transport in stars, even in an approximate way, begins with
some knowledge of thermodynamics. In the study of heat transport, conservation of energy
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is expressed by the first law of thermodynamics,

dU = dQ − dW, (71)

where the change in the internal energy of a mass element dU is given by the amount of
heat added to that element, dQ, minus the work done by that element on its surroundings,
dW . Throughout our discussion we will assume that these energy changes are measured
per unit mass.

The internal energy of a system U is a state function, meaning that its value depends
only on the present conditions of the gas, not on the history of any changes leading to
its current state. Consequently, dU is independent of the actual process involved in the
change. On the other hand, neither heat nor work is a state function. The amount of heat
added to a system or the amount of work done by a system depends on the ways in which
the processes are carried out. dQ and dW are referred to as inexact differentials, reflecting
their path dependence.

Consider an ideal monatomic gas, a gas composed of single particles with no ionization.
The total internal energy per unit mass is given by

U = (average energy/particle) × (number of particles/mass)

= K × 1
m

where m = µmH is the average mass of a single particle in the gas. For an ideal gas,
K = 3kT /2 and the internal energy is given by

U = 3
2

(

k

µmH

)

T = 3
2
nRT, (72)

where n is the number of moles14 per unit mass, R = 8.314472 J mole−1 K−1 is the universal
gas constant,1 and

nR = k

µmH

.

Clearly U = U(µ, T ) is a function of the composition of the gas and its temperature. In
this case of an ideal monatomic gas, the internal energy is just the kinetic energy per unit
mass.

Specific Heats

The change in heat of the mass element dQ is generally expressed in terms of the specific
heat C of the gas. The specific heat is defined as the amount of heat required to raise the

141 mole = NA particles, where NA = 6.02214199 × 1023 is Avogadro’s number, defined as the number of 12
6C

atoms required to produce exactly 12 grams of a pure sample.
1 R = NAk.
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temperature of a unit mass of a material by a unit temperature interval, or

CP ≡ ∂Q

∂T

∣

∣

∣

∣

P

and CV ≡ ∂Q

∂T

∣

∣

∣

∣

V

,

where CP and CV are the specific heats at constant pressure and volume, respectively.
Consider next the amount of work per unit mass, dW , done by the gas on its surroundings.

Suppose that a cylinder of cross-sectional area A is filled with a gas of mass m and pressure
P . The gas then exerts a force F = PA on an end of the cylinder. If the end of the cylinder
is a piston that moves through a distance dr , the work per unit mass performed by the gas
may be expressed as

dW =
(

F

m

)

dr =
(

PA

m

)

dr = P dV,

V being defined as the specific volume, the volume per unit mass, or V ≡ 1/ρ. The first
law of thermodynamics may now be expressed in the useful form

dU = dQ − P dV. (73)

At constant volume, dV = 0, which gives dU = dU |V = dQ|V , or

dU = ∂Q

∂T

∣

∣

∣

∣

V

dT = CV dT . (74)

[It is important to note that because dU is independent of any specific process, the second
equality of Eq. ( 74) is always valid, regardless of the type of thermodynamic process
involved.] But from Eq. (72), dU = (3nR/2) dT for a monatomic gas. Thus

CV = 3
2
nR. (75)

To find CP for a monatomic gas, note that

dU = ∂Q

∂T

∣

∣

∣

∣

P

dT − P
∂V

∂T

∣

∣

∣

∣

P

dT . (76)

In addition, from Eq. (11), the ideal gas law can be written as

PV = nRT . (77)

Considering all possible differential changes in quantities in Eq. (77), we find that

P dV + V dP = RT dn + nR dT (78)

(recall that R is a constant). For constant P and n, Eq. ( 78) implies that P dV/dT = nR.
Substituting this result into Eq. ( 76) along with dU = CV dT and the definition of CP ,
we arrive at

CP = CV + nR. (79)

Equation (79) is valid for all situations for which the ideal gas law applies.
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Define the parameter γ to be the ratio of specific heats, or

γ ≡ CP

CV

. (80)

For a monatomic gas, we see that γ = 5/3. If ionization occurs, some of the heat that would
normally go into increasing the average kinetic energy of the particles must go into ionizing
the atoms instead. Therefore the temperature of the gas, which is a measure of its internal
energy, will not rise as rapidly, implying larger values for the specific heats in a partial
ionization zone. As both CP and CV increase, γ approaches unity.1

The Adiabatic Gas Law

Since the change in internal energy is independent of the process involved, consider the
special case of an adiabatic process (dQ = 0) for which no heat flows into or out of the
mass element. Then the first law of thermodynamics (Eq. 73) becomes

dU = −P dV.

However, from Eq. (78) with constant n,

P dV + V dP = nR dT .

Also, since dU = CV dT , we have

dT = dU

CV

= −P dV

CV

.

Combining these results yields

P dV + V dP = −
(

nR

CV

)

P dV,

which may be rewritten by using Eqs. (79) and (80), to give

γ
dV

V
= −dP

P
. (81)

Solving this differential equation leads to the adiabatic gas law,

PV γ = K, (82)

where K is a constant. Using the ideal gas law, a second adiabatic relation may be obtained:

P = K ′T γ /(γ−1), (83)

where K ′ is another constant. Because of its special role in Eqs. ( 82) and ( 83), γ
is often referred to as the “adiabatic gamma,” specifying a particularly simple equation of
state.

1 The variation of γ also plays an important role in the dynamic stability of stars.

6
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The Adiabatic Sound Speed

Using the results obtained thus far, we can now calculate a sound speed through the material.
The sound speed is related to the compressibility of the gas and to its inertia (represented
by density) and is given by

vs =
√

B/ρ,

where B ≡ −V (∂P/∂V )ad is the bulk modulus of the gas. The bulk modulus describes
how much the volume of the gas will change with changing pressure. From Eq. ( 81),
the adiabatic sound speed becomes

vs =
√

γP/ρ. (84)

Example 4.2. Assuming a monatomic gas, a typical adiabatic sound speed for the Sun
is

vs ≃
(

5
3

P

ρ⊙

)1/2

≃ 4 × 105 m s−1,

where P ∼ Pc/2 was assumed. The amount of time needed for a sound wave to traverse
the radius of the Sun would then be

t ≃ R⊙/vs ≃ 29 minutes.

The Adiabatic Temperature Gradient

Returning now to the specific problem of describing convection, we first consider the
situation where a hot convective bubble of gas rises and expands adiabatically, meaning
that the bubble does not exchange heat with its surroundings. After it has traveled some
distance, it finally thermalizes, giving up any excess heat as it loses its identity and dissolves
into the surrounding gas. Differentiating the ideal gas law (Eq. 11) yields an expression
involving the bubble’s temperature gradient (how the bubble’s temperature changes with
position):

dP

dr
= −P

µ

dµ

dr
+ P

ρ

dρ

dr
+ P

T

dT

dr
. (85)

Using the adiabatic relationship between pressure and density (Eq. 82), and recalling
that V ≡ 1/ρ is the specific volume, we have

P = Kργ . (86)

Formally, the bulk modulus, and therefore the sound speed, must be defined in terms of a process by which
pressure varies with volume. Since sound waves typically propagate through a medium too quickly for a significant
amount of heat to enter or leave a mass element in the gas, we usually assume that the process is adiabatic.
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Differentiating and rewriting, we obtain

dP

dr
= γ

P

ρ

dρ

dr
. (87)

If we assume for simplicity that µ is a constant, Eqs. ( 85) and ( 87) may be combined
to give the adiabatic temperature gradient (designated by the subscript ad)

dT

dr

∣

∣

∣

∣

ad
=
(

1 − 1
γ

)

T

P

dP

dr
. (88)

Using Eq. (6) and the ideal gas law, we finally obtain

dT

dr

∣

∣

∣

∣

ad
= −

(

1 − 1
γ

)

µmH

k

GMr

r2
. (89)

It is sometimes helpful to express Eq. ( 89) in another, equivalent form. Recalling that
g = GMr/r2, k/µmH = nR, γ = CP /CV , and CP − CV = nR, and that n, CP , and CV

are per unit mass, we have

dT

dr

∣

∣

∣

∣

ad
= − g

CP

. (90)

This result describes how the temperature of the gas inside the bubble changes as the bubble
rises and expands adiabatically.

If the star’s actual temperature gradient (designated by the subscript act) is steeper than
the adiabatic temperature gradient given in Eq. (89), or

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

act
>

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

ad
,

the temperature gradient is said to be superadiabatic (recall that dT /dr < 0). It will be
shown that in the deep interior of a star, if |dT /dr|act is just slightly larger than |dT /dr|ad,
this may be sufficient to carry nearly all of the luminosity by convection. Consequently,
it is often the case that either radiation or convection dominates the energy transport in
the deep interiors of stars, while the other energy transport mechanism contributes very
little to the total energy outflow. The particular mechanism in operation is determined
by the temperature gradient. However, near the surface of the star the situation is much
more complicated: Both radiation and convection can carry significant amounts of energy
simultaneously.

A Criterion for Stellar Convection

Just what condition must be met if convection is to dominate over radiation in the deep
interior? When will a hot bubble of gas continue to rise rather than sink back down after
being displaced upward? Figure 10 shows a convective bubble traveling a distance dr

through the surrounding medium. According to Archimedes’s principle, if the initial density
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P f
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T f
(s)

%f
(s)

Pf
(b)

T f
(b)
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(b)

Pi
(s)

Ti
(s)

%i
(s)

Pi
(b)

Ti
(b)

%i
(b)

dr

Surrounding
gas

Bubble

FIGURE 10 A convective bubble traveling outward a distance dr . The initial conditions of
the bubble are given by P

(b)
i , T

(b)
i , and ρ(b)

i , for the pressure, temperature, and density, respectively,
while the initial conditions for the surrounding gas at the same level are designated by P

(s)
i , T

(s)
i , and

ρ
(s)
i , respectively. Final conditions for either the bubble or the surrounding gas are indicated by an f

subscript.

of the bubble is less than that of its surroundings (ρ(b)
i < ρ

(s)
i ), it will begin to rise. Now,

the buoyant force per unit volume exerted on a bubble that is totally submersed in a fluid
of density ρ(s)

i is given by

fB = ρ
(s)
i g.

If we subtract the downward gravitational force per unit volume on the bubble, given by

fg = ρ
(b)
i g,

the net force per unit volume on the bubble becomes

fnet = −g δρ, (91)

where δρ ≡ ρ
(b)
i − ρ

(s)
i < 0 initially. If, after traveling an infinitesimal distance dr , the

bubble now has a greater density than the surrounding material (ρ(b)
f > ρ

(s)
f ), it will sink

again and convection will be prohibited. On the other hand, if ρ(b)
f < ρ

(s)
f , the bubble will

continue to rise and convection will result.
To express this condition in terms of temperature gradients, assume that the gas is initially

very nearly in thermal equilibrium, with T
(b)
i ≃ T

(s)
i and ρ(b)

i ≃ ρ
(s)
i . Also assume that the

bubble expands adiabatically and that the bubble and surrounding gas pressures are equal at
all times, P

(b)
f = P

(s)
f . Now, since it is assumed that the bubble has moved an infinitesimal

distance, it is possible to express the final quantities in terms of the initial quantities and
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their gradients by using a Taylor expansion. To first order,

ρ
(b)
f ≃ ρ

(b)
i + dρ

dr

∣

∣

∣

∣

(b)

dr and ρ
(s)
f ≃ ρ

(s)
i + dρ

dr

∣

∣

∣

∣

(s)

dr.

If the densities inside and outside the bubble remain nearly equal (as is usually the case ex-
cept near the surfaces of some stars), substituting these results into the convection condition,
ρ

(b)
f < ρ

(s)
f , gives

dρ

dr

∣

∣

∣

∣

(b)

<
dρ

dr

∣

∣

∣

∣

(s)

. (92)

We now want to express this solely in terms of quantities for the surroundings. Using
Eq. ( 87) for the adiabatically rising bubble to rewrite the left-hand side of ( 92) and
using Eq. ( 85) to rewrite the right-hand side (again assuming dµ/dr = 0), we find

1
γ

ρ
(b)
i

P
(b)
i

dP

dr

∣

∣

∣

∣

(b)

<
ρ

(s)
i

P
(s)
i

[

dP

dr

∣

∣

∣

∣

(s)

− P
(s)
i

T
(s)
i

dT

dr

∣

∣

∣

∣

(s)
]

.

Recalling that P (b) = P (s) at all times, it is necessary that

dP

dr

∣

∣

∣

∣

(b)

= dP

dr

∣

∣

∣

∣

(s)

= dP

dr
,

where the superscripts on the pressure gradient have been shown to be redundant. Substi-
tuting, and canceling equivalent initial conditions,

1
γ

dP

dr
<

dP

dr
− P

(s)
i

T
(s)
i

dT

dr

∣

∣

∣

∣

(s)

.

Dropping subscripts for initial conditions and superscripts designating the surrounding
material, we arrive at the requirement

(

1
γ

− 1
)

dP

dr
< −P

T

dT

dr

∣

∣

∣

∣

act
, (93)

where the temperature gradient is the actual temperature gradient of the surrounding gas.
Multiplying by the negative quantity −T/P requires that the direction of the inequality be
reversed, giving

(

1 − 1
γ

)

T

P

dP

dr
>

dT

dr

∣

∣

∣

∣

act
.

But from Eq. ( 88), we see that the left-hand side of the inequality is just the adiabatic
temperature gradient. Thus

dT

dr

∣

∣

∣

∣

ad
>

dT

dr

∣

∣

∣

∣

act
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is the condition for the gas bubble to keep rising. Finally, since dT /dr < 0 (the temperature
decreases as the stellar radius increases), taking the absolute value of the equation again
requires that the direction of the inequality be reversed, or

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

act
>

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

ad
. (94)

If the actual temperature gradient is superadiabatic, convection will result, assuming that µ

does not vary.
Equation ( 93) may be used to find another useful, and equivalent, condition for con-

vection. Since dT /dr < 0 and 1/γ − 1 < 0 (recall that γ > 1),

T

P

(

dT

dr

)−1
dP

dr
< − 1

γ−1 − 1
,

which may be simplified to give

T

P

dP

dT
<

γ

γ − 1
,

or, for convection to occur,

d ln P

d ln T
<

γ

γ − 1
. (95)

For an ideal monatomic gas, γ = 5/3 and convection will occur in some region of a star
when d ln P/d ln T < 2.5. In that case the temperature gradient (dT /dr) is given approx-
imately by Eq. ( 89). When d ln P/d ln T > 2.5, the region is stable against convection
and dT /dr is given by Eq. (68).

By comparing Eq. ( 68) for the radiative temperature gradient with either Eq. ( 89)
or Eq. ( 90), together with the condition for convection written in terms of the tempera-
ture gradient, Eq. ( 94), it is possible to develop some understanding of which conditions
are likely to lead to convection over radiation. In general, convection will occur when
(1) the stellar opacity is large, implying that an unachievably steep temperature gradient
(|dT /dr|act) would be necessary for radiative transport, (2) a region exists where ioniza-
tion is occurring, causing a large specific heat and a low adiabatic temperature gradient
(|dT /dr|ad), and (3) the temperature dependence of the nuclear energy generation rate is
large, causing a steep radiative flux gradient and a large temperature gradient. In the at-
mospheres of many stars, the first two conditions can occur simultaneously, whereas the
third condition would occur only deep in stellar interiors. In particular, the third condition
can occur when the highly temperature-dependent CNO cycle or triple alpha processes are
occurring.

The Mixing-Length Theory of Superadiabatic Convection

It has already been suggested that the temperature gradient must be only slightly superadi-
abatic in the deep interior in order for convection to carry most of the energy. We will now
justify that assertion.

The Interiors of Stars



We begin by returning to the fundamental criterion for convection, ρ(b)
f < ρ

(s)
f . Since

the pressure of the bubble and that of its surroundings are always equal, the ideal gas law
implies that T (b)

f > T
(s)
f , assuming thermal equilibrium initially. Therefore, the temperature

of the surrounding gas must decrease more rapidly with radius, so

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

(s)

−
∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

(b)

> 0

is required for convection. Since the temperature gradients are negative, we have

dT

dr

∣

∣

∣

∣

(b)

− dT

dr

∣

∣

∣

∣

(s)

> 0.

Assuming that the bubble moves essentially adiabatically, and designating the temperature
gradient of the surroundings as the actual average temperature gradient of the star, let

dT

dr

∣

∣

∣

∣

(b)

= dT

dr

∣

∣

∣

∣

ad
and

dT

dr

∣

∣

∣

∣

(s)

= dT

dr

∣

∣

∣

∣

act
.

After the bubble travels a distance dr , its temperature will exceed the temperature of the
surrounding gas by

δT =
(

dT

dr

∣

∣

∣

∣

ad
− dT

dr

∣

∣

∣

∣

act

)

dr = δ

(

dT

dr

)

dr. (96)

We use δ here to indicate the difference between the value of a quantity associated with
the bubble and the same quantity associated with the surroundings, both determined at a
specified radius r , just as was done for Eq. (91).

Now assume that a hot, rising bubble travels some distance

ℓ = αHP

before dissipating, at which point it thermalizes with its surroundings, giving up its excess
heat at constant pressure (since P (b) = P (s) at all times). The distance ℓ is called the mixing
length, HP is the pressure scale height (see Eq. 70), and

α ≡ ℓ/HP ,

the ratio of mixing length to pressure scale height is an adjustable parameter, or free pa-
rameter, generally assumed to be of order unity. (From comparisons of numerical stellar
models with observations, values of 0.5 < α < 3 are typical.)

After the bubble travels one mixing length, the excess heat flow per unit volume from
the bubble into its surroundings is just

δq = (CP δT )ρ,

In some texts, δ
(

dT
dr

)

≡ #∇T .
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where δT is calculated from Eq. ( 96) by substituting ℓ for dr . Multiplying by the average
velocity vc of the convective bubble, we obtain the convective flux (the amount of energy
per unit area per unit time carried by a bubble):

Fc = δq vc = (CP δT )ρvc. (97)

Note that ρv is a mass flux, or the amount of mass per second that crosses a unit area oriented
perpendicular to the direction of the flow. Mass flux is a quantity that is often encountered
in fluid mechanics.

The average velocity v may be found from the net force per unit volume, fnet, acting on
the bubble. Using the ideal gas law and assuming constant µ, we can write

δP = P

ρ
δρ + P

T
δT .

Since the pressure is always equal between the bubble and its surroundings, δP ≡ P (b) −
P (s) = 0. Thus

δρ = − ρ
T
δT .

From Eq. (91),

fnet = ρg

T
δT .

However, we assumed that the initial temperature difference between the bubble and its
surroundings is essentially zero, or δTi ≈ 0. Consequently the buoyant force must also be
quite close to zero initially. Since fnet increases linearly with δT , we may take an average
over the distance ℓ between the initial and final positions, or

⟨fnet⟩ = 1
2
ρg

T
δTf .

Neglecting viscous forces, the work done per unit volume by the buoyant force over the
distance ℓ goes into the kinetic energy of the bubble, or

1
2
ρv2

f = ⟨fnet⟩ ℓ.

Choosing an average kinetic energy over one mixing length leads to some average value of
v2, namely βv2, where β has a value in the range 0 < β < 1. Now the average convective
bubble velocity becomes

vc =
(

2β ⟨fnet⟩ ℓ
ρ

)1/2

.

Substituting the net force per unit volume, using Eq. ( 96) with dr = ℓ, and rearranging,
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we have

vc =
(

βg

T

)1/2 [

δ

(

dT

dr

)]1/2

ℓ

= β1/2
(

T

g

)1/2 (
k

µmH

)[

δ

(

dT

dr

)]1/2

α, (98)

where we obtained the last equation by replacing the mixing length with αHP and using
Eq. (70) together with the ideal gas law.

After some manipulation, Eqs. ( 97) and ( 98) finally yield an expression for the
convective flux:

Fc = ρCP

(

k

µmH

)2 (
T

g

)3/2

β1/2
[

δ

(

dT

dr

)]3/2

α2. (99)

Fortunately, Fc is not very sensitive to β, but it does depend strongly on α and δ(dT /dr).
The derivation leading to the prescription for the convective flux given by Eq. ( 99)

is known as the mixing-length theory. Although basically a phenomenological theory
containing arbitrary constants, the mixing-length theory is generally quite successful in
predicting the results of observations.

To evaluate Fc, we still need to know the difference between the temperature gradients
of the bubble and its surroundings. Suppose, for simplicity, that all of the flux is carried by
convection, so that

Fc = Lr

4πr2
,

where Lr is the interior luminosity. This will allow us to estimate the difference in tempera-
ture gradients needed for this special case. Solving Eq. ( 99) for the temperature gradient
difference gives

δ

(

dT

dr

)

=
[

Lr

4πr2

1
ρCPα2

(µmH

k

)2 ( g

T

)3/2
β−1/2

]2/3

. (100)

Dividing Eq. ( 100) by Eq. ( 90) for the adiabatic temperature gradient gives an estimate
of how superadiabatic the actual temperature gradient must be to carry all of the flux by
convection alone:

δ(dT /dr)

|dT /dr|ad
=
(

Lr

4πr2

)2/3

C
1/3
P ρ−2/3α−4/3

(µmH

k

)4/3 1
T
β−1/3.

Example 4.3. Using values typical of the base of the Sun’s convection zone, assum-
ing a monatomic gas throughout, and assuming α = 1 and β = 1/2, we can estimate a
characteristic adiabatic temperature gradient, the degree to which the actual gradient is
superadiabatic, and the convective bubble velocity.
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Assume that Mr = 0.976 M⊙, Lr = 1 L⊙, r = 0.714 R⊙, g = GMr/r2 = 525 m s−2,
CP = 5nR/2, P = 5.59 × 1012 N m−2, ρ = 187 kg m−3, µ = 0.606, and T = 2.18 ×
106 K. Then, from Eq. (90),

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

ad
∼ 0.015 K m−1,

and from Eq. (100),

δ

(

dT

dr

)

∼ 6.7 × 10−9 K m−1.

The relative amount by which the actual temperature gradient is superadiabatic is then

δ(dT /dr)

|dT /dr|ad
∼ 4.4 × 10−7.

For parameters appropriate for the deep interior, convection is certainly adequately approx-
imated by the adiabatic temperature gradient.

The convective velocity needed to carry all of the convective flux is found from
Eq. (98),

vc ∼ 50 m s−1 ∼ 10−4 vs,

where vs is the local solar sound speed (see Eq. 84).

Near the surface of a star, where the presence of ionization results in a larger value for CP

and where ρ and T get much smaller, the ratio of the superadiabatic excess to the adiabatic
gradient can become significantly larger, with the convective velocity possibly approaching
the sound speed. In this situation, a detailed study of the relative amounts of convective and
radiative flux must be considered. This will not be discussed further here.

Although the mixing length theory is adequate for many problems, it is incomplete. For
instance, α and β are free parameters that must be chosen for a particular problem; they
may even vary throughout the star. There are also stellar conditions for which the time-
independent mixing length theory is inherently unsatisfactory. As one example, consider
stellar pulsations; during a star’s pulsation cycle the outer layers of the star are oscillating
with periods comparable to the timescale for convection, given by tc = ℓ/vc. In such cases,
rapid changes in the physical conditions in the star directly couple to the driving of the
convective bubbles, which in turn alters the structure of the star. Although much effort (and
some progress) has been made in developing a full, time-dependent convection theory for
stellar interiors, at present no theory exists that completely describes this complex behavior.
Much work remains to be done in understanding the important details of stellar convection.

5 STELLAR MODEL BUILDING

We have now derived all of the fundamental differential equations of stellar structure. These
equations, together with a set of relations describing the physical properties of the stellar
material, may be solved to obtain a theoretical stellar model.
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A Summary of the Equations of Stellar Structure

For convenience, the basic time-independent (static) stellar structure equations are summa-
rized:

dP

dr
= −G

Mrρ

r2
(6)

dMr

dr
= 4πr2ρ (7)

dLr

dr
= 4πr2ρϵ (36)

dT

dr
= − 3

4ac

κρ

T 3

Lr

4πr2
(radiation) (68)

= −
(

1 − 1
γ

)

µmH

k

GMr
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(adiabatic convection) (89)

The last equation assumes that the convective temperature gradient is purely adiabatic and
is applied when

d ln P

d ln T
<

γ

γ − 1
. (95)

If the star is static, as assumed above, then ϵ = ϵnuclear. However, if the structure of the
stellar model is changing over time, we must include the energy contribution due to gravity,
ϵ = ϵnuclear + ϵgravity. The introduction of the gravitational energy term adds an explicit time
dependence to the equations that is not present in the purely static case. This can be seen by
realizing that the virial theorem requires that one-half of the gravitational potential energy
that is lost must be converted into heat. The rate of energy production (per unit mass) by
gravity is then dQ/dt . Therefore ϵgravity = −dQ/dt , the minus sign indicating that heat is
liberated from the material.

Entropy

As a note of interest, it is often useful to express the gravitational energy generation rate in
terms of the change in the entropy per unit mass (the specific entropy), defined by

dS ≡ dQ

T
. (101)

Then the energy generation rate is seen to be due to the change in entropy of the material,
or

ϵgravity = −T
dS

dt
. (102)

Although dQ is an inexact differential, it can be shown that the entropy is a state function.
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If the star is collapsing, ϵgravity will be positive; if it is expanding, ϵgravity will be negative.
Thus, as the star contracts, its entropy decreases. This is not a violation of the second law
of thermodynamics, which states that the entropy of a closed system must always remain
the same (reversible process) or increase (irreversible process). Since a star is not a closed
system, its entropy may decrease locally while the entropy of the remainder of the universe
increases by a greater amount. The entropy is carried out of the star by photons and neutrinos.

When changes in the structure of the star are sufficiently rapid that accelerations can no
longer be neglected, Eq. ( 6) must be replaced by the exact expression, Eq. ( 5). Such
a situation can occur during a supernova explosion or during stellar pulsations.

The Constitutive Relations

The basic stellar structure equations [( 6), ( 7), ( 36), ( 68), and ( 89)] require
information concerning the physical properties of the matter from which the star is made.
The required conditions are the equations of state of the material and are collectively referred
to as constitutive relations. Specifically, we need relationships for the pressure, the opacity,
and the energy generation rate, in terms of fundamental characteristics of the material: the
density, temperature, and composition. In general,

P = P(ρ, T , composition) (103)

κ = κ(ρ, T , composition) (104)

ϵ = ϵ(ρ, T , composition) (105)

The pressure equation of state can be quite complex in the deep interiors of certain classes
of stars, where the density and temperature can become extremely high. However, in most
situations, the ideal gas law, combined with the expression for radiation pressure, is a good
first approximation, particularly when the variation in the mean molecular weight with
composition and ionization is properly calculated. The pressure equation of state developed
earlier (Eq. 20) includes both the ideal gas law and radiation pressure.

The opacity of the stellar material cannot be expressed exactly by a single formula.
Instead, it is calculated explicitly for various compositions at specific densities and temper-
atures and presented in tabular form. Stellar structure codes either interpolate in a density–
temperature grid to obtain the opacity for the specified conditions, or, alternatively, use a
“fitting function”, based on the tabulated values. A similar situation also occurs for accurate

To calculate the nuclear energy generation rate, we can use formulas such as those
presented in Section 3 for the pp chain (Eq. 46) and the CNO cycle (Eq. 58).
In more sophisticated calculations, reaction networks are employed that yield individual
reaction rates for each step of a process and equilibrium abundances for each isotope in the
mixture.
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calculations of the pressure equation of state. No accurate fitting function can be con-
structed to account for bound–bound opacities



Boundary Conditions

The actual solution of the stellar structure equations, including the constitutive relations,
requires appropriate boundary conditions that specify physical constraints to the math-
ematical equations. Boundary conditions play the essential role of defining the limits of
integration. The central boundary conditions are fairly obvious—namely that the interior
mass and luminosity must approach zero at the center of the star, or

Mr → 0
Lr → 0

}

as r → 0. (106)

This simply means that the star is physically realistic and does not contain a hole, a core of
negative luminosity, or central points of infinite ρ or ϵ!

A second set of boundary conditions is required at the surface of the star. The simplest
set of assumptions is that the temperature, pressure, and density all approach zero at some
surface value for the star’s radius, R⋆, or

T → 0
P → 0
ρ → 0

⎫

⎬

⎭

as r → R⋆. (107)

Strictly, the conditions of Eqs. ( 107) will never be obtained in a real star (as is obviously
the case for the temperature). Therefore, it is often necessary to use more sophisticated sur-
face boundary conditions, such as when the star being modeled has an extended atmosphere
or is losing mass, as most stars do.

The Vogt–Russell Theorem

Given the basic stellar structure equations, constitutive relations, and boundary conditions,
we can now specify the type of star to be modeled. As can be seen by examination of
Eq. ( 6), the pressure gradient at a given radius is dependent on the interior mass and the
density. Similarly, the radiative temperature gradient (Eq. 36) depends on the local tem-
perature, density, opacity, and interior luminosity, while the luminosity gradient is a function
of the density and energy generation rate. The pressure, opacity, and energy generation rate
in turn depend explicitly on the density, temperature, and composition at that location. If
the interior mass at the surface of the star (i.e., the entire stellar mass) is specified, along
with the composition, surface radius, and luminosity, application of the surface boundary
conditions allows for a determination of the pressure, interior mass, temperature, and inte-
rior luminosity at an infinitesimal distance dr below the surface of the star.2 Continuing
this numerical integration of the stellar structure equations to the center of the star must
result in agreement with the central boundary conditions (Eq. 106). Since the values

2 It is also necessary to specify the average density over that distance. Since ρ is assumed to be zero at the surface,
and since it depends explicitly on the pressure and temperature, which are also assumed to be zero at the surface
and are initially unknown below the surface, an immediate difficulty arises; the right-hand sides of Eqs. ( 6) and

0

0
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( 68) are zero, so P and T  never increase from their surface values! More sophisticated solutions require an itera-
tive procedure, continually correcting previous estimates until a self-consistent answer is obtained to within some 
specified level of accuracy.



of the various gradients are directly related to the composition of the star, it is not possi-
ble to specify any arbitrary combination of surface radius and luminosity after the mass
and composition have been selected. This set of constraints is known as the Vogt–Russell
theorem:

The mass and the composition structure throughout a star uniquely determine
its radius, luminosity, and internal structure, as well as its subsequent evolution.

The dependence of a star’s evolution on mass and composition is a consequence of the
change in composition due to nuclear burning.21 The statement of the Vogt–Russell “theo-
rem” given here is somewhat misleading since there are other parameters that can influence
stellar interiors, such as magnetic fields and rotation. However, these parameters are as-
sumed to have little effect in most stars and will not be discussed further.2

Numerical Modeling of the Stellar Structure Equations

is accomplished by approximating the differential equations by difference equations—by
replacing dP/dr by #P/#r , for instance. The star is then imagined to be constructed of
spherically symmetric shells, as in Fig. 11, and the “integration” is carried out from
some initial radius in finite steps by specifying some increment δr .2 It is then possible
to increment each of the fundamental physical parameters through successive applications
of the difference equations. For instance, if the pressure in zone i is given by Pi , then the
pressure in the next deepest zone, Pi+1, is found from

Pi+1 = Pi + #P

#r
δr,

where δr is negative.
The numerical integration of the stellar structure equations may be carried out from the

surface toward the center, from the center toward the surface, or, as is often done, in both
directions simultaneously. If the integration is carried out in both directions, the solutions
will meet at some fitting point where the variables must vary smoothly from one solution
to the other. This last approach is frequently taken because the most important physical
processes in the outer layers of stars generally differ from those in the deep interiors. The
transfer of radiation through optically thin zones and the ionization of hydrogen and helium

21In this sense, Eq. ( 36) does contain an implicit time dependence due to stellar nucleosynthesis.
22Even without the complications of magnetic fields and rotation, the Vogt–Russell “theorem” can be violated in
certain special circumstances. However, an actual star (as opposed to a theoretical model) would probably adopt
one unique structure as a consequence of its evolutionary history. In this sense, the Vogt–Russell “theorem” should
be considered a general rule rather than a rigorous law.
2 Codes that treat the radius as an independent variable are called Eulerian codes. Lagrangian codes treat the
mass as an independent variable. In the Lagrangian formulation, the differential equations are rewritten using
Eq. ( 7); the hydrostatic equilibrium equation can be written in the form dP/dM , for instance.

2

3

3
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With the exception of a special family of approximate solutions to the stellar struc-
ture equations known as polytropes, the system of differential equations, along 
with their constitutive relations, cannot be solved analytically. Instead, as already 
mentioned, it is necessary to integrate the system of equations numerically. This
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FIGURE 11 Zoning in a numerical stellar model. The star is assumed to be constructed of
spherically symmetric mass shells, with the physical parameters associated with each zone being
specified by the stellar structure equations, the constitutive relations, the boundary conditions, and
the star’s mass and composition. In research-quality codes some quantities are specified in the middle
of mass shells (e.g., P and T ), whereas others are associated with the interfaces between shells (e.g.,
r , Mr , and Lr ).

occur close to the surface, while nuclear reactions occur near the center. By integrating
in both directions, it is possible to decouple these processes somewhat, simplifying the
problem.

Simultaneously matching the surface and central boundary conditions for a desired stellar
model usually requires several iterations before a satisfactory solution is obtained. If the
surface-to-center and center-to-surface integrations do not agree at the fitting point, the
starting conditions must be changed. This is accomplished in a series of attempts, called
iterations, where the initial conditions of the next integration are estimated from the outcome
of the previous integration. A process of successive iterations is also necessary if the star
is integrated from the surface to the center or from the center to the surface; in these cases
the fitting points are simply the center and surface, respectively.

A very simple stellar structure code (called StatStar) integrates the stellar structure

Polytropic Models and the Lane–Emden Equation

As we mentioned previously, it is not generally possible to solve the system of stellar
structure equations and their associated constitutive relations analytically; we must employ
numerical solutions to “build” stellar models. However, under very special and restrictive
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equations developed in this chapter in their timeindependent form from the outside of 
the star to the center using the appropriate constitutive relations; it also assumes a con-
stant (or homogeneous) composition throughout. Many of the sophisticated numerical 
techniques present in research codes have been neglected so that the basic elements of 
stellar model building can be more easily understood, as have the detailed calculations 
of the pressure equation of state and the opacity. The complex formalism of the mixing-
length theory has also been left out in favor of the simplifying assumption of adiabatic 
convection. Despite these approximations, very reasonable models may be obtained for 
stars lying on the main sequence of the H–R diagram.



situations, it is possible to find analytic solutions to a subset of the equations. The first
work in this area was carried out by J. Homer Lane (1819–1880), who wrote a paper on
the equilibrium of stellar configurations in the American Journal of Science in 1869. That
work was later extended significantly by Robert Emden (1862–1940). Today, the famous
equation that helps us describe analytical stellar models is referred to as the Lane–Emden
equation.

To understand the motivation of developing the Lane–Emden equation, note that careful
inspection of the stellar structure equations shows that the mechanical equations of stellar
structure (Eqs. 6 and 7) could be solved simultaneously without reference to the
energy equations ( 36, and either 68 or 89) if only a simple relationship existed
between pressure and density. Of course, as we have seen, such a simple relationship does
not generally exist; normally, temperature and composition must also enter into the pressure
equation of state, often in a complicated way. However, under certain circumstances, such
as for an adiabatic gas (see Eq. 86), the pressure can be written explicitly in terms of the
density alone. Hypothetical stellar models in which the pressure depends on density in the
form P = Kργ are known as polytropes. The development of polytropic models is well
worth the effort since their relative simplicity allows us to gain some insight into stellar
structure without all of the complications inherent in full-blown numerical models.

To derive the Lane–Emden equation, we begin with the equation for hydrostatic equi-
librium, Eq. ( 6). Rewriting the equation and taking the radial derivative of both sides
gives

d

dr

(

r2

ρ

dP

dr

)

= −G
dMr

dr
.

We immediately see that Eq. ( 7) can be used to eliminate the mass gradient. Substituting,
we get

d

dr

(

r2

ρ

dP

dr

)

= −G(4πr2ρ)

or

1
r2

d

dr

(

r2

ρ

dP

dr

)

= −4πGρ . (108)

As an aside, it is worth pointing out here that Eq. ( 108) is actually a slightly camou-
flaged form of a very well-studied differential equation known as Poisson’s equation. It is
left as an exercise to show that Eq. ( 108) can be rewritten in the form

1
r2

d

dr

(

r2 d1g

dr

)

= 4πGρ, (109)

which is the spherically symmetric form of Poisson’s equation for the gravitational potential
energy per unit mass, 1g ≡ Ug/m.2

2 Poisson’s equation shows up frequently in physics. For example, Gauss’ Law, one of Maxwell’s equations of
electromagnetic theory, can be reformulated into Poisson’s equation by replacing the electric field vector with the
negative of the gradient of the electrostatic potential.

4

4

The Interiors of Stars



To solve Eq. ( 108), we now employ the relationship P(ρ) = Kργ , where K and
γ > 0 are constants. This functional form of the pressure equation is known generally as a
polytropic equation of state. Substituting, taking the appropriate derivative, and simplifying,
we have

γK

r2

d

dr

[

r2ργ−2 dρ

dr

]

= −4πGρ .

It is customary to rewrite the expression slightly by letting γ ≡ (n + 1)/n, where n is
historically referred to as the polytropic index. Then

(

n + 1
n

)

K

r2

d

dr

[

r2ρ(1−n)/n dρ

dr

]

= −4πGρ .

In order to simplify the last expression somewhat, it is now useful to rewrite the equa-
tion in a dimensionless form. Expressing the density in terms of a scaling factor and a
dimensionless function D(r), let

ρ(r) ≡ ρc[Dn(r)]n, where 0 ≤ Dn ≤ 1.

(As you might suspect, ρc will turn out to be the central density of the polytropic stellar
model.) Again substituting and simplifying, we arrive at

[

(n + 1)

(

Kρ
(1−n)/n
c

4πG

)]

1
r2

d

dr

[

r2 dDn

dr

]

= −Dn
n.

Careful study of our last equation reveals that the collective constant in square brackets
has the units of distance squared. Defining

λn ≡
[

(n + 1)

(

Kρ
(1−n)/n
c

4πG

)]1/2

and introducing the dimensionless independent variable ξ via

r ≡ λnξ,

we finally arrive at

1
ξ 2

d

dξ

[

ξ 2 dDn

dξ

]

= −Dn
n, (110)

which is the famous Lane–Emden equation.
Solving Eq. ( 110) for the dimensionless function Dn(ξ) in terms of ξ for a specific

polytropic index n leads directly to the profile of density with radius ρn(r). The polytropic

The Interiors of Stars



equation of state Pn(r) = Kρ
(n+1)/n
n provides the pressure profile. In addition, if the ideal

gas law and radiation pressure are assumed for constant composition (Eq. 20), then the
temperature profile, T (r), is also obtained.

In order to actually solve this second-order differential equation, it is necessary to im-
pose two boundary conditions (which effectively specify the two constants of integration).
Assuming that the “surface” of the star is that location where the pressure goes to zero (and
correspondingly the density of the gas also goes to zero), then

Dn(ξ1) = 0 specifies the surface at ξ = ξ1,

where ξ1 is the location of the first zero of the solution.
Next consider the center of the star. If r = δ represents a distance infinitesimally close

to the center of the star, then the mass contained within a volume of radius δ is given by

Mr = 4π
3
ρ δ3

where ρ is the average density of the gas within the radius δ. Substituting into the equation
for hydrostatic equilibrium, Eq. (6), we have

dP

dr
= −G

Mrρ

r2
= −4π

3
G ρ2 δ → 0 as δ → 0.

Since P = Kρ(n+1)/n, this implies that

dρ

dr
→ 0 as r → 0,

which immediately leads to the central boundary condition

dDn

dξ
= 0 at ξ = 0.

In addition, in order for ρc to represent the central density of the star, it is also necessary
that Dn(0) = 1 (this condition isn’t strictly a boundary condition, it simply normalizes the
density scaling function, Dn).

With the boundary conditions specified, it is now possible to compute the total mass of
a star of a specific polytropic index. From Eq. (7),

M = 4π
∫ R

0
r2ρ dr,

where R = λnξ1 represents the radius of the star. Rewriting in terms of the dimensionless
quantities yields

M = 4π
∫ ξ1

0
λ2

nξ
2ρcD

n
n d(λnξ),
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or

M = 4πλ3
nρc

∫ ξ1

0
ξ 2Dn

n dξ .

Although this expression could be integrated directly with knowledge of Dn(ξ), it can also
be rewritten directly by noting, from the Lane–Emden equation and the central boundary
condition, that

ξ 2Dn
n = − d

dξ

[

ξ 2 dDn

dξ

]

gives

M = −4πλ3
nρcξ

2
1

dDn

dξ

∣

∣

∣

∣

ξ1

,

where (dDn/dξ)|ξ1
means that the derivative of Dn is evaluated at the surface.

Although the Lane–Emden equation is compact and elegant, it is important to bear in
mind its many limitations. Recall that Eq. ( 110) contains no information about either
energy transport or energy generation within a star; the equation only describes hydrostatic
equilibrium and mass conservation, and then only within the highly idealized class of
polytropic equations of state. Nevertheless, the Lane–Emden equation is capable of giving
us some important insights into the structures of stars.

There are only three analytic solutions to the Lane–Emden equation, namely n = 0, 1,
and 5. The n = 0 solution is given by

D0(ξ) = 1 − ξ 2

6
, with ξ1 =

√
6.

It is left as an exercise for you to derive the n = 0 solution. The solution for n = 1 is the
well-known “sinc” function

D1(ξ) = sin ξ
ξ

, with ξ1 = π,

and the n = 5 solution is given by

D5(ξ) = [1 + ξ 2/3]−1/2, with ξ1 → ∞.

In the latter case you are asked to verify that although the radius of the star is infinite, the
total mass of the star is actually finite. This is not the case for values of n > 5. Thus, the
physical limits of n are constrained to the range 0 ≤ n ≤ 5. Graphical representations of
D0, D1, and D5 are shown in Fig. 12.

γ
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This discussion of polytropes was originally motivated by the equation of 
state of an adiabatic gas. For the case of an ideal, monatomic gas,  = 5/3, 
which implies that n = 1.5. In addition, certain extremely compressed stars 
in their final stage of evolution known as white dwarfs can also be described
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FIGURE 12 The analytic solutions to the Lane–Emden equation: D0(ξ), D1(ξ), and D5(ξ).

by polytropes of index 1.5 (technically these are non-relativistic, completely degenerate
stars). Although the important n = 1.5 case cannot be solved analytically, it can be solved
numerically.

Another important polytropic index is the n = 3 “Eddington standard model” associated
with a star in radiative equilibrium. To see how this model corresponds to radiative equi-
librium, consider a polytrope that is supported by both an ideal gas and radiation pressure
(see Eq. 20). If the total pressure at a certain location in the star is represented by P , and
the contribution to that pressure due to an ideal gas is given by

Pg = ρkT

µmH

= βP, (111)

where 0 ≤ β ≤ 1, then the contribution due to radiation pressure is

Pr = 1
3
aT 4 = (1 − β)P . (112)

Since we are looking for a polytropic equation of state that can be expressed independent
of temperature, we can combine the last two expressions to eliminate T . Solving for T in
Eq. (111) and substituting into Eq. (112), we obtain

1
3
a

(

βPµmH

ρk

)4

= (1 − β)P .

This leads immediately to an expression for the total pressure in terms of the density, namely

P = Kρ4/3 (113)
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where

K ≡
[

3(1 − β)

a

]1/3 (
k

βµmH

)4/3

.

Since γ = 4/3, this implies that n = 3.
Certainly the two most physically significant polytropic models correspond to n = 1.5

and n = 3. Although neither model can be solved analytically, the use of computers and
numerical integration algorithms allow us to explore their structure and behavior relatively
easily. Careful study of these polytropes can yield important insights into the structures of
more realistic, although significantly more complex stellar models.

6 THE MAIN SEQUENCE

The analysis of stellar spectra tells us that the atmospheres of the vast majority of all stars are
composed primarily of hydrogen, usually about 70% by mass (X ∼ 0.7), whereas the mass
fraction of metals varies from near zero to approximately 3% (0 < Z < 0.03). Assuming
that the initial composition of a star is homogeneous (meaning that the composition is the
same throughout), the first set of nuclear fusion reactions ought to be those that convert
hydrogen into helium (the pp chains and/or the CNO cycle). Recall that these reactions
occur at the lowest temperatures because the associated Coulomb barrier is lower than
that for the burning of more massive nuclei. Consequently, the structure of a homogeneous,
hydrogen-rich star ought to be strongly influenced by hydrogen nuclear burning deep within
its interior.

Because of the predominance of hydrogen that initially exists in the core, and since
hydrogen burning is a relatively slow process, the interior composition and structure of the
star will change slowly. As we saw in Example 3.2, a rough estimate of the hydrogen-
burning lifetime of the Sun is 10 billion years. Of course, the surface conditions will not be
completely static. By the Vogt–Russell theorem, any change in composition or mass requires
a readjustment of the effective temperature and luminosity; the observational characteristic
of the star must change as a consequence of the central nuclear reactions.As long as changes
in the core are slow, so are the evolutionary changes in the observed surface features.2

Since most stars have similar compositions, the structures of stars ought to vary smoothly
with mass. Recall from Examples 1.1 and 2.1 that as the mass increases, the central
pressure and the central temperature should increase. Therefore, for stars of low mass,
the pp chain will dominate since less energy is required to initiate these reactions than
the reactions of the CNO cycle. For high-mass stars, the CNO cycle will likely dominate
because of its very strong temperature dependence.

25

be described by a polytropic index of 3
2 Some short-period surface changes can occur that are essentially decoupled from the long-term variations in the
core. Stellar pulsations require specific conditions to exist, but their timescales are usually much shorter than the
nuclear timescale.

25
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Stars supported solely by a fully relativistic, completely degenerate gas can also
.
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At some point, as progressively less massive stars are considered, the central temperature
will diminish to the point where nuclear reactions are no longer able to stabilize a star
against gravitational contraction. This has been shown to occur at approximately 0.072 M⊙
for solar composition (the lower limit is slightly higher, 0.09 M⊙, for stars with virtually no
metal content, Z ≃ 0). At the other extreme, stars with masses greater than approximately
90 M⊙ become subject to thermal oscillations in their centers that may produce significant
variations in the nuclear energy generation rates over timescales as short as 8 hours.

The Eddington Luminosity Limit

Along with thermal oscillations, the stability of very massive stars is directly affected by
their extremely high luminosities. As can be seen by Eq. ( 20), if the temperature is
sufficiently high and the gas density is low enough, it is possible for radiation pressure to
dominate over the gas pressure in certain regions of the star, a situation that can occur in
the outer layers of very massive stars.

Combined with the relationship between radiant flux and luminosity,
the pressure gradient near the surface may be written as

dP

dr
≃ −κρ

c

L

4πr2
.

But hydrostatic equilibrium (Eq. 6) demands that the pressure gradient near the star’s
surface must also be given by

dP

dr
= −G

Mρ

r2
,

where M is the star’s mass. Combining, and solving for the luminosity, we have

LEd = 4πGc

κ
M. (114)

LEd is the maximum radiative luminosity that a star can have and still remain in hydrostatic
equilibrium. If the luminosity exceeds LEd, mass loss must occur, driven by radiation
pressure. This luminosity maximum, known as the Eddington limit, appears in a number
of areas of astrophysics, including late stages of stellar evolution, novae, and the structure
of accretion disks.

For our purposes, it is possible to make an estimate of the Eddington luminosity for stars
on the upper end of the main sequence. The effective temperatures of these massive stars
are in the range of 50,000 K, high enough that most of the hydrogen is ionized in their
photospheres. Therefore, the major contribution to the opacity is from electron scattering.
For X = 0.7, Eq. (114) becomes

LEd ≃ 1.5 × 1031 M

M⊙
W or

LEd

L⊙
≃ 3.8 × 104 M

M⊙
.
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For a 90 M⊙ star, LEd ≃ 3.5 × 106 L⊙, roughly three times the expected main-sequence
value.

The fairly close correspondence between the theoretical and Eddington luminosities
implies that the envelopes of massive main-sequence stars are loosely bound at best. In fact,
observations of the few stars with masses estimated to be near 100 M⊙ indicate that they
are suffering from large amounts of mass loss and exhibit variability in their luminosities.

Variations of Main-Sequence Stellar Parameters with Mass

From theoretical models that are computed in the mass range of hydrogen burning, it is
possible to obtain a numerical relationship between M and L that agrees well with the

The range in main-sequence luminosities is from near 5 × 10−4 L⊙ to approximately
1 × 106 L⊙, a variation of over nine orders of magnitude, while the masses change by
only three orders of magnitude. Because of the enormous rate of energy output from upper
main-sequence stars, they consume their core hydrogen in a much shorter period of time
than do stars on the lower end of the main sequence. As a result, main-sequence lifetimes
decrease with increasing luminosity. Estimates of the range of main-sequence lifetimes are
left as an exercise.
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FIGURE 13 The locations of stellar models on a theoretical H–R diagram. The models were
computed using the stellar structure equations and constitutive relations. (Data from Schaller, et al.,
Astron. Astrophys. Suppl., 96, 269, 1992, and Charbonnel, et al., Astron. Astrophys. Suppl., 135, 405,
1999.

The Interiors of Stars

observational mass–luminosity relation. It is also possible to locate each of the models 
on a theoretical H–Rdiagram (see Fig.  13). It can be seen that stars undergoing hydro-
gen burning in their cores lie along the observational main sequence!



Effective temperatures are much less dependent on stellar mass. From approximately
1700 K for 0.072 M⊙ stars to near 53,000 K for 90 M⊙ stars, the increase in effective
temperature amounts to a factor of only about 20. However, this variation is still large enough
to dramatically change the stellar spectrum, since the dissociation energies of molecules
and the ionization potentials of most elements lie within this range

Consequently, by comparison with theoretical models, it is possible to correlate
main-sequence masses with observed spectra.

The interior structure of stars along the main sequence also varies with mass, primarily
in the location of convection zones. In the upper portion of the main sequence, where
energy generation is due to the strongly temperature-dependent CNO cycle, convection is
dominant in the core. This occurs because the rate of energy generation changes quickly
with radius, and radiation is not efficient enough to transport all of the energy being released
in nuclear reactions. Outside of the hydrogen-burning core, radiation is again capable of
handling the flux, and convection ceases. As the stellar mass decreases, so does the central
temperature and the energy output of the CNO cycle until, near 1.2 M⊙, the pp chain begins
to dominate and the core becomes radiative. Meanwhile, near the surface of the star, as

of the surface convection zone lowers until the entire star becomes convective near 0.3 M⊙.
Through the use of the fundamental physical principles developed thus far in this text,

we have been able to build realistic models of main-sequence stars and develop an under-
standing of their interiors. However, other stars remain on the observational H–R diagram
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the effective temperature decreases with decreasing mass, the opacity increases, in part 
because of the location of the zone of hydrogen ionization. The increase in opacity 
makes convection more efficient than radiation near the surfaces of stars with masses 
less than approximately 1.3 M⊙. This has the effect of creating convection zones near 
the surfaces of these stars. As we continue to move down the main sequence, the bottom

that do not lie along the main sequence. By considering the changes in stellar structure 
that occur because of changes in composition due to nuclear burning (the Vogt–Russell 
theorem), it will become possible to explain their existence as well.
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PROBLEM SET

1 Show that the equation for hydrostatic equilibrium, Eq. ( 6), can also be written in terms of
the optical depth τ , as

dP

dτ
= g

κ
.

This form of the equation is often useful in building model stellar atmospheres.

2 Prove that the gravitational force on a point mass located anywhere inside a hollow, spherically
symmetric shell is zero. Assume that the mass of the shell is M and has a constant density ρ.
Assume also that the radius of the inside surface of the shell is r1 and that the radius of the
outside surface is r2. The mass of the point is m.

3 Assuming that 10 eV could be released by every atom in the Sun through chemical reactions,
estimate how long the Sun could shine at its current rate through chemical processes alone.
For simplicity, assume that the Sun is composed entirely of hydrogen. Is it possible that the
Sun’s energy is entirely chemical? Why or why not?

4 (a) Taking into consideration the Maxwell–Boltzmann velocity distribution, what temperature
would be required for two protons to collide if quantum mechanical tunneling is neglected?
Assume that nuclei having velocities ten times the root-mean-square (rms) value for the
Maxwell–Boltzmann distribution can overcome the Coulomb barrier. Compare your an-
swer with the estimated central temperature of the Sun.

(b) Using the below equation , calculate the ratio of the number of protons having velocities
the rms value to those moving at the rms velocity.

(c) Assuming (incorrectly) that the Sun is pure hydrogen, estimate the number of hydrogen
nuclei in the Sun. Could there be enough protons moving with a speed ten times the rms
value to account for the Sun’s luminosity?

5 Derive the ideal gas law, Eq. ( 10). Begin with the pressure integral (Eq. 9) and the
Maxwell–Boltzmann velocity distribution functio,

The Interiors of Stars

(6)

Pg = nkT (10)

P = 1
3

∫ ∞

0
mnvv

2 dv, (9)

ten times

From Chapter 10 of An Introduction to Modern Astrophysics
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.

dP

dr
= −G

Mrρ

r2
= −ρg,

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv,

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv,
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11 Beginning with Eq. (62) and writing the energy generation rate in the form

ϵ(T ) = ϵ′′T α
8 ,

show that the temperature dependence for the triple alpha process, given by Eq. ( 63), is
correct. ϵ ′′ is a function that is independent of temperature.
Hint: First take the natural logarithm of both sides of Eq. ( 62) and then differentiate with
respect to ln T8. Follow the same procedure with your power law form of the equation and
compare the results. You may want to make use of the relation

d ln ϵ
d ln T8

= d ln ϵ
1
T8

dT8
= T8

d ln ϵ
dT8

.

6 Derive Eq. (28) from the following equation:

7 By invoking the virial theorem (see below), make a crude estimate of an
“

average” temperature
for the Sun. Is your result consistent with other estimates obtained in The Interiors of Stars

8 Show that the form of the Coulomb potential barrier penetration probability given by
Eq. (31) follows directly from Eq. (30).

9 Prove that the energy corresponding to the Gamow peak is given by Eq. (34).

10 Calculate the ratio of the energy generation rate for the pp chain to the energy generation rate for
the CNO cycle given conditions characteristic of the center of the present-day (evolved) Sun,
namely T = 1.5696 × 107 K, ρ = 1.527 × 105 kg m−3, X = 0.3397, and XCNO = 0.0141.
Assume that the pp chain screening factor is unity (fpp = 1) and that the pp chain branching
factor is unity (ψpp = 1).

Why or why not?

nE dE = 2n

π1/2

1
(kT )3/2

E1/2e−E/kT dE (28)

σ (E) ∝ e−bE−1/2
, (31)

E0 =
(

bkT

2

)2/3

. (34)

ϵ3α = 50.9ρ2Y 3T −3
8 f3αe

−44.027T −1
8 W kg−1, (62)

ϵ3α ≃ ϵ′
0,3αρ

2Y 3f3αT
41.0

8 . (63)

The interior values assumed here are taken from the standard solar model of Bahcall, Pinsonneault, and Basu,
Ap. J., 555, 990, 2001.

*

*
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nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv,

−2 ⟨K⟩ = ⟨U⟩ .

σ (E) ∝ e−2π2Uc/E. (30)

?”
“



(d) Explain your conclusion in part (c) in terms of the physical processes of convection and
radiation.

12 The Q value of a reaction is the amount of energy released (or absorbed) during the reaction.
Calculate the Q value for each step of the PP I reaction chain (Eqs. 37– 39). Express
your answers in MeV. The masses of 2

1H and 3
2He are 2.0141 u and 3.0160 u, respectively.

13 Calculate the amount of energy released or absorbed in the following reactions (express your
answers in MeV):
(a) 12

6C + 12
6C → 24

12Mg + γ

(b) 12
6C + 12

6C → 16
8O + 2 4

2He
(c) 19

9F + 1
1H → 16

8O + 4
2He

The mass of 12
6C is 12.0000 u, by definition, and the masses of 16

8O, 19
9F, and 24

12Mg are 15.99491 u,
18.99840 u, and 23.98504 u, respectively. Are these reactions exothermic or endothermic?

14 Complete the following reaction sequences. Be sure to include any necessary leptons.
(a) 27

14Si → ?
13Al + e+ + ?

(b) ?
13Al + 1

1H → 24
12Mg + 4

??

(c) 35
17Cl + 1

1H → 36
18Ar + ?

15 Prove that Eq. (83) follows from Eq. (82).

16 Show that Eq. (109) can be obtained from Eq. (108).

17 Starting with the Lane–Emden equation and imposing the necessary boundary conditions,
prove that the n = 0 polytrope has a solution given by

D0(ξ) = 1 − ξ 2

6
, with ξ1 =

√
6.

18 Describe the density structure associated with an n = 0 polytrope.

19 Derive an expression for the total mass of an n = 5 polytrope, and show that although ξ1 → ∞,
the mass is finite.

20 (a) On the same graph, plot the density structure of stars of polytropic indices n = 0, n = 1,
and n = 5. Hint: You will want to plot ρn/ρc vs. r/λn.

(b) What can you conclude about the concentration of density with radius for increasing
polytropic index?

(c) From the trend that you observe for the analytic solutions to the Lane–Emden equation,
what would you expect regarding the density concentration of an adiabatically convective
stellar model compared to a model in radiative equilibrium?

1
1H + 1

1H → 2
1H + e+ + νe (37)

2
1H + 1

1H → 3
2He + γ (38)

3
2He + 3

2He → 4
2He + 2 1

1H. (39)

PV γ = K, (82)

P = K ′T γ /(γ−1), (83)

1
r2

d

dr

(

r2

ρ

dP

dr

)

= −4πGρ . (108)

1
r2

d

dr

(

r2 d1g

dr

)

= 4πGρ, (109)
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21 Estimate the hydrogen-burning lifetimes of stars near the lower and upper ends of the main
sequence. The lower end of the main sequence occurs near 0.072 M⊙, with log10 Te = 3.23
and log10(L/L⊙) = −4.3. On the other hand, an 85 M⊙ star near the upper end of the main
sequence has an effective temperature and luminosity of log10 Te = 4.705 and log10(L/L⊙) =
6.006, respectively. Assume that the 0.072 M⊙ star is entirely convective so that, through
convective mixing, all of its hydrogen, rather than just the inner 10%, becomes available for
burning.

22 Using the information given in Problem 21 .072 M⊙ star and
⊙ star. What is the ratio of their radii?

23 (a) Estimate the Eddington luminosity of a 0.072 M⊙ star and compare your answer to the
main-sequence luminosity given in Problem 21. Assume κ = 0.001 m2 kg−1. Is radia-
tion pressure likely to be significant in the stability of a low-mass main-sequence star?

(b) If a 120 M⊙ star forms with log10 Te = 4.727 and log10(L/L⊙) = 6.252, estimate its
Eddington luminosity. Compare your answer with the actual luminosity of the star.

COMPUTER PROBLEMS

24 (a) Use a numerical integration algorithm such as a Runge–Kutta method to compute the
density profile for the n = 1.5 and n = 3 polytropes. Be sure to correctly incorporate the
boundary conditions in your integrations.

(b) Plot your results and compare them with the n = 0, n = 1, and n = 5 analytic models
determined in Problem 20.

25 Verify that the basic equations of stellar structure [Eqs. ( 6), ( 7), ( 36), ( 68)] are
satisfied by the 1 M⊙ StatStar model available for download from the companion website;
see Appendix: StatStar,  A Stellar Structure Code. This may be done by selecting two adjacent

the derivatives on the left-hand sides of the equations, for example

dP

dr
≃ Pi+1 − Pi

ri+1 − ri

,

and comparing your results with results obtained from the right-hand sides using average values
of quantities for the two zones [e.g., Mr = (Mi + Mi+1)/2].

Perform your calculations for two adjacent shells at temperatures near 5 × 106 K, and then
compare your results for the left- and right-hand sides of each equation by determining relative
errors. Note that the model assumes complete ionization everywhere and has the uniform
composition X = 0.7, Y = 0.292, Z = 0.008. Your results on the left- and right-hand sides of
the stellar structure equations will not agree exactly because StatStar uses a Runge–Kutta
numerical algorithm that carries out intermediate steps not shown in the output file.

Data from Chabrier, et al., Ap. J., 542, 464, 2000.
Data from Schaller, et al., Astron. Astrophys. Suppl. Ser., 96, 269, 1992.

(6)

(7)

*

**

*

**

above, calculate the radii of a 0
a  85 M
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zones and numerically computing

dP

dr
= −G

Mrρ

r2
= −ρg,

dMr

dr
= 4πr2ρ,



26 The companion website contains an example of a theoretical 1.0 M⊙
duced by the stellar structure code StatStar, described in Appendix: , A Stellar Structure

Using StatStar, build a second main-sequence star with a mass of 0.75 M⊙
X = 0.7, Y = 0.292, and Z = 0.008. For these values, the

model’s luminosity and effective temperature are 0.189 L⊙ and 3788.5 K, respectively. Compare
the central temperatures, pressures, densities, and energy generation rates between the 1.0 M⊙
and 0.75 M⊙ models. Explain the differences in the central conditions of the two models.

27 Use the stellar structure code StatStar described in Appendix: , A Stellar Structure 
StatStar H–R diagram and mass–effective

website, to calculate a homogeneous, main sequence model
Y = 0.292, and Z = 0.008. (Note:It may be more

class a different mass for this problem so that the results can be

(a) After obtaining a satisfactory model, plot P versus r , Mr versus r , Lr versus r , and T

versus r .
(b) At what temperature has Lr reached approximately 99% of its surface value? 50% of its

surface value? Is the temperature associated with 50% of the total luminosity consistent
with the rough estimate found in Eq. (27)? Why or why not?

(c) What are the values of Mr/M⋆ for the two temperatures found in part (b)? M⋆ is the total
mass of the stellar model.

(d) If each student in the class calculated a different mass, compare the changes in the following
quantities with mass:

(i) The central temperature.
(ii) The central density.
(iii) The central energy generation rate.
(iv) The extent of the central convection zone with mass fraction and radius.
(v) The effective temperature.
(vi) The radius of the star.

(e) If each student in the class calculated a different mass:

Code, together with the theoretical temperature
data provided on the companion -
having the composition X = 0.7, illustrative
to assign each student in the
compared.)

Tquantum = Z2
1Z

2
2e

4µm

12π2ϵ2
0h

2k
. (27)

(i) Plot each model on a graph of luminosity versus mass (i.e., plot L⋆/L⊙ versus
M⋆/M⊙).

(ii) Plot log10(L⋆/L⊙) versus log10(M⋆/M⊙) for each stellar model.

(iii) Using an approximate power law relation of the form

L⋆/L⊙ = (M⋆/M⊙)α,

find an appropriate value for α. α may differ for different compositions or vary some-
what with mass. This is known as the mass–luminosity relation (see below figure).

The Interiors of Stars: Problem Set

dLr

dr
= 4πr2ρϵ, (36)

dT

dr
= − 3

4ac

κρ

T 3

Lr

4πr2
. (68)

Code. that has
a homogeneous composition of

main-sequence star pro-
StatStar

 StatStar
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FIGURE The mass–luminosity relation. (Data from Popper, Annu. Rev. Astron. Astrophys., 18,
115, 1980.)

28 Repeat Problem 27 above using the same mass but a different composition; assume X = 0.7,
Y = 0.290, Z = 0.010.
(a) For a given mass, which model (Z = 0.008 or Z = 0.010) has the higher central temper-

ature? the greater central density?
(b) Referring to the appropriate stellar structure equations and constitutive relations, explain

your results in part (a).
(c) Which model has the largest energy generation rate at the center? Why?
(d) How do you account for the differences in effective temperature and luminosity between

your two models?
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The Interstellar Medium
and Star Formation

1 Interstellar Dust and Gas
2 The Formation of Protostars
3 Pre-Main-Sequence Evolution

1 INTERSTELLAR DUST AND GAS

When we look into the heavens, it appears as though the stars are unchanging, point-like
sources of light that shine steadily. On casual inspection, even our own Sun appears constant.

In fact all stars change. Usually the changes are so gradual and over such long time
intervals when measured in human terms that we do not notice them without very careful
telescopic observation. Occasionally, however, the changes are extremely rapid and dra-
matic, as in the case of a supernova explosion. By invoking the understanding we developed
thus far of the physics of stellar interiors and atmospheres, we can now begin to examine
the processes governing how stars evolve during their lives.

The Interstellar Medium

In some sense the evolution of stars is a cyclic process. A star is born out of gas and dust
that exists between the stars, known as the interstellar medium (ISM). During its lifetime,
depending on the star’s total mass, much of that material may be returned to the ISM through
stellar winds and explosive events. Subsequent generations of stars can then form from this
processed material. As a result, to understand the evolution of a star, it is important to study
the nature of the ISM.

Understanding the interstellar medium is critical for more than its role in stellar evolution,
however. The ISM is of profound importance in describing the structure, dynamics, and
evolution of our Milky Way Galaxy, as well as galaxies throughout the universe. In addition,
it impacts our observations of everything from relatively nearby stars to the most remote
galaxies and quasars.

But  this is not the case; sunspots come and go, flares erupt, significant amounts of matter 
are launched into space via coronal mass ejections, the corona itself changes shape, and 
even the Sun’s luminosity appears to be fluctuating over human timescales, as evidenced 
by the Maunder minimum. Of course, over the 4.57-Gyr lifetime of our Sun, the luminos-
ity, effective temperature, and radius have all changed substantially.



More fundamentally, the ISM is an enormous and complex environment that provides
an important laboratory for testing our understanding of astrophysics at many levels. The
dynamics of the ISM involve turbulent gas motions, shocks, and galactic magnetic fields
that lace through interstellar space. Thus, modeling the ISM ultimately requires detailed
solutions to the equations of magnetohydrodynamics. The dust, molecules, atoms, ions,
and free electrons that permeate the ISM challenge our understanding of radiative transfer,
thermodynamics, and quantum mechanics. Moreover, the production and destruction of
dust grains and complex molecules requires a detailed understanding of chemistry in an
environment not reproducible in a terrestrial laboratory.

As an introduction to astrophysical processes, this text is unable to explore all of the
fascinating aspects of the interstellar medium. Consequently, the present section serves
only as a brief introduction to general aspects of the ISM.

Interstellar Extinction

On a dark night some of the dust clouds that populate our Milky Way Galaxy can be
seen in the band of stars that is the disk of the Galaxy (see Fig. 1). It is not that these
dark regions are devoid of stars, but rather that the stars located behind intervening dust
clouds are obscured. This obscuration, referred to as interstellar extinction, is due to the
summative effects of scattering and absorption of starlight (as depicted in Fig. 2).

Given the effect that extinction can have on the apparent magnitude of a star, the distance
modulus equation must be modified appropriately. In a given wavelength band centered
on λ, we now have

mλ = Mλ + 5 log10 d − 5 + Aλ, (1)

where d is the distance in pc and Aλ > 0 represents the number of magnitudes of interstellar
extinction present along the line of sight. If Aλ is large enough, a star that would otherwise
be visible to the naked eye or through a telescope could no longer be detected. This is the
reason for the dark bands running through the Milky Way.

FIGURE 1 Dust clouds obscure the stars located behind them in the disk of the Milky Way.
(Courtesy of Palomar/Caltech.)
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FIGURE 2 An interstellar cloud containing significant amounts of dust along with the gas (a dust
cloud) can both scatter and absorb light that passes through it. The amount of scattering and absorption
depends on the number density of dust grains, the wavelength of the light, and the thickness of the
cloud. Since shorter wavelengths are affected more significantly than longer ones, a star lying behind
the cloud appears reddened to observer A. Observer B sees the scattered shorter wavelengths as a
blue reflection nebula.

Clearly Aλ must be related to the optical depth of the material, measured back along the
line of sight. he fractional change in the intensity of the light is given by

Iλ/Iλ,0 = e−τλ ,

where Iλ,0 is the intensity in the absence of interstellar extinction.
e can now relate the optical depth to the change in apparent magnitude due to

extinction, giving

mλ − mλ,0 = −2.5 log10

(

e−τλ) = 2.5τλ log10 e = 1.086τλ.

But the change in apparent magnitude is just Aλ, so

Aλ = 1.086τλ. (2)

The change in magnitude due to extinction is approximately equal to the optical depth along
the line of sight.

he optical depth through the cloud is given by

τλ =
∫ s

0
nd(s

′) σλ ds ′, (3)

where nd(s
′) is the number density of scattering dust grains and σλ is the scattering cross

T

W

T
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section. If σλ is constant along the line of sight, then

τλ = σλ

∫ s

0
nd(s

′) ds ′ = σλNd, (4)

where Nd , the dust grain column density, is the number of scattering dust particles in a thin
cylinder with a cross section of 1 m2 stretching from the observer to the star. Thus we see
that the amount of extinction depends on the amount of interstellar dust that the light passes
through, as one would expect.

The Mie Theory

If we assume for simplicity, as was first done by Gustav Mie (1868–1957) in 1908, that
dust particles are spherical and each has a radius a, then the geometrical cross section that a
particle presents to a passing photon is just σg = πa2. We may now define the dimensionless
extinction coefficient Qλ to be

Qλ ≡ σλ

σg

,

where Qλ depends on the composition of the dust grains.
Mie was able to show that when the wavelength of the light is on the order of the size of

the dust grains, then Qλ ∼ a/λ, implying that

σλ ∝ a3

λ
(λ ! a). (5)

In the limit that λ becomes very large relative to a, Qλ goes to zero. On the other hand,
if λ becomes very small relative to a, it can be shown that Qλ approaches a constant,
independent of λ so that

σλ ∝ a2 (λ ≪ a). (6)

These limiting behaviors can be understood by analogy to waves on the surface of a lake.
If the wavelength of the waves is much larger than an object in their way, such as a grain
of sand, the waves pass by almost completely unaffected (σλ ∼ 0). On the other hand, if
the waves are much smaller than the obstructing object—for instance, an island—they are
simply blocked; the only waves that continue on are those that miss the island altogether.
Similarly, at sufficiently short wavelengths, the only light we detect passing through the
dust cloud is the light that travels between the particles.

Combining the ideas already discussed, it is clear that the amount of extinction, as
measured by Aλ, must be wavelength-dependent. Since the longer wavelengths of red light
are not scattered as strongly as blue light, the starlight passing through intervening dust
clouds becomes reddened as the blue light is removed. This interstellar reddening causes
stars to appear redder than their effective temperatures would otherwise imply. Fortunately,
it is possible to detect this change by carefully analyzing the absorption and emission lines
in the star’s spectrum.

The Interstellar Medium and Star Formation



Much of the incident blue light is scattered out of its original path and can leave the cloud
in virtually any direction. As a result, looking at the cloud in a direction other than along the
line of sight to a bright star behind the cloud, an observer will see a blue reflection nebula
(recall Fig. 2) such as the Pleiades This process is analogous to Rayleigh
scattering, which produces a blue sky on Earth. The difference between Mie scattering and
Rayleigh scattering is that the sizes of the scattering molecules associated with Rayleigh
scattering are much smaller than the wavelength of visible light, leading to σλ ∝ λ−4.

Example 1.1. A certain star, located 0.8 kpc from Earth, is found to be dimmer than
expected at 550 nm by AV = 1.1 magnitudes, where AV is the amount of extinction as
measured through the visual wavelength filter If Q550 = 1.5 and the dust grains are
assumed to be spherical with radii of 0.2 µm, estimate the average density (n) of material
between the star and Earth.

From Eq. ( 2), the optical depth along the line of sight is nearly equal to the amount
of extinction in magnitudes, or τ550 ≃ 1. Also,

σ550 = πa2Q550 ≃ 2 × 10−13 m2.

Now the column density of the dust along the line of sight is given by Eq. (4),

Nd = τ550

σ550
≃ 5 × 1012 m−2.

Finally, since Nd =
∫ s

0 n(s ′) ds ′ = n × 0.8 kpc, we have

n = Nd

0.8 kpc
= 2 × 10−7 m−3.

Number densities of this magnitude are typical of the plane of the Milky Way Galaxy.

Molecular Contributions to Interstellar Extinction Curves

Predictions of the Mie theory work well for longer wavelengths, typically from the infrared
into the visible wavelength region. However, at ultraviolet wavelengths significant devia-
tions become apparent, as can be seen by considering the ratio of Aλ, the extinction in a
wavelength band centered at λ, to the extinction in some reference wavelength band, such
as AV . This ratio is often plotted versus reciprocal wavelength λ−1, as in Fig. 3. Alter-
natively, color excesses are sometimes plotted instead, such as (Aλ − AV ) / (AB − AV ) or
E(B − V ) ≡ (B − V )intrinsic − (B − V )observed.

At longer wavelengths (the left side of the graph) the data agree well with the Mie theory.
For wavelengths shorter than the blue wavelength band (B), however, the curves begin to
diverge significantly, deviating from the expected relation, Aλ/AV ∝ λ−1. Particularly evi-
dent is the “bump” in the ultraviolet at 217.5 nm or 4.6 µm−1. At even shorter wavelengths,
the extinction curve tends to rise sharply as the wavelength decreases.

The existence of the “bump” in Fig. 3 gives us some hint of the composition of the
dust. Graphite, a well-ordered form of carbon, interacts strongly with light near 217.5 nm.

.

.
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FIGURE 3 Interstellar extinction curves along the lines of sight to three stars. The dashed lines
represent the observational data, and the solid lines are theoretical fits. The U , B, and V wavelength
bands are indicated for reference. (Figure adapted from Mathis, Annu. Rev. Astron. Astrophys., 28, 37,
1990. Reproduced with permission from the Annual Review of Astronomy and Astrophysics, Volume
28, ©1990 by Annual Reviews Inc.)

Although it is uncertain how carbon can organize into large graphite particles in the inter-
stellar medium, the strength of the “bump,” the abundance of carbon, and the existence of
the 217.5-nm resonance have led most researchers to suggest that graphite may be a major
component of interstellar dust.

Another possible source of the 217.5-nm feature may be polycyclic aromatic hydro-
carbons (PAHs; see Fig. 4). These are complex organic planar molecules with multiple
benzene ring-like structures that are probably responsible for a series of molecular bands
that have been observed in emission in the light from diffuse dust clouds.1 The so-called
unidentified infrared emission bands exist in the wavelength range between 3.3 µm and
12 µm; they appear to be due to vibrations in the C-C and C-H bonds common in PAHs. Just
as transitions between atomic energy levels are quantized, so are the energies associated
with molecular bonds. In the case of molecular bonds, however, the energy levels tend to be
grouped in closely spaced bands, producing characteristic broad features in the spectrum of
the light. The vibration, rotation, and bending of molecular bonds are all quantized, yielding
complex spectra that may be difficult to identify in large molecules.

Interstellar dust is composed of other particles as well, as evidenced by the existence
of dark absorption bands at wavelengths of 9.7 µm and 18 µm in the near-infrared. These
features are believed to be the result of the stretching of the Si-O molecular bond and the

1The fact that molecules as complex as PAHs can exist in space has also been confirmed by their presence in
certain types of meteorites found on Earth, known as carbonaceous meteorites.

The Interstellar Medium and Star Formation



H

H

H

H

H

H

H

H
H

H H

H H H H

H H

H

HH
HH

H

H
H H

H

H
H

H

H

H

H

H

H

H

H

H

H

H

C24 H12

C14 H10

C42 H18

FIGURE 4 The structures of several polycyclic aromatic hydrocarbons: C14H10 (anthracene),
C24H12 (coronene), C42H18 (hexabenzocoronene). The hexagonal structures are shorthand for indi-
cating the presence of a carbon atom at each corner of the hexagon.

bending of Si-O-Si bonds in silicates, respectively. The existence of these absorption bands
involving silicon indicates that silicate grains are also present in the dust clouds and the
diffuse dust of the ISM.

An important characteristic of the light scattered from interstellar dust is that it tends to
be slightly polarized. The amount of polarization is typically a few percent and depends
on wavelength. This necessarily implies that the dust grains cannot be perfectly spherical.
Furthermore, they must be at least somewhat aligned along a unique direction since the
electric field vectors of the radiation are preferentially oriented in a particular direction.
The most likely way to establish such an alignment is for the grains to interact with a weak
magnetic field. Because less energy is required, the particles tend to rotate with their long
axes perpendicular to the direction of the magnetic field.

All of these observations give us some clues to the nature of the dust in the ISM. Ap-
parently the dust in the ISM is composed of both graphite and silicate grains ranging in
size from several microns down to fractions of a nanometer, the characteristic size of the
smaller PAHs. It appears that many of the features of the interstellar extinction curve can
be reproduced by combining the contributions from all of these components.

Hydrogen as the Dominant Component of the ISM

Although dust produces most of the obscuration that is readily noticeable, the dominant
component of the ISM is hydrogen gas in its various forms: neutral hydrogen (H I), ionized
hydrogen (H II), and molecular hydrogen (H2). Hydrogen comprises approximately 70%
of the mass of matter in the ISM, and helium makes up most of the remaining mass; metals,
such as carbon and silicon, account for only a few percent of the total.

Most hydrogen in diffuse interstellar hydrogen clouds is in the form of H I in the ground
state. As a result, the H I is generally incapable of producing emission lines by down-
ward transitions of electrons from one orbit to another. It is also difficult to observe H I in
absorption, since UV-wavelength photons are required to lift the electrons out of the ground
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state. However, in certain unique circumstances, orbiting observatories have detected ab-
sorption lines produced by cold clouds of H I when there are strong UV sources lying behind
them.

21-cm Radiation of Hydrogen

Fortunately, it is still generally possible to identify neutral hydrogen in the diffuse ISM. This
is done by detecting the unique radio-wavelength 21-cm line. The 21-cm line is produced
by the reversal of the spin of the electron relative to the proton in the atom’s nucleus.

oth electrons and protons possess an inherent spin angular momentum,
with the z-component of the spin angular momentum vector having one of two possible
orientations, corresponding to the two allowed values of the spin quantum number, ms =
± 1

2 . Because these particles are also electrically charged, their intrinsic spins endow them
with dipole magnetic fields, much like those of bar magnets. If the spins of the electron
and proton are aligned (e.g., both spin axes are in the same direction), the atom has slightly
more energy than if they are anti-aligned (see Fig. 5). As a result, if the electron’s spin
“flips” from being aligned with the proton to being anti-aligned, energy must be lost from
the atom. If the spin flip is not due to a collision with another atom, then a photon is emitted.
Of course, a photon can also be absorbed, exciting a hydrogen atom into aligning its electron
and proton spins. The wavelength of the photon associated with the spin flip is 21.1 cm,
corresponding to a frequency of 1420 MHz.

The emission of a 21-cm photon from an individual hydrogen atom is extremely rare.
Once in the excited state, several million years can pass on average before that atom will
emit a photon. Competing with this spontaneous emission are collisions between hydrogen
atoms that may result in either excitation or de-excitation. In the low-density environment
of the diffuse ISM, collisions occur on timescales of hundreds of years. Although this is
far shorter than the spontaneous emission timescale, statistically some atoms are still able
to make the necessary spontaneous transition. In contrast, the best vacuums produced in

ProtonElectron Aligned

Anti-aligned

Photon

Transition

FIGURE 5 When the spins of the electron and proton in a hydrogen atom go from being aligned
to being anti-aligned, a 21-cm-wavelength photon is emitted.

B
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Earth-based laboratories have densities much greater than those found in the ISM, meaning
that collision rates are significantly higher in laboratory environments and virtually all of the
atoms in the laboratory are de-excited before they can emit 21-cm radiation. The existence
of 21-cm radiation was predicted in the early 1940s and first detected in 1951. Since then
it has become an important tool in mapping the location and density of H I, measuring
radial velocities using the Doppler effect, and estimating magnetic fields using the Zeeman
effect. 21-cm radiation is particularly valuable in determining the structure and kinematic
properties of galaxies, including our own.

Although H I is quite abundant, the rarity of 21-cm emission (or absorption) from individ-
ual atoms means that the center of this line can remain optically thin over large interstellar
distances. Assuming that the line profile is a Gaussian, like the shape of the Doppler line
profile the optical depth of the line center is given by

τH = 5.2 × 10−15 NH

T %v
, (7)

where NH is the column density of H I (in units of m−2), T is the temperature of the gas (in
kelvins), and%v is the full width of the line at half maximum (in km s−1). [Note that since
the line width is due primarily to the Doppler effect %v is expressed in units of velocity,
rather than in wavelength units; typically %v ∼ 10 km s−1.]

As long as the 21-cm hydrogen line is optically thin (i.e., on the linear part of the curve of
growth the optical depth is proportional to the neutral hydrogen column density.
Studies of diffuse H I clouds indicate temperatures of 30 to 80 K, number densities in the
range of 1 × 108 m−3 to 8 × 108 m−3, and masses on the order of 1–100 M⊙.

Comparing τH with AV along the same line of sight shows that NH is generally pro-
portional to Nd (the column density of dust) when AV < 1. This observation suggests that
dust and gas are distributed together throughout the ISM. However, when AV > 1, this
correlation breaks down; the column density of H I no longer increases as rapidly as the
column density of dust. Apparently, other physical processes are involved when the dust
becomes optically thick.

Optically thick dust clouds shield hydrogen from sources of ultraviolet radiation. One
consequence of this shielding is that molecular hydrogen can exist without the threat of
undergoing dissociation by UV photon absorption. Dust can also enhance the H2 formation
rate beyond what would be expected by random collisions of hydrogen atoms. This en-
hancement occurs for two reasons: (1) A dust grain can provide a site on the surface of the
grain where the hydrogen atoms can meet, rather than requiring chance encounters in the
ISM, and (2) the dust provides a sink for the binding energy that must be liberated if a stable
molecule is to form. The liberated energy goes into heating the grain and ejecting the H2

molecule from the formation site. If the column density of atomic hydrogen is sufficiently
large (NH on the order of 1025 m−2), it can also shield H2 from UV photodissociation.
Consequently, molecular clouds are surrounded by shells of H I.

Molecular Tracers of H2

Since the structure of H2 differs greatly from that of atomic hydrogen, the H2 molecule does
not emit 21-cm radiation. This explains why NH and AV are poorly correlated in molecular

,

,

),

The Interstellar Medium and Star Formation



clouds when AV > 1; the number density of atomic hydrogen decreases significantly as the
hydrogen becomes locked up in its molecular form.

Unfortunately, H2 is very difficult to observe directly because the molecule does not
have any emission or absorption lines in the visible or radio portions of the electromagnetic
spectrum at the cool temperatures typical of the ISM. In special circumstances when T >

2000 K, it is possible to detect rotational and vibrational bands (known collectively as
rovibrational bands) associated with the molecular bond. However, in most instances it
becomes necessary to use other molecules as tracers of H2 by making the assumption
that their abundances are proportional to the abundance of H2. Because of its relatively
high abundance (approximately 10−4 that of H2), the most commonly investigated tracer is
carbon monoxide, CO, although other molecules have also been used, including CH, OH,
CS, C3H2, HCO+, and N2H+. It is also possible to use isotopomers of the molecules, such
as 13CO or C18O, to further refine studies of molecular clouds. Given that molecules have
moments of inertia that affect their spectra, different isotopes in molecules result in different
spectral wavelengths (Note that when the specific isotope is not indicated, it is assumed
that the most abundant isotope is implied; thus CO implies 12C16O.)

During collisions the tracer molecules become excited (or de-excited) and spontaneous
transitions from excited states result in the emission of photons in wavelength regions that
are more easily observed than those associated with H2, such as the 2.6-mm transition of
CO. Since collision rates depend on both the gas temperature (or thermal kinetic energy)
and the number densities of the species, molecular tracers can provide information about
the environment within a molecular cloud. In fact, an estimate of atomic and molecular
collision rates can be made in a way completely analogous to the approach used to obtain
the nuclear reaction rate equation.

The Classification of Interstellar Clouds

The results of these studies show that conditions within molecular clouds can vary widely.
Consequently, any effort to specify a discrete classification scheme is destined to fail because
the delineation between types is blurred at best. However, even with that caveat, a broad
classification scheme is still useful for distinguishing the general characteristics of specific
environments.

In clouds where the hydrogen gas is primarily atomic and the interstellar extinction
is roughly 1 < AV < 5, molecular hydrogen may be found in regions of higher column
density. Such clouds are sometimes referred to as diffuse molecular clouds, or alternatively
as translucent molecular clouds. Conditions in diffuse molecular clouds are typical of
diffuse H I clouds but with somewhat higher masses; they have temperatures of 15 to 50 K,
n ∼ 5 × 108 to 5 × 109 m−3, M ∼ 3 to 100 M⊙, and they measure several parsecs across.
Both H I clouds and diffuse molecular clouds tend to be irregularly shaped.

Giant molecular clouds (GMCs) are enormous complexes of dust and gas where
temperatures are typically T ∼ 15 K, number densities are in the range n ∼ 1 × 108 to
3 × 108 m−3, masses are typically 105 M⊙ but may reach 106 M⊙, and typical sizes are on
the order of 50 pc across. The famous Horsehead Nebula, also known as Barnard 33 (B33),

.
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FIGURE 6 The Horsehead Nebula is part of the Orion giant molecular cloud complex. The
“horsehead” appearance is due to dust protruding into an H II (ionized hydrogen) environment.
(European Southern Observatory)

is shown in Fig. 6. The Horsehead Nebula is a portion of the Orion giant molecular cloud
complex. Thousands of GMCs are known to exist in our Galaxy, mostly in its spiral arms.

Overall, the structure of GMCs tend to be clumpy with local regions of significantly
greater density. Dark cloud complexes of roughly 104 M⊙ have AV ∼ 5, n ∼ 5 × 108 m−3,
diameters on the order of 10 pc, and characteristic temperatures of 10 K. Smaller, individual
clumps may be even more dense, with AV ∼ 10, n ∼ 109 m−3, diameters of a couple of
parsecs, temperatures of 10 K or so, and masses of 30 M⊙. At even smaller scales are
dense cores with masses on the order of 10 M⊙, AV > 10, n ∼ 1010 m−3, characteristic
diameters of 0.1 pc, and temperatures of 10 K. Finally, in some localized regions of GMCs,
observations reveal hot cores with characteristic sizes of 0.05 to 0.1 pc, where AV ∼ 50
to 1000, T ∼ 100 to 300 K, n ∼ 1013 to 1015 m−3, and M ∼ 10 to 3000 M⊙. Based on
observations from infrared telescopes such as NASA’s Spitzer Space Telescope and the
European Space Agency’s Infrared Space Observatory, hot cores appear to have massive,
young O and B stars embedded within them, suggesting strongly that these are regions of
recent star formation.

Located outside of larger molecular complexes are the almost spherical clouds known as
Bok globules (see, for example, Fig. 7).2 These globules are characterized by large visual
extinctions (AV ∼ 10), low temperatures (T ∼ 10 K), relatively large number densities
(n > 1010 m−3), low masses (M ∼ 1 to 1000 M⊙), and small sizes of typically less than
1 pc. Infrared surveys of Bok globules have revealed that many, perhaps most, of these
objects harbor young low-luminosity stars in their centers, implying that Bok globules are
also sites of active star formation. In fact, Bok globules appear to be dense cores that have

2Bok globules are named after Bart Bok (1906–1983), who first studied these objects in the 1940s.
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(a) (b)

FIGURE 7 The Bok globule, Barnard 68 (B68), observed in visible light [(a) composite of BVI
bands] and in infrared light [(b) composite of BIK bands]. The visible image was obtained by one
of the 8-m telescopes of the European Southern Observatory’s Very Large Telescope at Paranal. The
infrared image was obtained by ESO’s 3.58-m New Technology Telescope at La Silla. Notice that
significantly reddened stars can be seen through the globule in the infrared. (Interstellar reddening is
the result of scattering photons off of dust grains). (European Southern Observatory)

been stripped of their surrounding molecular gas by nearby hot, massive stars. The process
by which stars form out of the ISM will be considered in the next section.

Interstellar Chemistry

Along with the molecules and dust grains already discussed, the ISM is rich in other
molecules as well. As of June 2005, radio observations have resulted in the positive identifi-
cation of 125 molecules (not including isotopomers), ranging in complexity from diatomic
molecules such as H2 and CO, and triatomic molecules such as H2O and H+

3 , to fairly long
organic strings, including HC11N.

Given the complex nature of the molecules present in the interstellar medium, it is evident
that the chemistry of the ISM is also quite complex. The specific processes in operation in
a given molecular cloud depend on the density and temperature of the gas, as well as its
composition and the presence of dust grains. We noted that dust grains must be
present for the formation of molecular hydrogen, H , the dominant constituent in molecular2

clouds. It is also likely that dust grains can help facilitate the formation of numerous other
molecules as well, including CH, NH, OH, CH2, CO, CO2, and H2O. In fact, in sufficiently
dense clouds, the formation of molecules on the surfaces of grains can actually lead to the
development of icy mantles on the grains. Absorption signatures of solid CO, CO2, H2O,
CH4, CH3OH, NH3, and other ices have been measured in combination with the infrared
spectra of silicate dust grains.

In addition to the chemistry that can occur on grain surfaces, it is also possible for
molecules to form in the gas phase. For example, the hydroxyl molecule (OH) can form
through a series of reactions involving atomic and molecular ions, including the ionic water

earlier 
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molecule, H2O+:

H+ + O → O+ + H

O+ + H2 → OH+ + H

OH+ + H2 → H2O+ + H

H2O+ + e− → OH + H. (8)

Eq. (8) competes with another reaction involving molecular hydrogen,

H2O+ + H2 → H3O+ + H,

leading to the production of either a hydroxyl molecule (75% of the time) or a water molecule
via

H3O+ + e− →
{

OH + H2

H2O + H.
(9)

The Heating and Cooling of the ISM

Not only are molecules and dust grains critical in understanding the chemistry of the ISM,
but they also play important roles in the heating and cooling of the material between the
stars. You may have noticed that diffuse molecular clouds have higher gas temperatures
than giant molecular clouds, and the dense cores of GMCs are even cooler yet. On the other
hand, the hot cores of GMCs have significantly greater temperatures. What are the physical
causes of these observational trends?

Much of the heating of the interstellar medium comes from cosmic rays, charged particles
that travel through space with sometimes astonishing amounts of energy. A single proton
may possess an energy ranging anywhere from 10 to 1014 MeV.3 The highest energy cosmic
rays are extremely rare, but energies in the range 103 to 108 MeV are common. The sources
of cosmic rays include stellar flares and supernova explosions

Heating by cosmic rays comes primarily through the ionization of hydrogen atoms and
molecules as a result of collisions with cosmic ray protons;

p+ + H → H+ + e− + p+

p+ + H2 → H+
2 + e− + p+.

When an atom or molecule is ionized, an electron is ejected that carries some of the original
kinetic energy of the proton with it. It is this ejected electron that interacts with the ISM to
increase the average kinetic energy of the ISM’s constituents via collisions with molecules
(see, for example, Eqs. 8 and 9). Those molecules then collide with other molecules

31014 MeV is roughly the kinetic energy of a tennis ball of mass 0.057 kg traveling at 100 km h−1 (approximately
60 mph).

.
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in the gas, distributing thermal kinetic energy throughout the cloud, thereby raising the
temperature of the cloud.

Other sources of heating in molecular clouds include the ionization of carbon atoms
by ultraviolet starlight resulting in ejected electrons, the photoelectric ejection of electrons
from dust grains by ultraviolet starlight, the absorption of light energy into the lattice of
dust grains, and the ionization of hydrogen by stellar X-rays. Shocks from supernovae or
strong stellar winds can also produce some heating of molecular clouds in special cases.

To balance the heating processes, cooling mechanisms must also be in operation. The
primary mechanism for cooling is based on the emission of infrared photons. Recalling
Mie scattering (Eq. 5), when photon wavelengths are on the order of, or longer than,
the size of dust grains, they are less likely to be scattered. IR photons can pass more easily
through the molecular cloud than can shorter-wavelength photons, allowing the IR photons
to transport energy out of the cloud.

IR photons are produced in molecular clouds through collisions between ions, atoms,
molecules, and dust grains. Typically a collision between ions, atoms, or molecules results
in one of the species being left in an excited state; the energy of the excited state comes
from the kinetic energy of the collision. The species in the excited state then decays back
to the ground state through the emission of an IR photon. For example,

O + H → O∗ + H (10)

O∗ → O + γ . (11)

Here O∗ represents an excited state of the oxygen atom. The collisional kinetic energy
(thermal energy) is thus transformed into an IR photon that escapes the cloud. Collisional
excitations of C+ and CO by H and H2, respectively, are also significant contributors to
cooling of molecular clouds.

Collisions involving dust grains can also result in cooling of molecular clouds. This
process is similar to ionic, atomic, and molecular collisions in that the lattice of a dust grain
can be left with excess thermal energy after the collision. The grain then emits infrared
energy that is able to escape from the cloud.

The Sources of Dust Grains

It is apparent that even though dust grains make up only about one percent of the mass of a
molecular cloud, they are important constituents in determining its chemistry and physics.
The question of the source of these grains then naturally arises. Although observations
indicate that dust grains can be formed in the envelopes of very cool stars, aided by the
enhanced density in those environments relative to molecular clouds, grains can also be
easily destroyed by UV and X-ray photons. Dust grains are also formed as a product of
supernova explosions and stellar winds. However, none of these sources appear to be able to
provide the abundance of massive grains found in molecular clouds. Rather, it appears that
grains probably grow by a process of coagulation within the molecular clouds themselves.
Dust grain formation represents just one of many areas of active research into the nature of
the ISM.
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2 THE FORMATION OF PROTOSTARS

Our understanding of stellar evolution has developed significantly since the 1960s, reaching
the point where much of the life history of a star is well determined. This success has been
due to advances in observational techniques, improvements in our knowledge of the physical
processes important in stars, and increases in computational power. In the remainder of this
chapter we will present an overview of the lives of stars, leaving detailed discussions
of some special phases of evolution until later, specifically stellar pulsation, supernovae,
and compact objects (stellar corpses).

The Jeans Criterion

Despite many successes, important questions remain concerning how stars change during
their lifetimes. One area where the picture is far from complete is in the earliest stage of evo-
lution, the formation of pre-nuclear-burning objects known as protostars from interstellar
molecular clouds.

If globules and cores in molecular clouds are the sites of star formation, what conditions
must exist for collapse to occur? Sir James Jeans (1877–1946) first investigated this prob-
lem in 1902 by considering the effects of small deviations from hydrostatic equilibrium.
Although several simplifying assumptions are made in the analysis, such as neglecting ef-
fects due to rotation, turbulence, and galactic magnetic fields, it provides important insights
into the development of protostars.

The virial theorem

2K + U = 0,

describes the condition of equilibrium for a stable, gravitationally bound system.4 We have
already seen that the virial theorem arises naturally in the discussion of orbital motion, and
we have also invoked it in estimating the amount of gravitational energy contained within
a star The virial theorem may also be used to estimate the conditions necessary for
protostellar collapse.

If twice the total internal kinetic energy of a molecular cloud (2K) exceeds the absolute
value of the gravitational potential energy (|U |), the force due to the gas pressure will
dominate the force of gravity and the cloud will expand. On the other hand, if the internal
kinetic energy is too low, the cloud will collapse. The boundary between these two cases
describes the critical condition for stability when rotation, turbulence, and magnetic fields
are neglected.

Assuming a spherical cloud of constant density, the gravitational potential energy is
approximately

U ∼ −3
5

GM2
c

Rc

,

where Mc and Rc are the mass and radius of the cloud, respectively. We may also estimate

4We have implicitly assumed that the kinetic and potential energy terms are averaged over time.

,

,

.
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the cloud’s internal kinetic energy, given by

K = 3
2
NkT,

where N is the total number of particles. But N is just

N = Mc

µmH

,

where µ is the mean molecular weight. Now, by the virial theorem, the condition for collapse
(2K < |U |) becomes

3MckT

µmH

<
3
5

GM2
c

Rc

. (12)

The radius may be replaced by using the initial mass density of the cloud, ρ0, assumed here
to be constant throughout the cloud,

Rc =
(

3Mc

4πρ0

)1/3

. (13)

After substitution into Eq. ( 12), we may solve for the minimum mass necessary to initiate
the spontaneous collapse of the cloud. This condition is known as the Jeans criterion:

Mc > MJ ,

where

MJ ≃
(

5kT

GµmH

)3/2 ( 3
4πρ0

)1/2

(14)

is called the Jeans mass. Using Eq. ( 13), the Jeans criterion may also be expressed in
terms of the minimum radius necessary to collapse a cloud of density ρ0:

Rc > RJ , (15)

where

RJ ≃
(

15kT

4πGµmHρ0

)1/2

(16)

is the Jeans length.
The Jeans mass derivation given above neglected the important fact that there must exist

an external pressure on the cloud due to the surrounding interstellar medium (such as the
encompassing GMC in the case of an embedded dense core). Although we will not derive
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the expression here, the critical mass required for gravitational collapse in the presence of
an external gas pressure of P0 is given by the Bonnor–Ebert mass,

MBE = cBEv4
T

P
1/2
0 G3/2

, (17)

where

vT ≡
√

kT /µmH (18)

is the isothermal sound speed (γ = cBE is
given by

cBE ≃ 1.18.

he Jeans mass (Eq. 14) can be written in the form
of Eq. ( 17) with cJ ≃ 5.46 replacing cBE. The smaller constant for the Bonnor–Ebert
mass is to be expected since an external compression force due to P0 is being exerted on
the cloud.5

Example 2.1. For a typical diffuse hydrogen cloud, T = 50 K and n = 5 × 108 m−3. If
we assume that the cloud is entirely composed of H I, ρ0 = mHnH = 8.4 × 10−19 kg m−3.
Taking µ = 1 and using Eq. ( 14), the minimum mass necessary to cause the cloud to
collapse spontaneously is approximately MJ ∼ 1500 M⊙. However, this value significantly
exceeds the estimated 1 to 100 M⊙ believed to be contained in H I clouds. Hence diffuse
hydrogen clouds are stable against gravitational collapse.

On the other hand, for a dense core of a giant molecular cloud, typical temperatures and
number densities are T = 10 K and nH2 = 1010 m−3. Since dense clouds are predominantly
molecular hydrogen, ρ0 = 2mHnH2 = 3 × 10−17 kg m−3 and µ ≃ 2. In this case the Jeans
mass is MJ ∼ 8 M⊙, characteristic of the masses of dense cores being on the order of 10 M⊙.
Apparently the dense cores of GMCs are unstable to gravitational collapse, consistent with
being sites of star formation.

If the Bonnor–Ebert mass (Eq. 17) is used as the critical collapse condition, then the
required mass reduces to approximately 2 M⊙.

Homologous Collapse

In the case that the criterion for gravitational collapse has been satisfied in the absence of
rotation, turbulence, or magnetic fields, the molecular cloud will collapse. If we make the
simplifying (and possibly unrealistic) assumption that any existing pressure gradients are
too small to influence the motion appreciably, then the cloud is essentially in free-fall during
the first part of its evolution. Furthermore, throughout the free-fall phase, the temperature

5You may be interested to know that the derivation of Eq. ( 17) involves the isothermal Lane–Emden equation

T

.

1), and the dimensionless constant
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of the gas remains nearly constant (i.e., the collapse is said to be isothermal). This is true
as long as the cloud remains optically thin and the gravitational potential energy released
during the collapse can be efficiently radiated away. In this case the spherically symmetric
hydrodynamic equation can be used to describe the contraction if we assume
that |dP/dr| ≪ GMrρ/r2. After canceling the density on both sides of the expression, we
have

d2r

dt2
= −G

Mr

r2
. (19)

Of course, the right-hand side of Eq. ( 19) is just the local acceleration of gravity at a
distance r from the center of a spherical cloud. As usual, the mass of the sphere interior to
the radius r is denoted by Mr .

To describe the behavior of the surface of a sphere of radius r within the collapsing cloud
as a function of time, Eq. ( 19) must be integrated over time. Since we are interested only
in the surface that encloses Mr , the mass interior to r will remain a constant during that
collapse. As a result, we may replace Mr by the product of the initial density ρ0 and the
initial spherical volume, 4πr3

0 /3. Then, if we multiply both sides of Eq. ( 19) by the
velocity of the surface of the sphere, we arrive at the expression

dr

dt

d2r

dt2
= −

(

4π
3

Gρ0 r3
0

)

1
r2

dr

dt
,

which can be integrated once with respect to time to give

1
2

(

dr

dt

)2

=
(

4π
3

Gρ0 r3
0

)

1
r

+ C1.

The integration constant, C1, can be evaluated by requiring that the velocity of the sphere’s
surface be zero at the beginning of the collapse, or dr/dt = 0 when r = r0. This gives

C1 = −4π
3

Gρ0 r2
0 .

Substituting and solving for the velocity at the surface, we have

dr

dt
= −

[

8π
3

Gρ0 r2
0

( r0

r
− 1

)

]1/2

. (20)

Note that the negative root was chosen because the cloud is collapsing.
To integrate Eq. ( 20) so that we can obtain an expression for the position as a function

of time, we make the substitutions

θ ≡ r

r0

and

χ ≡
(

8π
3

Gρ0

)1/2

,
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which leads to the differential equation

dθ

dt
= −χ

(

1
θ

− 1
)1/2

. (21)

Making yet another substitution,

θ ≡ cos2 ξ, (22)

and after some manipulation, Eq. ( 21) becomes

cos2 ξ
dξ

dt
= χ

2
. (23)

Equation ( 23) may now be integrated directly with respect to t to yield

ξ

2
+ 1

4
sin 2ξ = χ

2
t + C2. (24)

Lastly, the integration constant, C2, must be evaluated. Doing so requires that r = r0

when t = 0, which implies that θ = 1, or ξ = 0 at the beginning of the collapse. Therefore,
C2 = 0.

We have finally arrived at the equation of motion for the gravitational collapse of the
cloud, given in parameterized form by

ξ + 1
2

sin 2ξ = χ t. (25)

Our task now is to extract the behavior of the collapsing cloud from this equation. From
Eq. ( 25), it is possible to calculate the free-fall timescale for a cloud that has satisfied
the Jeans criterion. Let t = tff when the radius of the collapsing sphere reaches zero (θ = 0,
ξ = π/2).6 Then

tff = π

2χ
.

Substituting the value for χ , we have

tff =
(

3π
32

1
Gρ0

)1/2

. (26)

You should notice that the free-fall time is actually independent of the initial radius of
the sphere. Consequently, as long as the original density of the spherical molecular cloud
was uniform, all parts of the cloud will take the same amount of time to collapse, and the
density will increase at the same rate everywhere. This behavior is known as a homologous
collapse.

6This is obviously an unphysical final condition, since it implies infinite density. If r0 ≫ rfinal, however, then
rfinal ≃ 0 is a reasonable approximation for our purposes here.
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However, if the cloud is somewhat centrally condensed when the collapse begins, the
free-fall time will be shorter for material near the center than for material farther out. Thus,
as the collapse progresses, the density will increase more rapidly near the center than in
other regions. In this case the collapse is referred to as an inside-out collapse.

Example 2.2. Using data given in Example 2.1 for a dense core of a giant molecular
cloud, we may estimate the amount of time required for the collapse. Assuming a density
of ρ0 = 3 × 10−17 kg m−3 that is constant throughout the core, Eq. ( 26) gives

tff = 3.8 × 105 yr.

To investigate the actual behavior of the collapse in our simplified model, we must
first solve Eq. ( 25) for ξ , given a value for t , and then use Eq. ( 22) to find θ =
r/r0. However, Eq. ( 25) cannot be solved explicitly, so numerical techniques must be
employed. The numerical solution of the homologous collapse of the molecular cloud is
shown in Fig. 8. Notice that the collapse is quite slow initially and accelerates quickly
as tff is approached. At the same time, the density increases very rapidly during the final
stages of collapse.

The Fragmentation of Collapsing Clouds

Since the masses of fairly large molecular clouds could exceed the Jeans limit, from
Eq. ( 14) our simple analysis seems to imply that stars can form with very large masses,
possibly up to the initial mass of the cloud. However, observations show that this does
not happen. Furthermore, it appears that stars frequently (perhaps even preferentially) tend
to form in groups, ranging from binary star systems to clusters that contain hundreds of
thousands of members.

The process of fragmentation that segments a collapsing cloud is an aspect of star
formation that is under significant investigation. To see that fragmentation must occur by
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FIGURE 8 The homologous collapse of a molecular cloud, as discussed in Example
r/r0 is shown as the solid line and log10(ρ/ρ0) is shown as the dashed line. The initial density of the
cloud was ρ0 = 3 × 10−17 kg m−3 and the free-fall time is 3.8 × 105 yr.
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some mechanism(s), refer again to the equation for the Jeans mass (Eq. 14).An important
consequence of the collapse of a molecular cloud is that the density of the cloud increases by
many orders of magnitude during free-fall (Fig. 8). Consequently, since T remains nearly
constant throughout much of the collapse, it appears that the Jeans mass must decrease.After
collapse has begun, any initial inhomogeneities in density will cause individual sections
of the cloud to satisfy the Jeans mass limit independently and begin to collapse locally,
producing smaller features within the original cloud. This cascading collapse could lead to
the formation of large numbers of smaller objects.

It is important to point out that one challenge with the overly simplified scenario described
here is that the process implies that far too many stars would be produced. It is likely that
only about 1% of the cloud actually forms stars.

What is it that stops the fragmentation process? Since we observe a galaxy filled with
stars that have masses on the order of the mass of the Sun, the cascading fragmentation
of the cloud cannot proceed without interruption. The answer to the question lies in our
implicit assumption that the collapse is isothermal, which in turn implies that the only
term that changes in Eq. ( 14) is the density. Clearly this cannot be the case since stars
have temperatures much higher than 10 to 100 K. If the energy that is released during
a gravitational collapse is radiated away efficiently, the temperature can remain nearly
constant. At the other extreme, if the energy cannot be transported out of the cloud at all
(an adiabatic collapse), then the temperature must rise. Of course, the real situation must
be somewhere between these two limits, but by considering each of these special cases
carefully, we can begin to understand some of the important features of the problem.

If the collapse changes from being essentially isothermal to adiabatic, the associated
temperature rise would begin to affect the value of the Jeans mass.

or an adiabatic process the pressure of the gas is related to its density by γ , the ratio of
specific heats Using the ideal gas law an adiabatic relation between density and
temperature can be obtained,

T = K ′′ργ−1, (27)

where K ′′ is a constant. Substituting this expression into Eq. ( 14), we find that for an
adiabatic collapse, the dependence of the Jeans mass on density becomes

MJ ∝ ρ(3γ−4)/2.

For atomic hydrogen γ = 5/3, giving MJ ∝ ρ1/2; the Jeans mass increases with increasing
density for a perfectly adiabatic collapse of a cloud. This behavior means that the collapse
results in a minimum value for the mass of the fragments produced. The minimum mass
depends on the point when the collapse goes from being predominantly isothermal to adi-
abatic.

Of course, this transition is not instantaneous or even complete. However, it is possible to
make a crude order-of-magnitude estimate of the lower mass limit of the fragments. As we
have already mentioned, according to the virial theorem, energy must be liberated during
the collapse of the cloud.

he energy released is roughly

%Eg ≃ 3
10

GM2
J

RJ

F
. ,

T
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for a spherical cloud just satisfying the Jeans criterion at some point during the collapse.
Averaged over the free-fall time, the luminosity due to gravity is given by

Lff ≃ %Eg

tff
∼ G3/2

(

MJ

RJ

)5/2

,

where we have made use of Eq. ( 26) and have neglected terms of order unity.
If the cloud were optically thick and in thermodynamic equilibrium, the energy would

be emitted as blackbody radiation. However, during collapse the process of releasing the
energy is less efficient than for an ideal blackbody. e may express the radiated
luminosity as

Lrad = 4πR2eσT 4,

where an efficiency factor, 0 < e < 1, has been introduced to indicate the deviation from
thermodynamic equilibrium. If the collapse is perfectly isothermal and escaping radiation
does not interact at all with overlying infalling material, e ∼ 0. If, on the other hand, energy
emitted by some parts of the cloud is absorbed and then re-emitted by other parts of the
cloud, thermodynamic equilibrium would more nearly apply and e would be closer to unity.

Equating the two expressions for the cloud’s luminosity,

Lff = Lrad,

and rearranging, we have

M
5/2
J = 4π

G3/2
R

9/2
J eσT 4.

Making use of Eq. ( 13) to eliminate the radius, and then using Eq. ( 14) to write the
density in terms of the Jeans mass, we arrive at an estimate of when adiabatic effects become
important, expressed in terms of the minimum obtainable Jeans mass:

MJmin = 0.03
(

T 1/4

e1/2µ9/4

)

M⊙, (28)

where T is expressed in kelvins. If we take µ ∼ 1, e ∼ 0.1, and T ∼ 1000 K at the time
when adiabatic effects may start to become significant, MJ ∼ 0.5 M⊙; fragmentation ceases
when the segments of the original cloud begin to reach the range of solar mass objects. The
estimate is relatively insensitive to other reasonable choices for T , e, and µ. For instance,
if e ∼ 1 then MJ ∼ 0.2 M⊙.

Additional Physical Processes in Protostellar Star Formation

We have, of course, left out a number of important features in our calculations. For in-
stance, we have freely used the Jeans criterion during each point in the collapse of the
cloud to discuss the process of fragmentation. This cannot be correct, since our estimate
of the Jeans criterion was based on a perturbation of a static cloud; no consideration was
made of the initial velocity of the cloud’s outer layers. We have also neglected the details

W
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of radiation transport through the cloud, as well as vaporization of the dust grains, disso-
ciation of molecules, and ionization of the atoms. Nevertheless, it is worth noting that as
unsophisticated as the preceding analysis was, it did illustrate important aspects of the fun-
damental problem and left us with a result that is reasonable. Such preliminary approaches
to understanding complex physical systems are powerful tools in our study of nature.7 More
sophisticated estimates of the complex process of cessation of fragmentation place the limit
an order of magnitude lower than determined above, at about 0.01 M⊙.

Perhaps just as important to the problem of the collapse process are the possible effects of
rotation (angular momentum), the deviation from spherical symmetry, turbulent motions in
the gas, and the presence of magnetic fields. For example, an appreciable amount of angular
momentum present in the original cloud is likely to result in a disk-like structure for at least
a part of the original material, since collapse will proceed at a more rapid rate along the
axis of rotation relative to collapse along the equator

It is also apparent from careful investigations of molecular clouds that magnetic fields
must also play a crucial role and, in fact, are likely to control the onset of collapse. That
mechanisms other than gravity must be involved becomes clear in simply considering the
free-fall time of the dense core discussed in Example 2.2. From that calculation, the
collapse of the dense core should occur on a timescale on the order of 105 yr. While this
may seem long by human standards, it is quite short on stellar evolution timescales. This
would imply that almost as soon as a dense core forms, it begins producing stars. This would
also imply that dense cores should be very rare; however, many dense cores are observable
throughout our Galaxy.

Zeeman measurements of various molecular clouds indicate the presence of magnetic
fields with strengths typically on the order of magnitude of 1 to 100 nT. If the magnetic
field of a cloud is “frozen in,” and the cloud is compressed, the magnetic field strength will
increase, leading to an increase in the magnetic pressure and resistance to the compression.
In fact, if the cloud is stable to collapse because of magnetic pressure, it will remain so as
long as the magnetic field does not decay

During the derivation of the Jeans criterion, the virial theorem was invoked using a
balance between gravitational potential energy and the cloud’s internal (thermal) kinetic
energy. Absent from that calculation was the inclusion of energy due to the presence of
magnetic fields. When magnetic fields are included, the critical mass can be expressed as

MB = cB

πR2B

G1/2
, (29)

where cB = 380 N1/2 m−1 T−1 for a magnetic field permeating a spherical, uniform cloud.
If B is expressed in nT and R in units of pc, then Eq. ( 29) can be written in the more
illustrative form

MB ≃ 70 M⊙

(

B

1 nT

)(

R

1 pc

)2

. (30)

7This type of approach is sometimes called a “back-of-the-envelope” calculation because of the relatively small
space required to carry out the estimate. Extensive use of “back-of-the-envelope” calculations is made throughout
this text to illustrate the effects of key physical processes.

.
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If the mass of the cloud is less than MB , the cloud is said to be magnetically subcritical and
stable against collapse, but if the mass of the cloud exceeds MB , the cloud is magnetically
supercritical and the force due to gravity will overwhelm the ability of the magnetic field
to resist collapse.

Example 2.3. For the dense core considered in Examples 2.1 and 2.2, if the
dense core has a magnetic field of 100 nT threading through it, and if it has a radius of
0.1 pc, the magnetic critical mass would be MB ≃ 70 M⊙, implying that a dense core of
mass 10 M⊙ would be stable against collapse. However, if B = 1 nT, then MB ≃ 0.7 M⊙
and collapse would occur.

Ambipolar Diffusion

The last example hints at another possibility for triggering the collapse of a dense core. If
a core that was originally subcritical were to become supercritical, collapse could ensue.
This could happen in one of two ways: a group of subcritical clouds could combine to form
a supercritical cloud, or the magnetic field could be rearranged so that the field strength is
lessened in a portion of the cloud. It appears that both processes may occur, although the
latter process seems to dominate the pre-collapse evolution of most molecular clouds.

Recall that only charged particles such as electrons or ions are tied to magnetic field
lines; neutrals are not affected directly. Given that dense molecular cores are dominated by
neutrals, how can magnetic fields have any substantial effect on the collapse? The answer
lies in the collisions between neutrals and the ions (electrons do not significantly affect
neutral atoms or molecules through collisions). As neutrals try to drift across magnetic field
lines, they collide with the “frozen-in” ions, and the motions of the neutrals are inhibited.
However, if there is a net defined direction for the motion of neutrals due to gravitational
forces, they will still tend to migrate slowly in that direction. This slow migration process
is known as ambipolar diffusion.

To determine the relative impact of ambipolar diffusion, we need to estimate a character-
istic timescale for the diffusion process. This is done by comparing the size of the molecular
cloud to the time it takes for a neutral to drift across the cloud. It can be shown that the
timescale for ambipolar diffusion is approximately

tAD ≃ 2R

vdrift
≃ 10 Gyr

( nH2

1010 m−3

)

(

B

1 nT

)−2 (
R

1 pc

)2

. (31)

Once collapse begins, magnetic fields can be further altered by undergoing reconnection
events similar to those of solar flares.

Example 2.4. Returning to the dense core we used in previous examples, if B = 1 nT
and R = 0.1 pc, we find from Eq. ( 31) that the timescale for ambipolar diffusion is
100 Myr. This is several hundred times longer than the free-fall timescale determined in
Example 2.2. Clearly the ambipolar diffusion process can control the evolution of a
dense core for a long time before free-fall collapse begins.
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Numerical Simulations of Protostellar Evolution

To investigate the nature of the gravitational collapse of a cloud in detail, we must solve the
magnetohydrodynamic equations numerically. Unfortunately, limits in computing power
and numerical methods still necessitate making numerous and significant simplifying as-
sumptions. These numerical models do exhibit many of the characteristics that were illus-
trated by our crude analytical studies, but other important aspects of the collapse become
apparent that were not contained in the physics that has already been discussed.8

Consider a spherical cloud of approximately 1 M⊙ and solar composition that is super-
critical. Initially the early stages of the free-fall collapse are nearly isothermal because light
near the center of the collapse can travel significant distances before being absorbed by dust.
Owing to an initial slight increase in density toward the center of the cloud, the free-fall
timescale is shorter near the center and the density increases more rapidly there (inside-out
collapse). When the density of the material near the center of the collapse region reaches
approximately 10−10 kg m−3, the region becomes optically thick and the collapse becomes
more adiabatic. The opacity of the cloud at this point is primarily due to the presence of dust.

The increased pressure that occurs when the collapse becomes adiabatic substantially
slows the rate of collapse near the core.At this point the central region is nearly in hydrostatic
equilibrium with a radius of approximately 5 AU. It is this central object that is referred to
as a protostar.

One observable consequence of the cloud becoming optically thick is that the gravita-
tional potential energy being released during the collapse is converted into heat and then
radiated away in the infrared as blackbody radiation. By computing the rate of energy re-
lease (the luminosity) and the radius of the cloud where the optical depth is τ = 2/3, the
effective temperature may be determined usin (At this point in
its evolution, the optical depth is determined by the dust, and so the photosphere is a
dust photosphere.)

With the identification of a photosphere, it becomes possible to plot the location of
the simulated cloud on the H–R diagram as a function of time. Curves that depict the
life histories of stars on the H–R diagram are known as evolutionary tracks. Figure 9
shows theoretical evolutionary tracks of 0.05, 0.1, 0.5, 1, 2, and 10 M⊙ clouds computed
by one research group through the protostar phase. As the collapse continues to accelerate
during the early stages, the luminosity of the protostar increases along with its effective
temperature.

Above the developing protostellar core, material is still in free-fall. When the infalling
material meets the nearly hydrostatic core, a shock wave develops where the speed of the
material exceeds the local sound speed (the material is supersonic). It is at this shock front
that the infalling material loses a significant fraction of its kinetic energy in the form of heat
that “powers” the cloud and produces much of its luminosity.

When the temperature reaches approximately 1000 K, the dust within the developing
protostar begins to vaporize and the opacity drops. This means that the radius where τ = 2/3
is substantially reduced, approaching the surface of the hydrostatic core. Since the luminos-
ity remains high during this phase, a corresponding increase in the effective temperature
must occur.

8Some of the first calculations of protostellar collapse were performed by Richard Larson in 1969. His pioneering
work neglected the complicated physics associated with rotation, turbulence, and magnetic fields but did include
thermodynamics, radiative transfer, and other important physical processes.

g the following equation:

L = 4πR2σT 4
e .
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FIGURE 9 Theoretical evolutionary tracks of the gravitational collapse of 0.05, 0.1, 0.5, 1, 2,
and 10 M⊙ clouds through the protostar phase (solid lines). The dashed lines show the times since
collapse began. The light dotted lines are pre-main-sequence evolutionary tracks of 0.1, 0.5, 1, and
2 M⊙ stars from D’Antona and Mazzitelli, Ap. J. Suppl., 90, 457, 1994. Note that the horizontal axis
is plotted with effective temperature increasing to the left, as is characteristic of all H–R diagrams.
(Figure adapted from Wuchterl and Tscharnuter, Astron. Astrophys., 398, 1081, 2003.)

As the overlying material continues to fall onto the hydrostatic core, the temperature of
the core slowly increases. Eventually the temperature becomes high enough (approximately
2000 K) to cause the molecular hydrogen to dissociate into individual atoms. This process
absorbs energy that would otherwise provide a pressure gradient sufficient to maintain
hydrostatic equilibrium. As a result, the core becomes dynamically unstable and a second
collapse occurs. After the core radius has decreased to a value about 30% larger than the
present size of the Sun, hydrostatic equilibrium is re-established. At this point, the core
mass is still much less than its final value, implying that accretion is still ongoing.

After the core collapse, a second shock front is established as the envelope continues
to accrete infalling material. When the nearly flat, roughly constant luminosity part of the
evolutionary track is reached in Fig. 9, accretion has settled into a quasi-steady main
accretion phase. At about the same time, temperatures in the deep interior of the protostar
have increased enough that deuterium (2

1H) begins to burn producing up to 60%
of the luminosity of the 1 M⊙ protostar. Note that this reaction is favored over the first step
in the PP I chain because it has a fairly large cross section, σ (E), at low temperatures.

With only a finite amount of mass available from the original cloud, and with only a
limited amount of deuterium available to burn, the luminosity must eventually decrease.
When deuterium burn-out occurs, the evolutionary track bends sharply downward and the

,
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effective temperature decreases slightly. The evolution has now reached a quasi-static pre-
main-sequence phase that will be discussed in the next section.

The theoretical scenario just described leads to the possibility of observational verifica-
tion. Since it is expected that the collapse should occur deep within a molecular cloud, the
protostar itself would likely be shielded from direct view by a cocoon of dust. Consequently,
any observational evidence of the collapse would be in the form of small infrared sources
embedded within dense cores or Bok globules. The detection of protostellar collapse is made
more difficult by the relatively small value for the free-fall time, meaning that protostars
are fairly short-lived objects.

The search for protostars is under way in infrared and millimeter wavelengths, and a
number of strong candidates have been identified, including B335, a Bok globule in the
constellation of Aquila, L1527 in Taurus, and numerous objects in the Orion Nebula. B335
is probably the best-studied case and is almost a perfect test of the theory of protostellar
collapse since it seems to have very little turbulence or rotation.

Some astronomers believe that by studying the details of the infrared spectra of these
sources, they have been able to identify possible spectral signatures of infalling dust and
gas around the embedded infrared objects. These tell-tale features involve Doppler-shifted
sub-structures in the profiles of spectral lines. For an optically thick line, a central absorption
feature is often visible (see Fig. 10). The source of the absorption feature is cool material
between the observer and the source of the line (the hotter central region). The broad wings
of the line result from Doppler-shifted light coming from infalling gas. The blueshifted wing
is from infalling gas on the far side of the cloud (therefore moving toward the observer),
and the redshifted wing is from infalling gas on the near side of the cloud. Infall has been
identified in starless dense cores as well.

Absorption
dip from cloud

Infall moving
toward observer

Infall moving
away from observer

!0
Wavelength

In
te

ns
ity

FIGURE 10 A line profile of a spherical, infalling cloud. The wings are Doppler shifted due
to infalling material. The central absorption is produced by intervening material far from the central
collapse. The redshifted wing arises from material in front of the central region moving away from
the observer, and the blueshifted wing is due to material in the back of the cloud moving toward the
observer.

Another example of line profile signatures indicating mass motions is discussed in the next section; see Fig. 17.
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3 PRE-MAIN-SEQUENCE EVOLUTION

As we discovered in the last section, once the collapse of a molecular cloud has begun, it is
characterized by the free-fall timescale given by Eq. ( 26). With the formation of a quasi-
static protostar, the rate of evolution becomes controlled by the rate at which the star can
thermally adjust to the collapse. This is just the Kelvin–Helmholtz timescale; the gravita-

potential energy liberated by the collapse is released over time and is the source of
the object’s luminosity. Since tKH ≫ tff , protostellar evolution proceeds at a much slower
rate than free-fall collapse. For instance, a 1 M⊙ star requires almost 40 Myr to contract
quasi-statically to its main-sequence structure.

The Hayashi Track

With the steadily increasing effective temperature of the protostar, the opacity of the outer
layers becomes dominated by the H− ion, the extra electrons coming from the partial ioniza-
tion of some of the heavier elements in the gas that have lower ionization potentials. As with
the envelope of the main-sequence Sun, this large opacity contribution causes the envelope
of a contracting protostar to become convective. In fact, in some cases the convection zone
extends all the way to the center of the star. In 1961, C. Hayashi demonstrated that because
of the constraints convection puts on the structure of a star, a deep convective envelope
limits its quasi-static evolutionary path to a line that is nearly vertical in the H–R diagram.
Consequently, as the protostar collapse slows, its luminosity decreases while its effective
temperature increases slightly. It is this evolution along the Hayashi track that appears as
the downward turn at the end of the evolutionary tracks shown in Fig. 9.

The Hayashi track actually represents a boundary between “allowed” hydrostatic stel-
lar models and those that are “forbidden.” To the right of the Hayashi track, there is no
mechanism that can adequately transport the luminosity out of the star at those low effec-
tive temperatures; hence no stable stars can exist there. To the left of the Hayashi track,
convection and/or radiation is responsible for the necessary energy transport. Note that this
distinction between allowed and forbidden models is not in conflict with the free-fall evo-
lution of collapsing gas clouds found to the right of the Hayashi track since those objects
are far from being in hydrostatic equilibrium.

Classical Calculations of Pre-Main-Sequence Evolution

In 1965, before detailed protostellar collapse calculations were performed, Icko Iben, Jr.
computed the final stages of collapse onto the main sequence for stars of various masses.
In each case he started his models on the Hayashi track. All of those models neglected the
effects of rotation, magnetic fields, and mass loss. Since that time, significant improvements
have been made in our understanding of the physical processes involved in stellar structure
and evolution, including refined nuclear reaction rates, new opacities, and the inclusion
of mass loss or accretion. Some modern evolutionary calculations have also included the
effects of rotation.10 The pre-main-sequence evolutionary tracks for a sequence of masses

1 Some calculations have also begun considering the effects of magnetic fields, but the results presented in this
text do not include those recent preliminary results.
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FIGURE 11 Classical pre-main-sequence evolutionary tracks computed for stars of various
masses with the composition X = 0.68, Y = 0.30, and Z = 0.02. The direction of evolution on each
track is generally from low effective temperature to high effective temperature (right to left). The
mass of each model is indicated beside its evolutionary track. The square on each track indicates the
onset of deuterium burning in these calculations. The long-dash line represents the point on each track
where convection in the envelope stops and the envelope becomes purely radiative. The short-dash
line marks the onset of convection in the core of the star. Contraction times for each track are given
in Table 1. (Figure adapted from Bernasconi and Maeder, Astron. Astrophys., 307, 829, 1996.)

computed with state-of-the-art physics are shown in Fig. 11, and the total time for each
evolutionary track is given in Table 1.

Consider the pre-main-sequence evolution of a 1 M⊙ star, beginning on the Hayashi
track. With the high H− opacity near the surface, the star is completely convective during
approximately the first one million years of the collapse. In these models, deuterium burning
also occurs during this early period of collapse, beginning at the square indicated on the
evolutionary tracks in Fig. 11.1 However, since 2

1H is not very abundant, the nuclear

1 Note that since these calculations did not include the formation of the protostar from the direct collapse of
the cloud as was done for the tracks in Fig. 9, there is a fundamental inconsistency between when deuterium
burning occurs in the two sets of calculations.
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TABLE 1 Pre-main-sequence contraction times for the classical models presented in
Fig. 11. (Data from Bernasconi and Maeder, Astron. Astrophys., 307, 829, 1996.)

Initial Mass (M⊙) Contraction Time (Myr)
60 0.0282
25 0.0708
15 0.117

9 0.288
5 1.15
3 7.24
2 23.4
1.5 35.4
1 38.9
0.8 68.4

reactions have little effect on the overall collapse; they simply slow the rate of collapse
slightly.

As the central temperature continues to rise, increasing levels of ionization decrease the

At about the time that the luminosity begins to increase again, the temperature near the
center has become high enough for nuclear reactions to begin in earnest, although not yet
at their equilibrium rates. Initially, the first two steps of the PP I chain [the conversion
of 1

1H to 3
2He and the CNO reactions that turn 12

6C into 14
7N dominate the nuclear

energy production. With time, these reactions provide an increasingly larger fraction of
the luminosity, while the energy production due to gravitational collapse makes less of a
contribution to L.

Due to the onset of the highly temperature-dependent CNO reactions, a steep temperature
gradient is established in the core, and some convection again develops in that region. At
the local maximum in the luminosity on the H–R diagram near the short dashed line, the
rate of nuclear energy production has become so great that the central core is forced to
expand somewhat, causing the gravitational energy term to become negative [recall

]that ϵ = ϵnuclear + ϵgravity This effect is apparent at the surface as the total luminosity
decreases toward its main-sequence value, accompanied by a decrease in the effective
temperature.

When the 12
6C is finally exhausted, the core completes its readjustment to nuclear burning,

reaching a sufficiently high temperature for the remainder of the PP I chain to become im-
portant. At the same time, with the establishment of a stable energy source, the gravitational
energy term becomes insignificant and the star finally settles onto the main sequence. It is
worth noting that the time required for a 1 M⊙ star to reach the main sequence, according
to the detailed numerical model just described, is not very different from the crude estimate
of the Kelvin–Helmholtz timescale.

]

.
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opacity in that region and a radiative core develops, progressively encompassing more and 
more of the star’s mass. At the point of minimum luminosity in the tracks following the 
descent along the Hayashi track, the existence of the radiative core allows energy to escape 
into the convective envelope more readily, causing the luminosity of the star to increase 
again. Also, the effective temperature continues to increase, since the star is still shrinking.



For stars with masses lower than our Sun’s, the evolution is somewhat different. For
stars with masses M " 0.5 M⊙ (not shown in Fig. 11), the upward branch is missing
just before the main sequence. This happens because the central temperature never gets
hot enough to burn 12

6C efficiently

protostar is less than approximately 0.072 M⊙, the core

Another important difference exists between solar-mass stars and stars of lower mass
that can reach the main sequence: Temperatures remain cool enough and the opacity stays
sufficiently high in low-mass stars that a radiative core never develops. Consequently, these
stars remain fully convective all the way to the main sequence.

The Formation of Brown Dwarfs

Below about 0.072 M⊙, some nuclear burning will still occur, but not at a rate necessary to
form a main-sequence star. Above about 0.06 M⊙ the core temperature of the star is great
enough to burn lithium, and above a mass of approximately 0.013 M⊙ deuterium burning
occurs (0.013 M⊙ is roughly thirteen times the mass of Jupiter). This last value is also
in agreement with the cessation of fragmentation discussed The objects in
the range between about 0.013 M⊙ and 0.072 M⊙ are known as brown dwarfs and have
spectral types of L and T The first confirmed discovery of a brown dwarf, Gliese 229B,
was announced in 1995. Since that time hundreds of brown dwarfs have been
detected thanks to near-infrared all-sky surveys, such as the Two Micron All Sky Survey
(2MASS) and the Sloan Digital Sky Survey (SDSS). Given their very low luminosities and
difficulty of detection, the number of objects found to date suggest that brown dwarfs are
prevalent throughout the Milky Way Galaxy.

Massive Star Formation

For massive stars, the central temperature quickly becomes high enough to burn 12
6C as

well as convert 1
1H into 3

2He. This means that these stars leave the Hayashi track at higher
luminosities and evolve nearly horizontally across the H–R diagram. Because of the much
larger central temperatures, the full CNO cycle becomes the dominant mechanism for hydro-
gen burning in these main-sequence stars. Since the CNO cycle is so strongly temperature-
dependent, the core remains convective even after the main sequence is reached.

Possible Modifications to the Classical Models

The general pre-main-sequence evolutionary track calculations described above contain
numerous approximations, as already discussed. It is likely that rotation plays an important
role, along with turbulence and magnetic fields. It is also likely that the initial environments
contain inhomogeneities in cloud densities, strong stellar winds, and ionizing radiation from
nearby, massive stars.

.

earlier.

.

If the mass of the collapsing
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never gets hot enough to generate sufficient energy by nuclear reactions to stabilize the star 
against gravitational collapse. As a result, the stable hydrogen-burning main sequence is 
never obtained. This explains the lower end of the main sequence.



These classical models also assume initial structures that are very large, with radii that are
effectively infinitely greater than their final values. Given that dense cores have dimensions
on the order of 0.1 pc, the initial radii of clouds undergoing protostellar collapse must
be much smaller than traditionally assumed. In addition, the assumption of pressure-free
protostellar collapse may also be a poor one; more realistic calculations probably require
an initial contraction that is quasi-static (after all, the dark cores are roughly in hydrostatic
equilibrium).

To complicate matters further, the more massive stars also interact with infalling material
in such a way that a feedback loop may develop, limiting the amount of mass that they can
accrete via the classical process discussed to this point; recall the discussion of the Eddington
limit.

In light of these various complications, some astronomers have suggested that signifi-
cant modifications to the classical pre-main-sequence evolutionary tracks may be required.
Theoretical evolutionary sequences beginning with smaller initial radii lead to a birth line
where protostars first become visible. This birth line places an upper limit on the observed
luminosities of protostars.

In addition, some observations suggest that stars with masses greater than about 10 M⊙
or so may not form at all by the classical pre-main-sequence process described above. This
apparent effect could be due to limiting feedback mechanisms, such as the high luminosity
of ionizing radiation associated with high effective temperatures. Instead of the collapse of
single protostellar clouds, the more massive stars may form by mergers of smaller stars in
dense protostellar environments. On the other hand, some researchers have argued that the
need for mergers can be avoided because rotation implies that most of the infalling mass
collapses to an accretion disk that forms around the star. The accretion disk then feeds
the growing massive star, minimizing the impact of high amounts of ionizing radiation on
the infalling gas and dust.

The Zero-Age Main Sequence (ZAMS)

The diagonal line in the H–R diagram where stars of various masses first reach the main
sequence and begin equilibrium hydrogen burning is known as the zero-age main sequence
(ZAMS). Inspection of the classical results given in Table 1 shows that the amount of
time required for stars to collapse onto the ZAMS is inversely related to mass; a 0.8 M⊙
star takes over 68 Myr to reach the ZAMS, whereas a 60 M⊙ star makes it to the ZAMS in
only 28,000 years!

This inverse relationship between star-formation time and stellar mass may also signal
a problem with classical pre-main-sequence evolutionary models. The reason is that if the
most massive stars do indeed form first in a cluster of stars, the intense radiation that they
produce would likely disperse the cloud before their low-mass siblings would ever have a
chance to develop.

Clearly much work remains before we can say that pre-main-sequence stellar evolution
is understood.

The Interstellar Medium and Star Formation



The Initial Mass Function (IMF)

From observational studies it is apparent that more low-mass than high-mass stars form
when an interstellar cloud fragments. This implies that the number of stars that form per
mass interval per unit volume (or per unit area in the Milky Way’s disk) is strongly mass-
dependent. This functional dependence is known as the initial mass function (IMF). One
theoretical estimate of the IMF is shown in Fig. 12. However, a particular IMF depends
on a variety of factors, including the local environment in which a cluster of stars forms
from a given cloud complex in the ISM.

As a consequence of the process of fragmentation, most stars form with relatively low
mass. Given the disparity in the numbers of stars formed in different mass ranges, combined
with the very different rates of evolution, it is not surprising that massive stars are extremely
rare, while low-mass stars are found in abundance. Observations also suggest that although
the IMF is quite uncertain below about 0.1 M⊙, rather than falling off sharply as indicated
in Fig. 12, the curve may be fairly flat, resulting in large numbers of low-mass stars and
brown dwarfs.
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FIGURE 12 The initial mass function, ξ , shows the number of stars per unit area of the Milky
Way’s disk per unit interval of logarithmic mass that is produced in different mass intervals. The
individual points represent observational data and the solid line is a theoretical estimate. Masses are
in solar units. (Figure adapted from Rana, Astron. Astrophys., 184, 104, 1987.)
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H II Regions

When hot, massive stars reach the ZAMS with O or B spectral types, they do so shrouded
in a cloak of gas and dust. The bulk of their radiation is emitted in the ultraviolet portion of
the electromagnetic spectrum. Those photons that are produced with energies in excess of
13.6 eV can ionize the ground-state hydrogen gas (H I) in the ISM that still surrounds the
newly formed star. Of course, if these H II regions are in equilibrium, the rate of ionization
must equal the rate of recombination; photons must be absorbed and ions must be produced
at the same rate that free electrons and protons recombine to form neutral hydrogen atoms.
When recombination occurs, the electron does not necessarily fall directly to the ground
state but can cascade downward, producing a number of lower-energy photons, many of
which will be in the visible portion of the spectrum. The dominant visible wavelength
photon produced in this way results from the transition between n = 3 and n = 2, the red
line of the Balmer series (Hα). Consequently, because of this energy cascade, H II regions
appear to fluoresce in red light.

These emission nebulae are considered by some to be among the most beautiful objects
in the night sky. One of the more famous H II regions is the Orion nebula (M42), found in
the sword of the Orion constellation. M42 is part of the Orion A complex (see Fig. 13),
which also contains a giant molecular cloud (OMC 1) and a very young cluster of stars (the
Trapezium cluster). The first protostar candidates were discovered in this region as well.

The size of an H II region can be estimated by considering the requirement of equilib-
rium. Let N be the number of photons per second produced by the O or B star with sufficient
energy to ionize hydrogen from the ground state (λ < 91.2 nm). Assuming that all of the

FIGURE 13 The H II region in OrionAis associated with a young OB association, the Trapezium
cluster, and a giant molecular cloud. The Orion complex is 450 pc away. (Courtesy of the National
Optical Astronomy Observatories.)

1 M42 is the entry number in the well-known Messier catalog, a popular collection of observing objects for
amateur astronomers.
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energetic photons are ultimately absorbed by the hydrogen in the H II region, the rate of
photon creation must equal the rate of recombination. If this equilibrium condition did not
develop, the size of the region would continue to grow as the photons traveled ever farther
before encountering un-ionized gas.

Next, let αnenH be the number of recombinations per unit volume per second, where
α is a quantum-mechanical recombination coefficient that describes the likelihood that an
electron and a proton can form a hydrogen atom, given their number densities (obviously,
the more electrons and protons that are present, the greater the chance of recombination;
hence the product nenH ).1 At about 8000 K, a temperature characteristic of H II regions,
α = 3.1 × 10−19 m3 s−1. If we assume that the gas is composed entirely of hydrogen and
is electrically neutral, then for every ion produced, one electron must have been liberated,
or ne = nH . With this equality, the expression for the recombination rate can be multiplied
by the volume of the H II region, assumed here to be spherical, and then set equal to the
number of ionizing photons produced per second. Finally, solving for the radius of the H II
region gives

rS ≃
(

3N

4πα

)1/3

n
−2/3
H . (32)

rS is called the Strömgren radius, after Bengt Strömgren (1908–1987), the astrophysicist
who first carried out the analysis in the late 1930s.

Example 3.1. he effective temperature and luminosity of an O6 star are Te ≃ 45,000 K
and L ≃ 1.3 × 105 L⊙, respectively.According to Wien’s law the peak wavelength of the
blackbody spectrum is given by

λmax = 0.0029 m K
Te

= 64 nm.

Since this is significantly shorter than the 91.2-nm limit necessary to produce ionization
from the hydrogen ground state, it can be assumed that most of the photons created by an
O6 star are capable of causing ionization.

The energy of one 64-nm photon can be calculated giving

Eγ = hc

λ
= 19 eV.

Now, assuming for simplicity that all of the emitted photons have the same (peak) wave-
length, the total number of photons produced by the star per second is just

N ≃ L/Eγ ≃ 1.6 × 1049 photons s−1.

Lastly, taking nH ∼ 108 m−3 to be a typical value an H II region, we find

rS ≃ 3.5 pc.

Values of rS range from less than 0.1 pc to greater than 100 pc.

1 Note that this expression is somewhat analogous to the generalized nuclear reaction rate equation.
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The Effects of Massive Stars on Gas Clouds

As a massive star forms, the protostar will initially appear as an infrared source embedded
inside the molecular cloud. With the rising temperature, first the dust will vaporize, then
the molecules will dissociate, and finally, as the star reaches the main sequence, the gas
immediately surrounding it will ionize, resulting in the creation of an H II region inside of
an existing H I region.

Now, because of the star’s high luminosity, radiation pressure will begin to drive sig-
nificant amounts of mass loss, which then tends to disperse the remainder of the cloud.
If several O and B stars form at the same time, it may be that much of the mass that has
not yet become gravitationally bound to more slowly forming low-mass protostars will
be driven away, halting any further star formation. Moreover, if the cloud was originally
marginally bound (near the limit of criticality), the loss of mass will diminish the potential
energy term in the virial theorem, with the result that the newly formed cluster of stars and
protostars will become unbound (i.e., the stars will tend to drift apart). Figure 14 shows
such a process under way in the Carina Nebula, located approximately 3000 pc from Earth.
Another famous example of the effects of ionizing radiation of nearby massive stars is the
production of the pillars in M16, the Eagle Nebula (Fig. 15).

OB Associations

Groups of stars that are dominated by O and B main-sequence stars are referred to as OB
associations. Studies of their individual kinematic velocities and masses generally lead
to the conclusion that they cannot remain gravitationally bound to one another as perma-
nent stellar clusters. One such example is the Trapezium cluster in the Orion A complex,
believed to be less than 10 million years old. It is currently densely populated with stars

(a) (b)

FIGURE 14 (a) An infrared image of a portion of the Carina Nebula. Eta Carina, a very young
and marginally stable star of more than 100 M⊙ is located above the image. The strong winds and
intense ultraviolet radiation from Eta Carina and other massive stars in the region are shredding the
nebula. Other, lower-mass newborn stars, such as those just above the pillar to the right of center in
the image, are being inhibited from growing larger because of the destruction of the nebula by their
much more massive siblings. [NASA/JPL-Caltech/N. Smith (University of Colorado at Boulder)]
(b) The same region observed in visible light. Much less detail is observable because of the obscuration
due to dust in the cloud. (NOAO)
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FIGURE 15 The giant gas pillars of the Eagle Nebula (M16). The left most pillar is more than
1 pc long from base to top. Ionizing radiation from massive newborn stars off the top edge of the
image are causing the gas in the cloud to photoevaporate. [Courtesy of NASA, ESA, STScI, J. Hester
and P. Scowen (Arizona State University).]

(> 2 × 103 pc−3), most of which have masses in the range of 0.5 to 2.0 M⊙. Doppler shift
measurements of the radial velocities of 13CO show that the gas in the vicinity is very
turbulent. Apparently, the nearby O and B stars are dispersing the gas, and the cluster is
becoming unbound.

T Tauri Stars

T Tauri stars are an important class of low-mass pre-main-sequence objects that represent
a transition between stars that are still shrouded in dust (IR sources) and main-sequence
stars. T Tauri stars, named after the first star of their class to be identified (located in the
constellation of Taurus), are characterized by unusual spectral features and by large and
fairly rapid irregular variations in luminosity, with timescales on the order of days. The
positions of T Tauri stars on the H–R diagram are shown in Fig. 16; theoretical pre-
main-sequence evolutionary tracks are also included. The masses of T Tauri stars range
from 0.5 to about 2 M⊙.

Many T Tauri stars exhibit strong emission lines from hydrogen (the Balmer series), from
Ca II (the H and K lines), and from iron, as well as absorption lines of lithium. Interestingly,
forbidden lines of [O I] and [S II] are also present in the spectra of many T Tauri stars. The
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FIGURE 16 The positions of T Tauri stars on the H–R diagram. The sizes of the circles indicate
the rate of rotation. Stars with strong emission lines are indicated by filled circles, and weak emission
line stars are represented by open circles. Theoretical pre-main-sequence evolutionary tracks are also
included. (Figure adapted from Bertout, Annu. Rev. Astron. Astrophys., 27, 351, 1989. Reproduced
with permission from the Annual Review of Astronomy and Astrophysics, Volume 27, ©1989 by
Annual Reviews Inc.)

existence of forbidden lines in a spectrum is an indication of extremely low gas densities.
(Note that, to distinguish them from “allowed” lines, forbidden lines are usually indicated
by square brackets, e.g., [O I].)

Not only can information be gleaned from spectra by determining which lines are present
and with what strengths, but information is also contained in the shapes of those lines
as a function of wavelength.1 An important example is found in the shapes of some of
the lines in T Tauri stars. The Hα line often exhibits the characteristic shape shown in
Fig. 17(a). Superimposed on a rather broad emission peak is an absorption trough at the
short-wavelength edge of the line. This unique line shape is known as a P Cygni profile,
after the first star observed to have emission lines with blueshifted absorption components.

1 ecall Fig. 10.
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FIGURE 17 (a) A spectral line exhibiting a P Cygni profile is characterized by a broad emission
peak with a superimposed blueshifted absorption trough. (b) A P Cygni profile is produced by an
expanding mass shell. The emission peak is due to the outward movement of material perpendicular
to the line of sight, whereas the blueshifted absorption feature is caused by the approaching matter in
the shaded region, intercepting photons coming from the central star.

The interpretation given for the existence of P Cygni profiles in a star’s spectrum is that the
star is experiencing significant mass loss. Recall from Kirchhoff’s laws that
emission lines are produced by a hot, diffuse gas when there is little intervening material
between the source and the observer. In this case the emission source is that portion of
the expanding shell of the T Tauri star that is moving nearly perpendicular to the line of
sight, as illustrated by the geometry shown in Fig. 17(b). Absorption lines are the result
of light passing through a cooler, diffuse gas; the shaded portion of the expanding shell
absorbs the photons emitted by the hotter star behind it. Since the shaded part of the shell
(A) is moving toward the observer, the absorption is blueshifted relative to the emission
component (typically by 80 km s−1 for T Tauri stars). The mass loss rates of T Tauri stars
average about Ṁ = 10−8 M⊙ yr−1.1

In some extreme cases, line profiles of T Tauri stars have gone from P Cygni profiles
to inverse P Cygni profiles (redshifted absorption) on timescales of days, indicating mass
accretion rather than mass loss. Mass accretion rates appear to be on the same order as mass
loss rates. Apparently the environment around a T Tauri star is very unstable.

FU Orionis Stars

In some instances, it appears that T Tauri stars have gone through very significant increases
in mass accretion rates, reaching values on the order of Ṁ = 10−4 M⊙ yr−1. At the same
time the luminosities of the stars increase by four magnitudes or more, with the increases
lasting for decades. The first star observed to undergo this abrupt increase in accretion

1 This value is much higher than the Sun’s current rate of mass loss (10−14 M⊙ yr−1).
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was FU Orionis, for which the FU Orionis stars are named. Apparently, instabilities in a
circumstellar accretion disk around an FU Orionis star can result in on the order of 0.01 M⊙
being dumped onto the central star over the century or so duration of the outburst. During
that time the inner disk can outshine the central star by a factor of 100 to 1000, while strong,
high-velocity winds in excess of 300 km s−1 occur. It has been suggested that T Tauri stars
may go through several FU Orionis events during their lifetimes.

Herbig Ae/Be Stars

Closely related to the T-Tauri stars are Herbig Ae/Be stars, named for George Herbig.
These pre-main-sequence stars are of spectral types A or B and have strong emission lines
(hence the Ae/Be designations). Their masses range from 2 to 10 M⊙ and they tend to be
enveloped in some remaining dust and gas. He Ae/Be stars are not as thoroughly studied as
T-Tauri stars, in large part because of their much shorter lifetimes (recall Table 1) and in
part because fewer intermediate-mass than lower-mass stars form from a cloud (Fig. 12).

Herbig–Haro Objects

Along with expanding shells, mass loss during pre-main-sequence evolution can also occur
from jets of gas that are ejected in narrow beams in opposite directions.1 Herbig–Haro
objects, first discovered in the vicinity of the Orion nebula in the early 1950s by George
Herbig and Guillermo Haro (1913–1988), are apparently associated with the jets produced
by young protostars, such as T Tauri stars. As the jets expand supersonically into the in-
terstellar medium, collisions excite the gas, resulting in bright objects with emission-line
spectra. Figure 18(a) shows a Hubble Space Telescope image of the Herbig–Haro ob-
jects HH 1 and HH 2, which were created by material ejected at speeds of several hundred
kilometers per second from a star shrouded in a cocoon of dust. The jets associated with
another Herbig–Haro object, HH 47, are shown in Fig. 18(b).

Continuous emission is also observed in some protostellar objects and is due to the
reflection of light from the parent star.Acircumstellar accretion disk is apparent in Fig. 19
around HH 30. The surfaces of the disk are illuminated by the central star, which is again
hidden from view behind the dust in the disk. Also apparent are jets originating from deep
within the accretion disk, possibly from the central star itself. These accretion disks seem
to be responsible for many of the characteristics associated with the protostellar objects,
including emission lines, mass loss, jets, and perhaps even some of the luminosity variations.
Unfortunately, details concerning the physical processes involved are not fully understood.
An early model of the production of Herbig–Haro objects like HH 1 and HH 2 is shown in
Fig. 20.

Young Stars with Circumstellar Disks

Observations have revealed that other young stars also possess circumstellar disks of mate-
rial orbiting them. Two well-known examples are Vega and β Pictoris. An infrared image of
β Pic and its disk is shown in Fig. 21. β Pic has also been observed in the ultraviolet lines
of Fe II by the Hubble Space Telescope. It appears that clumps of material are falling from

strophysical jets occur in a variety of phenomena over enormous ranges of
energy and physical size.
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(a)

(b)

FIGURE 18 (a) The Herbig–Haro objects HH 1 and HH 2 are located just south of the Orion
nebula and are moving away from a young protostar hidden inside a dust cloud near the center of
the image. [Courtesy of J. Hester (Arizona State University), the WF/PC 2 Investigation Definition
Team, and NASA.] (b) A jet associated with HH 47. The scale at the lower left is 1000 AU. (Courtesy
of J. Morse/STScI, and NASA.)

FIGURE 19 The circumstellar disk and jets of the protostellar object, HH 30. The central star
is obscured by dust in the plane of the disk. The scale at the lower left is 1000 AU. [Courtesy of C.
Burrows (STScI and ESA), the WF/PC 2 Investigation Definition Team, and NASA.]

the disk into the star at the rate of two or three per week. Larger objects may be forming in
the disk as well, possibly protoplanets. It has been suggested that these disks may in fact
be debris disks rather than accretion disks, meaning that the observed material is due to
collisions between objects already formed in the disks. An artist’s conception of the β Pic
system is shown in Fig. 22.
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FIGURE 20 An early model of a T Tauri star with an accretion disk. The disk powers and
collimates jets that expand into the interstellar medium, producing Herbig–Haro objects. (Figure
adapted from Snell, Loren, and Plambeck, Ap. J. Lett., 239, L17, 1980.)

FIGURE 21 An infrared image of β Pictoris, showing its circumstellar debris disk. (European
Southern Observatory)
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FIGURE 22 An artist’s conception of the β Pictoris system. Clumps of material appear to be
falling into the star at the rate of two or three clumps per week. Some matter may also be leaving the
system as an expanding halo. (Figure adapted from Boggess et al., Ap. J. Lett., 377, L49, 1991.)

Proplyds

Shortly after the December 1993 refurbishment mission of the Hubble Space Telescope,
HST made observations of the Orion Nebula. The images in Fig. 23 were obtained using
the emission lines of Hα, [N II], and [O III]. Analysis of the data has revealed that 56 of
the 110 stars brighter than V =21 mag are surrounded by disks of circumstellar dust and
gas. The circumstellar disks, termed proplyds, appear to be protoplanetary disks associated
with young stars that are less than 1 million years old. Based on observations of the ionized
material in the proplyds, the disks seem to have masses much greater than 2 × 1025 kg (for
reference, the mass of Earth is 5.974 × 1024 kg).

Circumstellar Disk Formation

Apparently, disk formation is fairly common during the collapse of protostellar clouds.
Undoubtedly this is due to the spin-up of the cloud as required by the conservation of
angular momentum. As the radius of the protostar decreases, so does its moment of inertia.
This implies that in the absence of external torques, the protostar’s angular velocity must
increase. It is left as an exercise to show that by including a centripetal acceleration
term in Eq. ( 19) and requiring conservation of angular momentum, the collapse
perpendicular to the axis of rotation can be halted before the collapse along the axis,
resulting in disk formation.

A problem immediately arises when the effect of angular momentum is included in the
collapse. Conservation of angular momentum arguments lead us to expect that all main-
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(a) (b)

FIGURE 23 Images of the Orion Nebula (M42) obtained by the Hubble Space Telescope. Note
that (b) is an enlarged view of the central region of (a). Numerous proplyds are visible in the field of
view of the camera. (Courtesy of C. Robert O’Dell/Vanderbilt University, NASA, and ESA.)

sequence stars ought to be rotating very rapidly, at rates close to breakup. However, ob-
servations show that this is not generally the case. Apparently the angular momentum is

Along with the problems associated with rotation and magnetic fields, mass loss may
also play an important role in the evolution of pre-main-sequence stars. Although these
problems are being investigated, much work remains to be done before we can hope to
understand all of the details of protostellar collapse and pre-main-sequence evolution.
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1 EVOLUTION ON THE MAIN SEQUENCE

Stellar Evolution Timescales

difference in timescales for the various phases of evolution of individual stars that explains
why approximately 80% to 90% of all stars in the solar neighborhood are observed to be

gravitational energy can play a major role and the Kelvin–Helmholtz timescale will again
become important.

1 hemical energy cannot play a significant role in the energy budgets
of stars.

C

The existence of the main sequence is due to the nuclear reactions that convert hydrogen 
into helium in the cores of stars. In this chapter we will follow the lives of stars as they age, 
beginning on the main sequence. This evolutionary process is an inevitable consequence 
of the relentless force of gravity and the change in chemical composition due to nuclear 
reactions.

To maintain their luminosities, stas must tap sources of energy contained within, either 
nuclear or gravitational.1 Pre-main-sequence evolution is characterized by two basic 
timescales: the free-fall timescale and the thermal Kelvin–Helmholtz timescale. Main-
sequence and post-main-sequence evolution are also governed by a third timescale, 
the timescale of nuclear reactions. The nuclear timescale is on the order of 1010 years for 
the Sun, much longer than the Kelvin–Helmholtz timescale of roughly 107 years. It is the

main-sequence stars; we are more likely to find stars on the main sequence simply  
because that stage of evolution requires the most time; later stages of evolution pro-
ceed more rapidly. However, as a star switches from one nuclear source to the next,



Width of the Main Sequence

relation are due to a number of factors, including observational errors, differing chemical
compositions of the individual stars in the study, and varying stages of evolution on the
main sequence.

Low-Mass Main-Sequence Evolution

have convective cores due to the highly temperature-dependent CNO cycle. On the other
hand, ZAMS stars with masses less than 1.2 M⊙ are dominated by the less temperature-
dependent pp chain. This implies that ZAMS stars in the range 0.3 M⊙ to 1.2 M⊙ possess
radiative cores. However, the lowest-mass ZAMS stars again have convective cores because
their high surface opacities drive surface convection zones deep into the interior, making
the entire star convective.

the pp chain nuclear reaction rate goes as ρX2T 4
6 , the increased tempera-

ture and density more than offset the decrease in the mass fraction of hydrogen, and the
luminosity of the star slowly increases, along with its radius and effective temperature.

Main-sequence and post-main-sequence evolutionary tracks of stars of various masses
were first computed in a pioneering study by Icko Iben, Jr., and published in the mid-1960s.
Modern calculations of theoretical evolutionary tracks that include the effects of convective
overshooting as well as mass lost from stars during their lifetimes are shown in Fig. 1.2

According to the calculations, the amount of time required to evolve from the zero-age main
sequence to points indicated in Fig. 1 are as given in Table 1. The locus of points

2Convective overshooting takes into consideration the inertia of a convective bubble, which causes it to travel
some distance into an otherwise radiative region of the star.

Main Sequence and Post-Main-Sequence Stellar Evolution

Careful study of the main sequence of an observational H–R diagram such as the  
observational mass–luminosity relation reveals that these curves are not simply thin 
lines but have finite widths. The widths of the main sequence and the mass–luminosity

In this section, we will consider the evolution of stars on the main sequence.  
Although all stars on the main sequence are converting hydrogen into helium and, as 
a result, share similar evolutionary characteristics, differences do exist. For  instance, 
zero-age main-sequence (ZAMS) stars with masses greater than about 1.2M

In addition, since

First consider a typical low-mass main-sequence star such as the Sun. The Sun’s lumi-
nosity, radius, and temperature have all increased steadily since it reached the ZAMS 4.57 
Gyr ago. This evolution occurs because, as the pp chain converts hydrogen into helium, the 
mean molecular weight µ of the coreincreases. According to the ideal gas law, unless the 
density and/or temperature of the core also increases, there will be insufficient gas pres-
sure to support the overlying layers of the star. As a result, the core must be compressed. 
While the density of the core increases, gravitational potential energy is released, and, as 
required by the virial theorem, half of the energy is radiated away and half of the energy 
goes into increasing the thermal energy and hence the temperature of the gas. One conse-
quence of this temperature increase is that the region of the star that is hot enough to un-
dergo nuclear reactions increases slightly during the main-sequence phase of evolution.

⊙
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FIGURE 1 Main-sequence and post-main-sequence evolutionary tracks of stars with an initial
composition of X = 0.68, Y = 0.30, and Z = 0.02. The location of the present-day Sun (see Fig. 2)
is depicted by the solar symbol (⊙) between points 1 and 2 on the 1 M⊙ track. The elapsed times to
points indicated on the diagram are given in Table 1. To enhance readability, only the points on
the evolutionary tracks for 0.8, 1.0, 1.5, 2.5, 5.0, and 12.0 M⊙ are labeled. The model calculations
include mass loss and convective overshooting. The diagonal line connecting the locus of points 1
is the zero-age main sequence. For complete, and annotated, evolutionary tracks of 1 M⊙ and 5 M⊙
stars, see Figs. 4 and 5, respectively. (Data from Schaller et al., Astron. Astrophys. Suppl., 96,
269, 1992.)
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TABLE 1 The elapsed times since reaching the zero-age main sequence to the
indicated points in Fig. 1, measured in millions of years (Myr). (Data from Schaller
et al., Astron. Astrophys. Suppl., 96, 269, 1992.)

Initial Mass 1 2 3 4 5
(M⊙) 6 7 8 9 10

25 0 6.33044 6.40774 6.41337 6.43767
6.51783 7.04971 7.0591

15 0 11.4099 11.5842 11.5986 11.6118
11.6135 11.6991 12.7554

12 0 15.7149 16.0176 16.0337 16.0555
16.1150 16.4230 16.7120 17.5847 17.6749

9 0 25.9376 26.3886 26.4198 26.4580
26.5019 27.6446 28.1330 28.9618 29.2294

7 0 42.4607 43.1880 43.2291 43.3388
43.4304 45.3175 46.1810 47.9727 48.3916

5 0 92.9357 94.4591 94.5735 94.9218
95.2108 99.3835 100.888 107.208 108.454

4 0 162.043 164.734 164.916 165.701
166.362 172.38 185.435 192.198 194.284

3 0 346.240 352.503 352.792 355.018
357.310 366.880 420.502 440.536

2.5 0 574.337 584.916 586.165 589.786
595.476 607.356 710.235 757.056

2 0 1094.08 1115.94 1117.74 1129.12
1148.10 1160.96 1379.94 1411.25

1.5 0 2632.52 2690.39 2699.52 2756.73
2910.76

1.25 0 4703.20 4910.11 4933.83 5114.83
5588.92

1 0 7048.40 9844.57 11386.0 11635.8
12269.8

0.8 0 18828.9 25027.9

Main Sequence and Post-Main-Sequence Stellar Evolution



labeled 1 represents the theoretical ZAMS, with the present-day Sun located between points
1 and 2 on the 1 M⊙ track.

The internal structure of the present-day Sun is shown
in Fig. 2, this time as a function of interior mass. Along with radius, density, temperature,
pressure, and luminosity, the figure illustrates the mass fractions of the species 1

1H, 3
2He,

12
6C, 14

7N, and 16
8O. As the star’s evolution on the main sequence continues, eventually

the hydrogen at its center will be completely depleted. Such a situation is illustrated in
Fig. 3 for a 1 M⊙ star approximately 9.8 Gyr after arriving on the ZAMS; this model
roughly corresponds to point 3 in Fig.

With the depletion of hydrogen in the core, the generation of energy via the pp chain
must stop. However, by now the core temperature has increased to the point that nuclear
fusion continues to generate energy in a thick hydrogen-burning shell around a small,
predominantly helium core. This effect can be seen in the luminosity curve in Fig. 3.
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FIGURE 2 The interior structure of the present-day Sun (a 1 M⊙ star), 4.57 Gyr after reaching
the ZAMS. The model is located between points 1 and 2 in Fig. 1. The maximum ordinate values
of the parameters are r = 1.0 R⊙, L = 1.0 L⊙, T = 15.69 × 106 K, ρ = 1.527 × 105 kg m−3, P =
2.342 × 1016 N m−2, X = 0.73925, Y = 0.64046, X3 = 3.19 × 10−3, X12 = 3.21 × 10−3, X14 =
5.45 × 10−3, and X16 = 9.08 × 10−3. (Data from Bahcall, Pinsonneault, and Basu, Ap. J., 555, 990,
2001.)

1.
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Note that the luminosity remains close to zero throughout the inner 3% of the star’s 
mass. At the same time, the temperature is nearly constant over the same region. That 
the helium core must be isothermal when the luminosity gradient is zero can be seen 
from the radiative temperature gradient. Since Lr ≃ 0 over a finite region, d T/dr ≃ 0
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FIGURE 3 The interior structure of a 1 M⊙ star near point 3 in Fig. 1, as described by the
pioneering calculations of Icko Iben. Although specific values of quantities in modern models differ
somewhat from those given here, state-of-the-art models do not significantly differ qualitatively
from these calculations. The maximum ordinate values of the parameters for the Iben model are
R = 1.2681 R⊙, P = 1.3146 × 1017 N m−2, T = 19.097 × 106 K, L = 2.1283 L⊙, XH = 0.708,
X3 = 5.15 × 10−3, X12 = 3.61 × 10−3, and X14 = 1.15 × 10−2. The radius of the star is 1.3526 R⊙.
(Figure adapted from Iben, Ap. J., 47, 624, 1967.)

and T is nearly constant. For an isothermal core to support the material above it in hydrostatic
equilibrium, the required pressure gradient must be the result of a continuous increase in
density as the center of the star is approached.

At this point, the luminosity being generated in the thick shell actually exceeds what was
produced by the core during the phase of core hydrogen burning.As a result, the evolutionary
track continues to rise beyond point 3 in Fig. 1, although not all of the energy generated
reaches the surface; some of it goes into a slow expansion of the envelope. Consequently,
the effective temperature begins to decrease slightly and the evolutionary track bends to the
right. As the hydrogen-burning shell continues to consume its nuclear fuel, the ash from
nuclear burning causes the isothermal helium core to grow in mass while the star moves
farther to the red in the H–R diagram.

The Schönberg–Chandrasekhar Limit

This phase of evolution ends when the mass of the isothermal core has become too great
and the core is no longer capable of supporting the material above it. The maximum fraction
of a star’s mass that can exist in an isothermal core and still support the overlying layers
was first estimated by M. Schönberg and Chandrasekhar in 1942; it is given by

(

Mic

M

)

SC
≃ 0.37

(

µenv

µic

)2

, (1)
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whereµenv andµic are the mean molecular weights of the overlying envelope and the isother-
mal core, respectively. The Schönberg–Chandrasekhar limit is another consequence of
the virial theorem. Based on the physical tools we have developed so far, an approximate
form of this result can be obtained. The analysis is presented beginning on the facing page.

The maximum fraction of the mass of a star that can be contained in an isothermal core
and still maintain hydrostatic equilibrium is a function of the mean molecular weights of the
core and the envelope. When the mass of the isothermal helium core exceeds this limit, the
core collapses on a Kelvin–Helmholtz timescale, and the star evolves very rapidly relative
to the nuclear timescale of main-sequence evolution. This occurs at the points labeled 4 in
Fig. 1. For stars below about 1.2 M⊙, this defines the end of the main-sequence phase.
What happens next is the subject of Section 2.

Example 1.1. If a star is formed with the initial composition X = 0.68, Y = 0.30, and
Z = 0.02, and if complete ionization is assumed at the core–envelope boundary,
we find that µenv ≃ 0.63. Assuming that all of the hydrogen has been converted
into helium in the isothermal core, µic ≃ 1.34. Therefore, from Eq. ( 1), the Schönberg–
Chandrasekhar limit is

(

Mic

M

)

SC
≃ 0.08.

The isothermal core will collapse if its mass exceeds 8% of the star’s total mass.

The Degenerate Electron Gas

The mass of an isothermal core may exceed the Schönberg–Chandrasekhar limit if an
additional source of pressure can be found to supplement the ideal gas pressure. This can
occur if the electrons in the gas start to become degenerate. When the density of a gas

stacked into progressively higher energy states, beginning with the ground state. In the case
of complete degeneracy, the pressure of the gas is due entirely to the resultant nonthermal
motions of the electrons, and therefore it becomes independent of the temperature of the
gas.

If the electrons are nonrelativistic, the pressure of a completely degenerate electron gas
is given by

Pe = Kρ5/3, (2)

where K is a constant.3 If the degeneracy is only partial, some temperature dependence
remains. The isothermal core of a 1 M⊙ star between points 3 and 4 in Fig. 1 is partially
degenerate; consequently, the core mass can reach approximately 13% of the entire mass

3Note that Eq. ( 2) is a polytropic equation of state with a polytropic index of n = 1.5.
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becomes sufficiently high, the electrons in the gas are forced to occupy the lowest avail-
able energy levels. Since electrons are fermions and obey the Pauli exclusion princi-
ple, they cannot all occupy the same quantum state. Consequently, the electrons are



of the star before it begins to collapse. Less massive stars exhibit even higher levels of
degeneracy on the main sequence and may not exceed the Schönberg–Chandrasekhar limit
at all before the next stage of nuclear burning commences.

Main-Sequence Evolution of Massive Stars

The evolution of more massive stars on the main sequence is similar to that of their
lower-mass cousins with one important difference: the existence of a convective core. The

the nuclear timescale. For a 5 M⊙ star, the central convection zone decreases somewhat in
mass during core hydrogen burning, leaving behind a slight composition gradient. Moving
up the main sequence, as the star evolves the convection zone in the core retreats more
rapidly with increasing stellar mass, disappearing entirely before the hydrogen is exhausted
for those stars with masses greater than about 10 M⊙.

When the mass fraction of hydrogen reaches about X = 0.05 in the core of a 5 M⊙ star
(point 2 in Fig. 1), the entire star begins to contract. With the release of some gravitational
potential energy, the luminosity increases slightly. Since the radius decreases, the effective
temperature must also increase. For stars with masses greater than 1.2 M⊙, this stage of
overall contraction is defined to be the end of the main-sequence phase of evolution.

A Derivation of the Schönberg–Chandrasekhar limit

To estimate the Schönberg–Chandrasekhar limit, begin by dividing the equation of hydro-
static equilibrium by the equation of mass conservation. This gives

dP

dMr

= −GMr

4πr4
, (3)

which is just the condition of hydrostatic equilibrium, written with the interior mass as the
independent variable. Rewriting, Eq. ( 3) may be expressed as

4πr3 dP

dMr

= −GMr

r
. (4)

The left-hand side is just

4πr3 dP

dMr

= d(4πr3P)

dMr

− 12πr2P
dr

dMr

= d(4πr3P)

dMr

− 3P

ρ
,

Substituting back into Eq. ( 4)
and integrating over the mass (Mic) of the isothermal core, we have

∫ Mic

0

d(4πr3P)

dMr

dMr −
∫ Mic

0

3P

ρ
dMr = −

∫ Mic

0

GMr

r
dMr. (5)

This is called the Lagrangian form of the condition for hydrostatic equilibrium.

4

4
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convection zone continually mixes the material, keeping the core composition nearly 
homogeneous. This is because the timescale for convection, defined by the amount of 
time it takes a convective element to travel one mixing length, is much shorter than



To evaluate Eq. ( 5), we will consider each term separately. The first term on the
left-hand side is just

∫ Mic

0

d(4πr3P)

dMr

dMr = 4πR3
icPic,

where Ric and Pic are the radius and the gas pressure at the surface of the isothermal core,
respectively (note that r = 0 at Mr = 0).

The second term on the left-hand side of Eq. ( 5) can also be evaluated quickly by
realizing that, from the ideal gas law,

P

ρ
= kTic

µicmH

,

where Tic and µic are the temperature and mean molecular weight throughout the isothermal
core, respectively. Thus

∫ Mic

0

3P

ρ
dMr = 3MickTic

µicmH

= 3NickTic = 2Kic,

where

Nic ≡ Mic

µicmH

is the number of gas particles in the core and

Kic = 3
2
NickTic

is the total thermal energy of the core, assuming an ideal monatomic gas.
The right-hand side of Eq. ( 5) is simply the gravitational potential energy of the core,

or

−
∫ Mic

0

GMr

r
dMr = Uic.

Substituting each term into Eq. ( 5), we find

4πR3
icPic − 2Kic = Uic. (6)

If we had integrated from the center of the star to the surface,
where P ≃ 0, we would have obtained our original version of the theorem. The difference
lies in the nonzero pressure boundary condition. Thus Eq. ( 6) is a generalized form of
the virial theorem for stellar interiors in hydrostatic equilibrium.

The core is actually supported in part by electron degeneracy pressure, meaning that the ideal gas law is not
strictly valid. For our purposes here, however, the assumption of an ideal gas gives reasonable results.

5

5

Main Sequence and Post-Main-Sequence Stellar Evolution



Next, the gravitational potential energy of the core may be approximated as

Uic ∼ −3
5

GM2
ic

Ric

.

Furthermore, the internal thermal energy of the core is just

Kic = 3MickTic

2µicmH

.

Introducing these expressions into Eq. ( 6) and solving for the pressure at the surface of
the isothermal core, we have

Pic = 3
4πR3

ic

(

MickTic

µicmH

− 1
5

GM2
ic

Ric

)

. (7)

Notice that there are two competing terms in Eq. ( 7); the first term is due to the
thermal energy in the core and the second is due to gravitational effects. For specific values
of Tic and Ric, as the core mass increases, the thermal energy tends to increase the pressure
at the surface of the core while the gravitational term tends to decrease it. For some value
of Mic, Pic is maximized, meaning that there exists an upper limit on how much pressure
the isothermal core can exert in order to support the overlying envelope.

To determine when Pic is a maximum, we must differentiate Eq. ( 7) with respect to
Mic and set the derivative equal to zero. It is left as an exercise to show that the radius of
the isothermal core for which Pic is a maximum is given by

Ric = 2
5

GMicµicmH

kTic

(8)

and that the maximum value of the surface pressure that can be produced by an isothermal
core is given by

Pic,max = 375
64π

1
G3M2

ic

(

kTic

µicmH

)4

. (9)

The important feature of Eq. ( 9) is that, as the core mass increases, the maximum
pressure at the surface of the core decreases. At some point, it may no longer be possible for
the core to support the overlying layers of the star’s envelope. Clearly this critical condition
must be related to the mass contained in the envelope and therefore to the total mass of the
star.

To estimate the mass that can be supported by the isothermal core, we need to determine
the pressure exerted on the core by the overlying envelope. In hydrostatic equilibrium, this
pressure must not exceed the maximum possible pressure that may be supported by the
isothermal core. To estimate the envelope pressure, we will start again with Eq. ( 3), this
time integrating from the surface of the star to the surface of the isothermal core. Assuming

Main Sequence and Post-Main-Sequence Stellar Evolution



for simplicity that the pressure at the surface of the star is zero,

Pic,env =
∫ Pic,env

0
dP

= −
∫ Mic

M

GMr

4πr4
dMr

≃ − G

8π
〈

r4
〉

(

M2
ic − M2) ,

where M is the total mass of the star and ⟨r4⟩ is some average value of r4 between the
surface of the star of radius R and the surface of the core. Assuming that M2

ic ≪ M2, and
making the crude approximation that ⟨r4⟩ ∼ R4/2, we have

Pic,env ∼ G

4π
M2

R4
(10)

for the pressure at the core’s surface due to the weight of the envelope.
The quantity R4 can be written in terms of the mass of the star and the temperature of

the isothermal core through the use of the ideal gas law,

Tic = Pic,envµenvmH

ρic,envk
, (11)

where µenv is the mean molecular weight of the envelope and ρic,env is the gas density at
the core–envelope interface. Making the rough estimate that

ρic,env ∼ M

4πR3/3
, (12)

using Eq. ( 10), and solving for R, Eq. ( 11) gives

R ∼ 1
3

GM

Tic

µenvmH

k
.

Substituting our solution for the radius of the envelope back into Eq. ( 10), we arrive at
an expression for the pressure at the core–envelope interface due to the overlying envelope:

Pic,env ∼ 81
4π

1
G3M2

(

kTic

µenvmH

)4

.

Note that Pic,env is independent of the mass of the isothermal core.
Finally, to estimate the Schönberg–Chandrasekhar limit, we set the maximum pressure

of the isothermal core (Eq. 9) equal to the pressure needed to support the overlying
envelope (Eq. 1). This immediately simplifies to give

Mic

M
∼ 0.54

(

µenv

µic

)2

.
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Our result is only slightly larger than the one obtained originally by Schönberg and Chan-
drasekhar (Eq. 1).

2 LATE STAGES OF STELLAR EVOLUTION

Following the completion of the main-sequence phase of stellar evolution, a complicated
sequence of evolutionary stages occurs that may involve nuclear burning in the cores of
stars together with nuclear burning in concentric mass shells. At various times, core burning
and/or nuclear burning in a mass shell may cease, accompanied by a readjustment of the
structure of the star. This readjustment may involve expansion or contraction of the core
or envelope and the development of extended convection zones. As the final stages of
evolution are approached, extensive mass loss from the surface also plays a critical role in
determining the star’s ultimate fate.

As examples of post-main-sequence stellar evolution, we will continue to explore
changes in the structures over time of a low-mass star of 1 M⊙ and an intermediate-mass
star of 5 M⊙. Detailed depictions of their evolutionary tracks in the H–R diagram are
shown in Figs. 4 and 5, respectively.

Evolution Off the Main Sequence

As mentioned in Section 1, the end of the main-sequence phase of evolution occurs when
hydrogen burning ceases in the core of the star (in Fig. 1 this corresponds to point 3 for
the 1 M⊙ star and point 2 for the 5 M⊙ star). In the case of the 1 M⊙ star, the core begins
to contract while a thick hydrogen-burning shell continues to consume available fuel. With
the rising temperature in the shell due to core contraction, the shell actually produces more
energy than the core did on the main sequence, causing the luminosity to increase, the
envelope to expand slightly, and the effective temperature to decrease.

The situation is somewhat different for the 5 M⊙ star, however. Rather than a thick
hydrogen-burning shell immediately producing energy with the cessation of hydrogen burn-
ing in the core, the entire star participates in an overall contraction on a Kelvin–Helmholtz
timescale. This contraction phase releases gravitational potential energy, causing the lumi-
nosity to increase slightly, the radius of the star to decrease, and the effective temperature
to increase (corresponding to the evolution between points 2 and 3 in Fig. 1). Eventually
the temperature outside the helium core increases sufficiently to cause a thick shell of hy-
drogen to burn (point 3 in Fig. 1). At this point the interior chemical composition of the
5 M⊙ star resembles that of Fig. 6. Because the ignition of the shell is quite rapid, the
overlying envelope is forced to expand slightly, absorbing some of the energy released by
the shell. As a result, the luminosity decreases momentarily and the effective temperature
drops, as can be seen in both Figs. 1 and 5. A sketch of the star’s structure at this point
is given in Fig. 7.

The Subgiant Branch

For both low- and intermediate-mass stars, as the shell continues to consume the hydrogen
that is available at the base of the star’s envelope, the helium core steadily increases in mass
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FIGURE 4 A schematic diagram of the evolution of a low-mass star of 1 M⊙ from the zero-age
main sequence to the formation of a white dwarf star. The dotted phase of evolution
represents rapid evolution following the helium core flash. The various phases of evolution are labeled
as follows: Zero-Age-Main-Sequence (ZAMS), Sub-Giant Branch (SGB), Red Giant Branch (RGB),
Early Asymptotic Giant Branch (E-AGB), Thermal Pulse Asymptotic Giant Branch (TP-AGB), Post-
Asymptotic Giant Branch (Post-AGB), Planetary Nebula formation (PN formation), and Pre-white
dwarf phase leading to white dwarf phase.

and becomes nearly isothermal. At points 4 in Fig. 1, the Schönberg–Chandrasekhar
limit is reached and the core begins to contract rapidly, causing the evolution to proceed
on the much faster Kelvin–Helmholtz timescale. The gravitational energy released by the
rapidly contracting core again causes the envelope of the star to expand and the effec-
tive temperature cools, resulting in redward evolution on the H–R diagram. This phase of
evolution is known as the subgiant branch (SGB).

As the core contracts, a nonzero temperature gradient is soon re-established because
of the release of gravitational potential energy. At the same time, the temperature and
density of the hydrogen-burning shell increase, and, although the shell begins to narrow
significantly, the rate at which energy is generated by the shell increases rapidly. Once
again the stellar envelope expands, absorbing some of the energy produced by the shell
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FIGURE 7 A 5 M⊙ star with a helium core and a hydrogen-burning shell shortly after shell
ignition (point 3 in Fig. 1). (Data from Iben, Ap. J., 143, 483, 1966.)

before the energy reaches the surface. For the 5 M⊙ star, in a situation analogous to thick
hydrogen shell burning immediately following overall contraction, the expanding envelope
actually absorbs enough energy for a time to cause the luminosity to decrease slightly before
recovering (point 5 in Fig. 1).

The Red Giant Branch

With the expansion of the stellar envelope and the decrease in effective temperature, the
photospheric opacity increases due to the additional contribution of the H− ion. The result is
that a convection zone develops near the surface for both low- and intermediate-mass stars.
As the evolution continues toward points 5 in Fig. 1, the base of the convection zone
extends deep into the interior of the star. With the nearly adiabatic temperature gradient
associated with convection throughout much of the stellar interior, and the efficiency with
which the energy is transported to the surface, the star begins to rise rapidly upward along
the red giant branch (RGB) of the H-R diagram. This path is essentially the same one
followed by pre-main-sequence stars descending the Hayashi track prior to the onset of
core hydrogen burning.

As the star climbs the RGB, its convection zone deepens until the base reaches down
into regions where the chemical composition has been modified by nuclear processes.
In particular, because of its rather large nuclear reaction cross section, lithium burns via
collisions with protons at relatively cool temperatures (greater than about 2.7 × 106 K).
This means that because of the evolution of the star to this point, lithium has become nearly
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depleted over most of the interior of the star (the inner 98% of the mass for the 5 M⊙ star).
At the same time, nuclear processing has increased the mass fraction of 3

2He over the middle
third of the star (see, for example, Figs. 3 and 6) as well as altered the abundance
ratios of the various species in the CNO cycle. When the surface convection zone encounters
this chemically modified region, the processed material becomes mixed with the material
above it. The effect is observable changes in the composition of the photosphere; the amount
of lithium at the surface will decrease and the amount of 3

2He will increase. At the same
time, convection transports 12

6C inward and 14
7N outward, decreasing the observable ratio of

X12/X14. Other abundance ratios such as X′
13/X12 will also be modified. This transport of

materials from the deep interior to the surface is referred to as the first dredge-up phase.
Nature has provided us with an opportunity to directly observe the products of nuclear
reactions deep within stellar interiors. These observable changes in surface composition
provide an important test of the predictions of stellar evolution theory.

The Red Giant Tip

.3 × 108 K
and 7.7 × 106 kg m−3 for the 5 M⊙ star) have finally become high enough that quantum-
mechanical tunneling becomes effective through the Coulomb barrier acting between 4

2He
nuclei, allowing the triple alpha process to begin. Some of the resulting 12

6C is further
processed into 16

8O as well.

burning shell outward, cooling it and causing the rate of energy output of the shell to decrease
somewhat. The result is an abrupt decrease in the luminosity of the star. At the same time,
the envelope contracts and the effective temperature begins to increase again.

The Helium Core Flash

An interesting difference arises at this point between the evolution of stars with masses
greater than about 1.8 M⊙ and those that have masses less than 1.8 M⊙. For stars of lower
mass, as the helium core continues to collapse during evolution up to the tip of the red giant
branch, the core becomes strongly electron-degenerate. Furthermore, significant neutrino
losses from the core of the star prior to reaching the tip of the RGB result in a negative
temperature gradient near the center (i.e., a temperature inversion develops); the core is
actually refrigerated somewhat because of the energy that is carried away by the easily
escaping neutrinos! When the temperature and density become high enough to initiate the
triple alpha process (approximately 108 K and 107 kg m−3, respectively), the ensuing energy
release is almost explosive. The ignition of helium burning occurs initially in a shell around
the center of the star, but the entire core quickly becomes involved and the temperature
inversion is lifted. The luminosity generated by the helium-burning core reaches 1011 L⊙,
comparable to that of an entire galaxy! However, this tremendous energy release lasts for

he surface abundance of lithium is also lower than expected in the present-day
Sun.

6

6 T
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only a few seconds, and most of the energy never even reaches the surface. Instead, it
is absorbed by the overlying layers of the envelope, possibly causing some mass to be
lost from the surface of the star. This short-lived phase of evolution of low-mass stars is
referred to as the helium core flash. The origin of the explosive energy release is in the very
weak temperature dependence of electron degeneracy pressure and the strong temperature
dependence of the triple alpha process. The energy generated must first go into “lifting” the
degeneracy. Only after this occurs can the energy go into thermal (kinetic) energy required
to expand the core, which decreases the density, lowers the temperature, and slows the
reaction rate.

It is because of the very rapid pace of the helium core flash that stellar evolution cal-
culations of low-mass stars are often terminated at that point. Given the dramatic changes
occuring deep in the interior of the star, it is very difficult to follow the evolution adequately;
very small time steps are required to model the evolution, meaning that a great deal of com-
puter time is needed to follow a star through the helium core flash (in fact, the star evolves
much faster than the computer can model it). This is why the evolutionary tracks of stars
with masses of 1, 1.25, and 1.5 M⊙ are not followed past points 6 in Fig. 1. This is
also why the annotated evolutionary track in Fig. 4 immediately following the red giant
tip is indicated by a dotted line; the evolution is extremely rapid and the computations are
resumed when quiescent helium core burning and hydrogen shell burning are established
in the star.

The Horizontal Branch

For both low- and intermediate-mass stars, as the envelope of the model contracts following
the red giant tip, the increasing compression of the hydrogen-burning shell eventually causes
the energy output of the shell, and the overall energy output of the stars, to begin to rise
again. With the associated increase in effective temperature, the deep convection zone in
the envelope rises toward the surface, while at the same time, a convective core develops.
The appearance of a convective core is due to the high temperature sensitivity of the triple
alpha process (just as the convective core of an upper-main-sequence star arises because of
the temperature dependence of the CNO cycle). This generally horizontal evolution is the
blueward portion of the horizontal branch (HB) loop. The blueward portion of the HB is
essentially the helium-burning analog of the hydrogen-burning main sequence, but with a
much shorter timescale.

When the evolution of the star reaches its most blueward point (point 8 in Fig. 1 for
the 5 M⊙ star), the mean molecular weight of the core has increased to the point that the
core begins to contract, accompanied by the expansion and cooling of the star’s envelope.
Shortly after beginning the redward portion of the HB loop, the core helium is exhausted,
having been converted to carbon and oxygen. Again the redward evolution proceeds rapidly
as the inert CO core contracts, much like the rapid evolution across the SGB following the
extinction of core hydrogen burning.

During their passage along the horizontal branch, many stars develop instabilities in their
outer envelopes, leading to periodic pulsations that are readily observable as variations in
luminosity, temperature, radius, and surface radial velocity. Since these oscillations depend
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sensitively on the internal structure of the star, stellar pulsations provide yet another test of
stellar structure theory.

With the increase in core temperature associated with its contraction, a thick helium-
burning shell develops outside the CO core. As the core continues to contract, the helium-
burning shell narrows and strengthens, forcing the material above the shell to expand and
cool. This results in a temporary turn-off of the hydrogen-burning shell.

Along with the contraction of the helium-exhausted core, neutrino production increases
to the point that the core cools a bit. As a consequence of the increasing central density and
decreasing temperature, electron degeneracy pressure becomes an important component of
the total pressure in the carbon–oxygen core.

The Early Asymptotic Giant Branch

The next phase of the evolution illustrated in Figs. 4 and 5 is very similar to the evolu-
tion following the exhaustion of the hydrogen-burning cores. When the redward evolution
reaches the Hayashi track, the evolutionary track bends upward along a path referred to
as the asymptotic giant branch (AGB). (The AGB is so named because the evolutionary
track approaches the line of the RGB asymptotically from the left. The AGB may be thought
of as the helium-burning-shell analog to the hydrogen-burning-shell RGB.) At this point
in its evolution the core temperature of the 5 M⊙ star is approximately 2 × 108 K, and
its density is on the order of 109 kg m−3. A diagram of an early AGB (E-AGB) star with
two shell sources is shown in Fig. 8. Although two shell sources are depicted, it is the
helium-burning shell that dominates the energy output during the E-AGB; the hydrogen-
burning shell is nearly inactive at this point. Note that the diagram is not to scale; in order
to visualize the structure from the hydrogen-burning shell inward, that region was enlarged
by a factor of 100 relative to the surface of the star.

The expanding envelope initially absorbs much of the energy produced by the helium-
burning shell. As the effective temperature continues to decrease, the convective envelope
deepens again, this time extending downward to the chemical discontinuity between the
hydrogen-rich outer layer and the helium-rich region above the helium-burning shell. The
mixing that results during this second dredge-up phase increases the helium and nitrogen
content of the envelope. (The increase in nitrogen is due to the previous conversion of
carbon and oxygen into nitrogen in the intershell region.)

The Thermal-Pulse Asymptotic Giant Branch

Near the upper portion of the AGB (labeled TP-AGB in Figs. 4 and 5 for thermal-
pulse AGB), the dormant hydrogen-burning shell eventually reignites and again dominates
the energy output of the star. However, during this phase of evolution, the narrowing helium-
burning shell begins to turn on and off quasi-periodically. These intermittent helium shell
flashes occur because the hydrogen-burning shell is dumping helium ash onto the helium
layer below. As the mass of the helium layer increases, its base becomes slightly degenerate.
Then, when the temperature at the base of the helium shell increases sufficiently, a helium
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FIGURE 8 A 5 M⊙ star on the early asymptotic giant branch with a carbon–oxygen core and
hydrogen- and helium-burning shells. Note that relative to the surface radius, the scale of the shells
and core has been increased by a factor of 100 for clarity. (Data from Iben, Ap. J., 143, 483, 1966.)

shell flash occurs, analogous to the earlier helium core flashes of low-mass stars (although
much less energetic). This drives the hydrogen-burning shell outward, causing it to cool
and turn off for a time. Eventually the burning in the helium shell diminishes, the hydrogen-
burning shell recovers, and the process repeats. The period between pulses is a function
of the mass of the star, ranging from thousands of years for stars near 5 M⊙ to hundreds
of thousands of years for low-mass stars (0.6 M⊙), with the pulse amplitude growing with
each successive event; see Fig. 9. This phase of periodic activity in the deep interior of
the star is evident in abrupt changes in luminosity at the surface (see the TP-AGB phases
in Figs. 4 and 5).

Details of thermal pulses for a 7 M⊙ star are shown in Fig. 10. Following a helium
shell flash, the luminosity arising from the hydrogen-burning shell drops appreciably while
the energy output from the helium-burning shell increases. This is because the hydrogen-
burning shell is pushed outward, causing it to cool. Since the hydrogen-burning shell is
responsible for most of the energy output of the star, the star’s luminosity abruptly decreases
when a helium shell flash occurs. At the same time, the radius of the surface of the star also
decreases and the star’s effective temperature increases. After a period of time, the energy
output of the helium shell diminishes when the degeneracy is lifted, the hydrogen-burning
shell moves deeper into the star, and the hydrogen-burning shell once again dominates
the star’s total energy output. As a result, the surface radius, luminosity, and effective
temperature relax back to near their pre-flash values. It is important to note, however, that
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FIGURE 9 The surface luminosity as a function of time for a 0.6 M⊙ stellar model that is
undergoing helium shell flashes on the TP-AGB. (Figure adapted from Iben, Ap. J., 260, 821, 1982.)

the overall evolutionary track of the star is toward greater luminosity and lower effective
temperature throughout the TP-AGB.

A class of pulsating variable stars known as long-period variables (LPVs) are AGB
stars. (LPVs have pulsation periods of 100 to 700 days and include the subclass of Mira
variable stars.) It has been suggested that the structural changes arising from shell flashes
could cause observable changes in the periods of some of these stars, providing another
possible test of stellar evolution theory. In fact, several Miras (e.g., W Dra, R Aql, and
R Hya) have been observed to be undergoing relatively rapid period changes.

Third Dredge-Up and Carbon Stars

Because of the sudden increase in energy flux from the helium-burning shell during a
flash episode, a convection zone is established between the helium-burning shell and the
hydrogen-burning shell. At the same time, the depth of the envelope convection zone
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FIGURE 10 Time-dependent changes in the properties of a 7 M⊙ AGB star produced by helium
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increases with the pulse strength of the flashes. For stars that are massive enough (M >

2 M⊙), the convection zones will merge and eventually extend down into regions where
carbon has been synthesized. In the region between the hydrogen- and helium-burning
shells, the abundance of carbon exceeds that of oxygen by a factor of five to ten. This is
in sharp contrast to the general excess of oxygen over carbon in the atmospheres of most
stars. During this third dredge-up phase, the carbon-rich material is brought to the surface,
decreasing the ratio of oxygen to carbon. If there are multiple third dredge-up events arising
from repeated helium shell flashes, the oxygen-rich spectrum of a star will transform over
time to a carbon-rich spectrum. This appears to explain the difference, observed spectro-
scopically, between oxygen-rich giants where the number density of oxygen atoms in the
atmosphere exceeds the number density of carbon atoms (NO > NC) and carbon-rich giants
(NC > NO) called carbon stars.

Carbon stars are designated with a special C spectral type (overlapping the traditional
K and M types). These stars are distinguished by an abundance of carbon-rich molecules
in their atmospheres, such as SiC, rather than SiO of typical M stars. This occurs because
carbon monoxide (CO) is a very tightly bound molecule. If the atmosphere of the star
contains more oxygen than carbon, the carbon is almost completely tied up in CO, leaving
oxygen to form additional molecules. Conversely, if the atmosphere contains more carbon
than oxygen, the oxygen is tied up in CO, allowing carbon to form in molecules.
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Intermediate between the M and C spectral types are the S spectral type stars. These stars
show ZrO lines in their atmospheres, having replaced the TiO lines of M stars. S stars have
almost identical abundances of carbon and oxygen in their atmospheres.

Of particular interest in the atmospheres of evolved TP-AGB stars is the presence of
technetium (Tc), an element with no stable isotopes. In particular, 99

43Tc is the most abundant
isotope of technetium found in the atmospheres of TP-AGB stars, yet it has a half-life of
only 200,000 yr. The existence of technetium in S and C stars strongly suggests that the
isotope must have been formed very recently in the star’s history and dredged up to the
surface from the deep interior.

s-Process Nucleosynthesis

collide with nuclei (there is no Coulomb barrier to tunnel through). If the flux of neutrons
is not too great, radioactive nuclei produced by the absorption of stray neutrons have time
to decay into other nuclei before they absorb another neutron. 99

43Tc is one product of this
slow s-process nucleosynthesis.

Mass Loss and AGB Evolution

AGB stars are known to lose mass at a rapid rate, sometimes as high as Ṁ ∼ 10−4 M⊙ yr−1.
The effective temperatures of these stars are also quite cool (around 3000 K).As a result, dust
grains form in the expelled matter. Since silicate grains tend to form in an environment rich in
oxygen, and graphite grains will form in a carbon-rich environment, the composition of the
ISM may be related to the relative numbers of carbon- and oxygen-rich stars. Observations
of ultraviolet extinction curves in the Milky Way and the Large and Small Magellanic
Clouds support the idea that mass loss from these stars does, in fact, help enrich the ISM.

As evolution up the AGB continues, what happens next is strongly dependent on the
original mass of the star and the amount of mass loss experienced by that star during its
lifetime. It appears that the final evolutionary behavior of stars can be separated into two
basic groups: those with ZAMS masses above about 8 M⊙ and those with masses below
this value. The distinction between the two mass regimes is based on whether or not the
core of the star will undergo significant further nuclear burning. In the remainder of this
section, we will consider the final evolution of stars with initial masses less than 8 M⊙

As stars with initial masses below 8 M⊙ continue to evolve up the AGB, the helium-
burning shell converts more and more of the helium into carbon and then into oxygen,
increasing the mass of the carbon–oxygen core. At the same time, the core continues to
contract slowly, causing its central density to increase. Depending on the star’s mass, neu-
trino energy losses may decrease the central temperature somewhat during this phase. In
any event, the densities in the core become large enough that electron degeneracy pressure

The LMC and the SMC are small satellite galaxies of the Milky Way, visible in the southern hemisphere.
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begins to dominate. This situation is very similar to the development of an electron-
degenerate helium core in a low-mass star during its rise up the red giant branch.

For stars with ZAMS masses less than about 4 M⊙, the carbon–oxygen core will never
become large enough and hot enough to ignite nuclear burning. On the other hand, if the
important contribution of mass loss is ignored for stars between 4 M⊙ and 8 M⊙, theory
suggests that the C–O core would reach a sufficiently large mass that it could no longer
remain in hydrostatic equilibrium, even with the assistance of pressure from the degenerate
electron gas. The outcome of this situation is catastrophic core collapse. The maximum
value of 1.4 M⊙ for a completely degenerate core is known as the Chandrasekhar limit.

However, as has already been mentioned, observations of AGB stars do show enormous
mass loss rates. When these mass loss rates are included in evolution calculations on the
AGB, the situation described in the last paragraph does not actually occur. Instead, for
stars between 4 M⊙ and 8 M⊙, mass loss prevents catastrophic core collapse. Instead of
collapse, these stars experience additional nucleosynthesis in their cores, leading to core
compositions of oxygen, neon, and magnesium (ONeMg cores) and masses remaining
below the Chandrasekhar limit of 1.4 M⊙. In addition, reactions such as

22
10Ne + 4

2He → 25
12Mg + n

22
10Ne + 4

2He → 26
12Mg + γ

also affect the composition of these cores.
Unfortunately, our understanding of the mechanism(s) that cause this mass loss is poor.

Some astronomers have suggested that the mass loss may be linked to the helium shell flashes
or perhaps to the periodic envelope pulsations of LPVs. Other proposed mechanisms stem
from the high luminosities and low surface gravities of these stars, coupled with radiation
pressure on the dust grains, dragging the gas with them. Whatever the cause, its influence
on the evolution of AGB stars is significant.

As one might expect, the rate of mass loss accelerates with time because the luminosity
and radius are increasing while the mass is decreasing during continued evolution up the
AGB. The decreasing mass and increasing radius of the star imply that the surface gravity
is also decreasing, and the surface material is becoming progressively less tightly bound.
Consequently, mass loss becomes increasingly more important asAGB evolution continues.

In the latest stages of evolution on the AGB, a superwind develops with Ṁ ∼
10−4 M⊙ yr−1. Whether shell flashes, envelope pulsations, or some other mechanism
is the reason, the observed high mass loss rates seem to be responsible for the existence
of a class of objects known as OH/IR sources. These objects appear to be stars shrouded
in optically thick dust clouds that radiate their energy primarily in the infrared part of the
electromagnetic spectrum.

The OH part of the OH/IR designation is due to the detection of OH molecules, which
can be seen via their maser emission. A maser is the molecular analog of a laser; electrons

The Chandrasekhar limit plays a critical role in the formation of the final products of stellar evolution, namely
white dwarfs, neutron stars, and black holes.

The term maser is an acronym for microwave amplification by stimulated emission of radiation.

8

9

8

9
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FIGURE 11 A schematic diagram of a hypothetical three-level maser. The intermediate energy
level is a relatively long-lived metastable state. A transition from the metastable state to the lowest
energy level can occur through stimulated emission by a photon of energy equal to the energy difference
between the two states (Eγ = hν = E1 − E0).

are “pumped up” from a lower energy level into a higher, long-lived metastable energy state.
The electron then makes a downward transition back to a lower state when it is stimulated
by a photon with an energy equal to the difference in energies between the two states. The
original photon and the emitted photon will travel in the same direction and will be in phase
with each other; hence the amplification of radiation. A schematic energy level diagram of
a hypothetical three-level maser is depicted in Fig. 11.

Post-Asymptotic Giant Branch

As the cloud around the OH/IR source continues to expand, it eventually becomes optically
thin, exposing the central star, which characteristically exhibits the spectrum of an F or G
supergiant. At this point in the evolution of our 1 and 5 M⊙ stars (Figs. 4 and 5, re-
spectively), the evolutionary tracks have turned blueward, leaving the TP-AGB and moving
nearly horizontally across the H–R diagram as post-AGB stars. During the ensuing final
phase of mass loss, the remainder of the star’s envelope is expelled, revealing the cinders
produced by its long history of nuclear reactions. With only a very thin layer of material
remaining above them, the hydrogen- and helium-burning shells are extinguished, and the
luminosity of the star drops rapidly. The hot central object, now revealed, will cool to be-
come a white dwarf star, which is essentially the old red giant’s degenerate C–O core (or
ONeMg core in the case of the more massive stars), surrounded by a thin layer of residual
hydrogen and helium.

The last stages of evolution of a 0.6 M⊙ model are depicted in Fig. 12. The position of
the star on the H–R diagram at the start of each flash episode is indicated by a number next
to the evolutionary track (eleven pulses in all), with the resulting excursions in luminosity
and effective temperature indicated for pulses 7, 9, and 10. It is after the tenth pulse that
the star leaves the AGB, ejecting its envelope during the nearly constant luminosity path
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FIGURE 12 The AGB and post-AGB evolution of a 0.6 M⊙ star undergoing mass loss. The
initial composition of the model is X = 0.749, Y = 0.25, and Z = 0.001. The main-sequence and
horizontal branches of 3, 5, and 7 M⊙ stars are shown for reference. Details of the figure are discussed
in the body of the text. (Figure adapted from Iben, Ap. J., 260, 821, 1982.)

across the H–R diagram. The amount of mass remaining in the hydrogen-rich envelope is
indicated in parentheses along the evolutionary track (in M⊙). Also indicated is the amount
of time before (negative) or after (positive) the point when the star’s effective temperature
was 30,000 K (the time is measured in years). Following the eleventh helium shell flash,
the star finally loses the last remnants of its envelope and becomes a white dwarf of radius
0.0285 R⊙.10

Planetary Nebulae

The expanding shell of gas around a white dwarf progenitor is called a planetary nebula.
Examples of planetary nebulae are shown in Figs. 13– 15. These beautiful, glowing
clouds of gas were given this name in the nineteenth century because, when viewed through
a small telescope, they look somewhat like giant gaseous planets.

A planetary nebula owes its appearance to the ultraviolet light emitted by the hot, con-
densed central star. The ultraviolet photons are absorbed by the gas in the nebula, causing
the atoms to become excited or ionized. When the electrons cascade back down to lower

1 The line labeled “Fundamental blue edge” corresponds to the high-temperature limit for fundamental mode
pulsations of a class of variable stars known as RR Lyraes.

0
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(a)

(b)

FIGURE 13 (a) The Helix nebula (NGC 7293) is one of the closest planetary nebulae to Earth,
213 pc away in the constellation ofAquarius. Its angular diameter in the sky is about 16 arcmin, roughly
one-half the angular size of the full moon. The pre-white dwarf star is visible at the center of the nebula.
[Credit: NASA, ESA, C.R. O’Dell (Vanderbilt University), M. Meixner, and P. McCullough.] (b) A
close-up of “cometary knots” in the Helix nebula. The central star is located beyond the bottom of
the picture. [Credit: NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner (STScI), and
T. A. Rector (NRAO).]
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FIGURE 14 NGC 6543 (the “Cat’s Eye”) is a planetary nebula in Draco, 900 pc away. The
complex structure may be due to high-speed jets and the presence of a companion star, making
NGC 6543 part of a binary star system. The jets are clearly visible in the upper right-hand and lower
left-hand portions of the image. Note the central star in the image. [Credit: NASA, ESA, HEIC, and
the Hubble Heritage Team (STScI/AURA). Acknowledgment: R. Corradi (Isaac Newton Group of
Telescopes, Spain) and Z. Tsvetanov (NASA).]

energy levels, photons are emitted whose wavelengths are in the visible portion of the
electromagnetic spectrum. As a result, the cloud appears to glow in visible light.1

The bluish-green coloration of many planetary nebulae is due to the 500.68-nm and
495.89-nm forbidden lines of [O III] (forbidden lines of [O II] and [Ne III] are also com-
mon), and the reddish coloration comes from ionized hydrogen and nitrogen. Characteristic
temperatures of these objects are in the range of the ionization temperature of hydrogen,
104 K.

With the advent of high-resolution images of planetary nebulae obtained by telescopes
such as the Hubble Space Telescope, astronomers have come to realize that the morphologies
of planetary nebulae are often much more complex than might have been expected of
a spherically symmetric parent TP-AGB star. Some planetaries, like the Helix nebula in
Fig. 13(a), look as though they have a ringlike structure. This is because gas is ejected
preferentially along the equator of the star due to the presence of angular momentum, and
our viewing angle is down the star’s rotation axis. Suggestions for the surprising array of
structures include varying viewing angles, multiple ejections of material from the stellar
surface, the presence of one or more companion stars, and magnetic fields.

1 This process is reminiscent of the creation of H II regions around newly formed O and B main-sequence stars

1

1 .

Main Sequence and Post-Main-Sequence Stellar Evolution



(a)

(b)

FIGURE 15 Examples of two “butterfly” planetary nebulae. (a) M2-9 is a bipolar planetary
nebula 800 pc distant in Ophiucus. [Credit: Bruce Balick (University of Washington), Vincent
Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA.]
(b) Menzel 3 (Mz 3), in Norma, is also known as the Ant nebula. Outflow velocities of 1000 km s−1

are much greater than for any other similar object. [Credit: NASA, ESA, and the Hubble Heritage
Team (STScI/AURA). Acknowledgment: R. Sahai (Jet Propulsion Lab) and B. Balick (University of
Washington).]

Significant detail is also evident at smaller scales. Figure 13(b) shows so-called
cometary knots that are pointed radially away from the central star in the Helix nebula.
These clumps of material have dark cores with luminous cusps on the sides facing the star.

The expansion velocities of planetaries, as measured by Doppler-shifted spectral lines,
show that the gas is typically moving away from the central stars with speeds of between
10 and 30 km s−1, although much greater speeds have been measured, as in the case of
Mz 3 [Fig. 15(b)]. Combined with characteristic length scales of around 0.3 pc, their
estimated ages are on the order of 10,000 years. After only about 50,000 years, a planetary
nebula will dissipate into the ISM. Compared with the entire lifetime of a star, the phase of
planetary nebula ejection is fleeting indeed.

Despite their short lifetimes, roughly 1500 planetary nebulae are known to exist in the
Milky Way Galaxy. Given the fact that we are unable to observe the entire galaxy from
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Earth, it is estimated that the number of planetaries is probably close to 15,000. If, on
average, each planetary contains about 0.5 M⊙ of material, the ISM is being enriched at the
rate of roughly one solar mass per year through this process.

3 STELLAR CLUSTERS

Over the past two chapters we have seen a story develop that depicts the lives of stars. They
are formed from the ISM, only to return most of that material to the ISM through stellar
winds, by the ejection of planetary nebulae, or via supernova explosions

The matter that is given back, however, has been enriched with heavier
elements that were produced through the various sequences of nuclear reactions governing
a star’s life. As a result, when the next generation of stars is formed, it possesses higher
concentrations of these heavy elements than did its ancestors. This cyclic process of star
formation, death, and rebirth is evident in the variations in composition between stars.

Population I, II, and III Stars

The universe began with the Big Bang 13.7 billion years ago. At that time hydrogen and
helium were essentially the only elements produced by the nucleosynthesis that occurred
during the initial fireball. Consequently, the first stars to form did so with virtually no metal
content; Z = 0. The next generation of stars that formed were extremely metal-poor, having
very low but non-zero values of Z. Each succeeding generation of star production resulted
in higher and higher proportions of heavier elements, leading to metal-rich stars for which
Z may reach values as high as 0.03. The (thus far hypothetical) original stars that formed
immediately after the Big Bang are referred to as Population III stars, metal-poor stars
with Z ! 0 are referred to as Population II, and metal-rich stars are called Population I.

The classifications of Population II and Population I are due originally to their identi-
fications with kinematically distinct groups of stars within our Galaxy. Population I stars
have velocities relative to the Sun that are low compared to Population II stars. Furthermore,
Population I stars are found predominantly in the disk of the Milky Way, while Population II
stars can be found well above or below the disk. It was only later that astronomers realized
that these two groups of stars differed chemically as well. Not only do populations tell us
something about evolution, but the kinematic characteristics, positions, and compositions
of Population I and Population II stars also provide us with a great deal of information about
the formation and evolution of the Milky Way Galaxy.

Globular Clusters and Galactic (Open) Clusters

uring the collapse of a molecular cloud,stellar clusters can
form, ranging in size from tens of stars to hundreds of thousands of stars. Every member
of a given cluster formed from the same cloud, they all formed with essentially identical
compositions, and they all formed within a relatively short period of time. Thus, excluding
such effects as rotation, magnetic fields, and membership in a binary star system, the Vogt–
Russell theorem suggests that the differences in evolutionary states between the various
stars in the cluster are due solely to their initial masses.

.

D
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FIGURE 16 (a) M13, the great globular cluster in Hercules, is located approximately 7000 pc
from Earth. (From the Digitized Sky Survey at STScI. Courtesy of Palomar/Caltech, the National
Geographic Society, and the Space Telescope Science Institute.) (b) The Pleiades is a galactic cluster
found in the constellation of Taurus, at a distance of 130 pc. (Courtesy of the National Optical
Astronomical Observatories.)

Extreme Population II clusters formed when the Galaxy was very young, making them
some of the oldest objects in the Milky Way. They also contain the largest number of mem-
bers. Figure 16(a) shows M13, one such globular cluster, located in the constellation of
Hercules. Population I clusters, such as the Pleiades [Fig. 16(b)], tend to be smaller and
younger. These smaller clusters are called alternately galactic clusters or open clusters.

Spectroscopic Parallax

The H–R diagrams of clusters can be constructed in a self-consistent way without knowledge
of the exact distances to them. Since the dimensions of a typical cluster are small relative
to its distance from Earth, little error is introduced by assuming that each member of the
cluster has the same distance modulus. As a result, plotting the apparent magnitude rather
than the absolute magnitude only amounts to shifting the position of each star in the diagram
vertically by the same amount. By matching the observational main sequence of the cluster
to a main sequence calibrated in absolute magnitude, the distance modulus of the cluster
can be determined, giving the cluster’s distance from the observer. This method of distance
determination is known as spectroscopic parallax (the method is also often referred to as
main-sequence fitting).

Color–Magnitude Diagrams

Rather than attempting to determine the effective temperature of every member of a cluster
by undertaking a detailed spectral line analysis of each star (which would be a major project
for a globular cluster, even assuming that the stars were bright enough to get good spectra),
it is much faster to determine their color indices (B − V ). With knowledge of the apparent
magnitude and the color index of each star, a color–magnitude diagram can be constructed.
Color–magnitude diagrams for M3 (a globular cluster) and h and χ Persei (a double galactic
cluster) are shown in Figs. 17 and 18, respectively.
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FIGURE 17 A color–magnitude diagram for M3, an old globular cluster. The major phases of
stellar evolution are indicated: main sequence (MS); blue stragglers (BS); the main-sequence turn-off
point (TO); the subgiant branch of hydrogen shell burning (SGB); the red giant branch along the
Hayashi track, prior to helium core burning (RGB); the horizontal branch during helium core burning
(HB); the asymptotic giant branch during hydrogen and helium shell burning (AGB); post-AGB
evolution proceeding to the white dwarf phase (P-AGB). (Figure adapted from Renzini and Fusi
Pecci, Annu. Rev. Astron. Astrophys., 26, 199, 1988. Reproduced with permission from the Annual
Review of Astronomy and Astrophysics, Volume 26, ©1988 by Annual Reviews Inc.)

Isochrones and Cluster Ages

Clusters, and their associated color–magnitude diagrams, offer nearly ideal tests of many
aspects of stellar evolution theory. By computing the evolutionary tracks of stars of various
masses, all having the same composition as the cluster, it is possible to plot the position of
each evolving model on the H–R diagram when the model reaches the age of the cluster.
(The curve connecting these positions is known as an isochrone.) The relative number of
stars at each location on the isochrone depends on the number of stars in each mass range

As the cluster ages, beginning with the initial collapse of the molecular cloud, the most
massive and least abundant stars will arrive on the main sequence first, evolving rapidly.
Before the lowest-mass stars have even reached the main sequence, the most massive
ones have already evolved into the red giant region, perhaps even undergoing supernova
explosions.

Since core hydrogen-burning lifetimes are inversely related to mass, continued evolution
of the cluster means that the main-sequence turn-off point, defined as the point where stars
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within the cluster (the initial mass function), combined with the different rates of evolu-
tion during each phase. Therefore, star counts in a color–magnitude diagram can shed 
light on the timescales involved in stellar evolution.
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FIGURE 18 A color–magnitude diagram for the young double galactic cluster, h and χ Persei.
Note that the most massive stars are pulling away from the main sequence while the low-mass stars in
the middle of the diagram are still contracting onto the main sequence. Red giants are present in the
upper right-hand corner of the diagram. (Figure adapted from Wildey, Ap. J. Suppl., 8, 439, 1964.)

in the cluster are currently leaving the main sequence, becomes redder and less luminous
with time. Consequently, it is possible to estimate the age of a cluster by the location of
the uppermost point of its main sequence. This fundamental technique is an important tool
for determining ages of stars, clusters, our Milky Way Galaxy, and other galaxies with
observable clusters, and even for establishing a lower limit on the age of the universe itself.
A composite color–magnitude diagram of a number of clusters is shown in Fig. 19.
Labeled vertically on the right-hand side is the age of the cluster corresponding to the
location of the main-sequence turn-off point.

The Hertzsprung Gap

Another consequence of varying timescales can be seen in the color–magnitude diagram
of h and χ Persei (Fig. 18). Apparent are red giants, together with low-mass pre-main-
sequence stars. Also evident in the diagram is the complete absence of stars between the
massive ones that are just leaving the main sequence and the few in the red giant region. It is
unlikely that this represents an incomplete survey, since these stars are the brightest members
of the cluster. Rather, it points out the very rapid evolution that occurs just after leaving the
main sequence. This feature, known as the Hertzsprung gap, is a common characteristic of
the color–magnitude diagrams of young, galactic clusters. The existence of the Hertzsprung
gap is due to evolution on a Kelvin–Helmholtz timescale across the SGB, following the
point when the hydrogen-depleted core exceeds the Schönberg–Chandrasekhar limit.

Notice in Fig. 19 that the cluster M67 does not show the existence of the Hertzsprung
gap; the same can be said of M3 (Fig. 17). Recall that below about 1.25 M⊙, the rapid
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FIGURE 19 A composite color–magnitude diagram for a set of Population I galactic clusters.
The absolute visual magnitude is indicated on the left-hand vertical axis, and the age of the cluster,
based on the location of its turn-off point, is labeled on the right-hand side. (Figure adapted from an
original diagram by A. Sandage.)

contraction phase related to the Schönberg–Chandrasekhar limit is much less pronounced.
As a result, color–magnitude diagrams of old globular clusters with turn-off points near or
less than 1 M⊙ have continuous distributions of stars leading to the red giant region.

Relatively Few AGB and Post-AGB Stars

Close inspection of Fig. 17 also shows that a relatively small number of stars exist on
the asymptotic giant branch and only a few stars are to be found in the region labeled P-
AGB (post-asymptotic giant branch). This is just a consequence of the very rapid pace of
evolution during this phase of heavy mass loss that leads directly to the formation of white
dwarfs.

Blue Stragglers

It should be pointed out that a group of stars, known as blue stragglers, can be found
above the turn-off point of M3. Although our understanding of these stars is incomplete, it
appears that their tardiness in leaving the main sequence is due to some unusual aspect of
their evolution. The most likely scenarios appear to be mass exchange with a binary star
companion, or collisions between two stars, extending the star’s main-sequence lifetime.
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A Work in Progress

The successful comparisons between theory and observation that are provided by stellar
clusters give strong support to the idea that our picture of stellar evolution is fairly complete,
although perhaps in need of some fine-tuning. Continued refinements in stellar opacities,
revisions in nuclear reaction cross sections, and much-needed improvements in the treatment
of convection will probably lead to even better agreement with observations. However, much
fundamental work remains to be done as well, such as developing a better understanding of
the effects of mass loss, rotation, magnetic fields, and the presence of a close companion.
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PROBLEM SET

1 (a) For a 5 M⊙ star, use the data in Table 1 associated with Fig. 1 to construct a table
that expresses the evolutionary times between points 2 and 3, points 3 and 4, and so on,
as a percentage of the lifetime of the star on the main sequence between points 1 and 2.

Main Sequence and
Post-Main-Sequence

Stellar Evolution

TABLE 1 The elapsed times since reaching the zero-age main sequence to the
indicated points in Fig. 1, measured in millions of years (Myr). (Data from Schaller
et al., Astron. Astrophys. Suppl., 96, 269, 1992.)

Initial Mass 1 2 3 4 5
(M⊙) 6 7 8 9 10

25 0 6.33044 6.40774 6.41337 6.43767
6.51783 7.04971 7.0591

15 0 11.4099 11.5842 11.5986 11.6118
11.6135 11.6991 12.7554

12 0 15.7149 16.0176 16.0337 16.0555
16.1150 16.4230 16.7120 17.5847 17.6749

9 0 25.9376 26.3886 26.4198 26.4580
26.5019 27.6446 28.1330 28.9618 29.2294

7 0 42.4607 43.1880 43.2291 43.3388
43.4304 45.3175 46.1810 47.9727 48.3916

5 0 92.9357 94.4591 94.5735 94.9218
95.2108 99.3835 100.888 107.208 108.454

4 0 162.043 164.734 164.916 165.701
166.362 172.38 185.435 192.198 194.284

3 0 346.240 352.503 352.792 355.018
357.310 366.880 420.502 440.536

2.5 0 574.337 584.916 586.165 589.786
595.476 607.356 710.235 757.056

2 0 1094.08 1115.94 1117.74 1129.12
1148.10 1160.96 1379.94 1411.25

1.5 0 2632.52 2690.39 2699.52 2756.73
2910.76

1.25 0 4703.20 4910.11 4933.83 5114.83
5588.92

1 0 7048.40 9844.57 11386.0 11635.8
12269.8

0.8 0 18828.9 25027.9

From Chapter 13 of An Introduction to Modern Astrophysic Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 
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FIGURE 1 Main-sequence and post-main-sequence evolutionary tracks of stars with an
initial composition of X = 0.68, Y = 0.30, and Z = 0.02. The location of the present-day Sun
is depicted by the solar symbol (⊙) between points 1 and 2 on the 1 M⊙ track. The elapsed times to
points indicated on the diagram are given in Table 1. To enhance readability, only the points on
the evolutionary tracks for 0.8, 1.0, 1.5, 2.5, 5.0, and 12.0 M⊙ are labeled. The model calculations
include mass loss and convective overshooting. The diagonal line connecting the locus of points 1
is the zero-age main sequence. For complete, and annotated, evolutionary tracks of 1 M⊙ and 5 M⊙
stars, respectively. (Data from Schaller et al., Astron. Astrophys. Suppl., 96, 269, 1992.)

(b) How long does it take a 5 M⊙ star to cross the Hertzsprung gap relative to its main-sequence
lifetime?

(c) How long does the 5 M⊙ star spend on the blueward portion of the horizontal branch
relative to its main-sequence lifetime?

(d) How long does the 5 M⊙ star spend on the redward portion of the horizontal branch relative
to its main-sequence lifetime?
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2 Estimate the Kelvin–Helmholtz timescale for a 5 M⊙ star on the subgiant branch and compare
your result with the amount of time the star spends between points 4 and 5 in Fig. 1.
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FIGURE 1 Main-sequence and post-main-sequence evolutionary tracks of stars with an

is depicted by the solar symbol (⊙) between points 1 and 2 on the 1 M⊙ track. The elapsed times to
points indicated on the diagram are given in Table 1. To enhance readability, only the points on
the evolutionary tracks for 0.8, 1.0, 1.5, 2.5, 5.0, and 12.0 M⊙ are labeled. The model calculations
include mass loss and convective overshooting. The diagonal line connecting the locus of points 1
is the zero-age main sequence. For complete, and annotated, evolutionary tracks of 1 M⊙ and 5 M⊙
stars, respectively. (Data from Schaller et al., Astron. Astrophys. Suppl., 96, 269, 1992.)

3 (a) Beginning with Eq. ( 7), show that the radius of the isothermal core for which the gas
pressure is a maximum is given by Eq. ( 8). Recall that this solution assumes that the
gas in the core is ideal and monatomic.

(b) From your results in part (a), show that the maximum pressure at the surface of the
isothermal core is given by Eq. ( 9).
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4 During the first dredge-up phase of a 5 M⊙ star, would you expect the composition ratioX′
13/X12

to increase or decrease? Explain your reasoning. Hint: You may find Fig. 6 helpful.

5 Use the below equation to show that the ignition of the triple alpha process at the tip of the
8 K.red giant branch ought to occur at more than 10

Tquantum = Z2
1Z

2
2e

4µm

12π2ϵ2
0h

2k
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FIGURE 6 The chemical composition as a function of interior mass fraction for a 5 M⊙ star
during the phase of overall contraction, following the main-sequence phase of core hydrogen burning.
The maximum mass fractions of the indicated species are XH = 0.708, X3 = 1.296 × 10−4 (3

2He),
X4 = 0.9762 (4

2He), X12 = 3.61 × 10−3 (12
6C), X′

13 = 3.61 × 10−3 (13
6C), X14 = 0.0145 (14

7N), and
X16 = 0.01080 (16

8O). (Figure adapted from Iben, Ap. J., 143, 483, 1966.)

6 In an attempt to identify the important components of AGB mass loss, various researchers have
proposed parameterizations of the mass loss rate that are based on fitting observed rates for a
specified set of stars with some general equation that includes measurable quantities associated
with the stars in the sample. One of the most popular, developed by D. Reimers, is given by

Ṁ = −4 × 10−13η
L

gR
M⊙ yr−1 (13)
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where L, g, and R are the luminosity, surface gravity, and radius of the star, respectively (all in
solar units; g⊙ = 274 m s−2). η is a free parameter whose value is expected to be near unity.
Note that the minus sign has been explicitly included here, indicating that the mass of the star
is decreasing.
(a) Explain qualitatively why L, g, and R enter Eq. (13) in the way they do.

(b) Estimate the mass loss rate of a 1 M⊙ AGB star that has a luminosity of 7000 L⊙ and a
temperature of 3000 K.

7 (a) Show that the Reimers mass loss rate, given by Eq. (13) in Problem 6, can also be
written in the form

Ṁ = −4 × 10−13η
LR

M
M⊙ yr−1,

where L, R, and M are all in solar units.
(b) Assuming (incorrectly) that L, R, and η do not change with time, derive an expression for

the mass of the star as a function of time. Let M = M0 when the mass loss phase begins.
(c) Using L = 7000 L⊙, R = 310 R⊙, M0 = 1 M⊙, and η = 1, make a graph of the star’s

mass as a function of time.
(d) How long would it take for a star with an initial mass of 1 M⊙ to be reduced to the mass

of the degenerate carbon–oxygen core (0.6 M⊙)?

8 The Helix nebula is a planetary nebula with an angular diameter of 16′ that is located approx-
imately 213 pc from Earth.
(a) Calculate the diameter of the nebula.
(b) Assuming that the nebula is expanding away from the central star at a constant velocity of

20 km s−1, estimate its age.

9 An old version of stellar evolution, popular at the beginning of the twentieth century, maintained
that stars begin their lives as large, cool spheres of gas, like the giant stars on the H–R diagram.
They then contract and heat up under the pull of their own gravity to become hot, bright blue
O stars. For the remainder of their lives they lose energy, becoming dimmer and redder with
age. As they slowly move down the main sequence, they eventually end up as cool, dim red
M stars. Explain how observations of stellar clusters, plotted on an H–R diagram, contradict
this idea.

10 (a) Using data available in the tables below, compare the pre-main sequence evolutionary
time of a 0.8M⊙ star with the lifetime on the main sequence for a 15 M⊙ star. How does
this information help to explain the appearance of a color–magnitude diagram such as
Fig. 18?

Main Sequence and Post-Main-Sequence Stellar Evolution: Problem Set
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TABLE Pre-main-sequence contraction times for the classical models presented in Fig. 11.
(Data from Bernasconi and Maeder, Astron. Astrophys., 307, 829, 1996.)

Initial Mass (M⊙) Contraction Time (Myr)
60 0.0282
25 0.0708
15 0.117

9 0.288
5 1.15
3 7.24
2 23.4
1.5 35.4
1 38.9
0.8 68.4

Ṁ = −4 × 10−13η
LR

M
M⊙ yr−1, (13)



The elapsed times since reaching the zero-age main sequence to the
indicated points in Fig. 1, measured in millions of years (Myr). (Data from Schaller
et al., Astron. Astrophys. Suppl., 96, 269, 1992.)

Initial Mass 1 2 3 4 5
(M⊙) 6 7 8 9 10

25 0 6.33044 6.40774 6.41337 6.43767
6.51783 7.04971 7.0591

15 0 11.4099 11.5842 11.5986 11.6118
11.6135 11.6991 12.7554

12 0 15.7149 16.0176 16.0337 16.0555
16.1150 16.4230 16.7120 17.5847 17.6749

9 0 25.9376 26.3886 26.4198 26.4580
26.5019 27.6446 28.1330 28.9618 29.2294

7 0 42.4607 43.1880 43.2291 43.3388
43.4304 45.3175 46.1810 47.9727 48.3916

5 0 92.9357 94.4591 94.5735 94.9218
95.2108 99.3835 100.888 107.208 108.454

4 0 162.043 164.734 164.916 165.701
166.362 172.38 185.435 192.198 194.284

3 0 346.240 352.503 352.792 355.018
357.310 366.880 420.502 440.536

2.5 0 574.337 584.916 586.165 589.786
595.476 607.356 710.235 757.056

2 0 1094.08 1115.94 1117.74 1129.12
1148.10 1160.96 1379.94 1411.25

1.5 0 2632.52 2690.39 2699.52 2756.73
2910.76

1.25 0 4703.20 4910.11 4933.83 5114.83
5588.92

1 0 7048.40 9844.57 11386.0 11635.8
12269.8

0.8 0 18828.9 25027.9
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FIGURE 18 A color–magnitude diagram for the young double galactic cluster, h and χ Persei.
Note that the most massive stars are pulling away from the main sequence while the low-mass stars in
the middle of the diagram are still contracting onto the main sequence. Red giants are present in the
upper right-hand corner of the diagram. (Figure adapted from Wildey, Ap. J. Suppl., 8, 439, 1964.)

(b) Estimate the mass of a star that would have a main-sequence lifetime comparable to the
pre-main-sequence evolutionary time of a 0.8 M⊙ star.

11 (a) The age of the universe is 13.7 Gyr. Compare this value to the main-sequence lifetime of
a 0.8 M⊙ star. Why isn’t it useful to compute the detailed post-main-sequence evolution
of stars with masses much lower than the mass of the Sun?

(b) Would you expect to find globular clusters with main-sequence turn-off points below
0.8 M⊙? Explain your answer.

12 (a) Show that log10 (LV /LB) + constant is, to within a multiplicative constant, equivalent to
the color index, B − V .

(b) Estimating best-fit curves through the data given in Fig. 20, trace the two color–
magnitude diagrams, placing them on a single graph. Note that the abscissas have been
normalized so that the lowest-luminosity stars of both clusters are located at the same
positions on their respective diagrams.
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FIGURE 20 (a) A color–magnitude diagram for 47 Tuc, a relatively metal-rich globular cluster
with Z/Z⊙ = 0.17. (Data from Hesser et al., Publ. Astron. Soc. Pac., 99, 739, 1987; figure courtesy
of William E. Harris.) (b) A color–magnitude diagram for M15, a metal-poor globular cluster with
Z/Z⊙ = 0.0060. (Data from Durrell and Harris, Astron. J., 105, 1420, 1993; figure courtesy of William
E. Harris.)

13 Using the technique of main-sequence fitting, estimate the distance to M3; refer to Figs. 17
and 19.
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FIGURE 17 A color–magnitude diagram for M3, an old globular cluster. The major phases of
stellar evolution are indicated: main sequence (MS); blue stragglers (BS); the main-sequence turn-off
point (TO); the subgiant branch of hydrogen shell burning (SGB); the red giant branch along the
Hayashi track, prior to helium core burning (RGB); the horizontal branch during helium core burning
(HB); the asymptotic giant branch during hydrogen and helium shell burning (AGB); post-AGB
evolution proceeding to the white dwarf phase (P-AGB). (Figure adapted from Renzini and Fusi
Pecci, Annu. Rev. Astron. Astrophys., 26, 199, 1988. Reproduced with permission from the Annual
Review of Astronomy and Astrophysics, Volume 26, ©1988 by Annual Reviews Inc.)

(c) Given that 47 Tuc is relatively metal-rich for a globular cluster (Z/Z⊙ = 0.17, where
Z⊙ is the solar value) and M15 is metal-poor (Z/Z⊙ = 0.0060), explain the difference
in colors between the two clusters.
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TABLE 1 The Theory of Stellar Pulsation
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β
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2 THE PHYSICS OF STELLAR PULSATION

The Period–Density Relation
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3 MODELING STELLAR PULSATION

Nonlinear Hydrodynamic Models
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Linearizing the Hydrodynamic Equations
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Dynamical Stability
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4 NONRADIAL STELLAR PULSATION
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5 HELIOSEISMOLOGY AND ASTEROSEISMOLOGY
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Sun’s magnetic field from a poloidal to a toroidal geometry, these results indicate that the 
Sun’s magnetic dynamo is probably seated in the tachocline at the interface between 
the radiation zone and the convection zone.
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PROBLEM SET

1 Use the light curve for Mira, Fig. 1, to estimate the ratio of Mira’s luminosity at visible
wavelengths, when it is brightest to when it is dimmest. For what fraction of its pulsation cycle
is Mira visible to the naked eye?

2 If the intrinsic uncertainty in the period–luminosity relation shown in Fig. 5 is "M ≈ 0.5
magnitude, find the resulting fractional uncertainty in the calculated distance to a classical
Cepheid.

Stellar Pulsation
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FIGURE 1 The light curve of Mira from September 14, 1954 (JD 2,435,000) through September
2005. Recall that magnitudes dimmer than 6 are undetectable to the unaided eye. (We acknowledge
with thanks the variable-star observations from the AAVSO International Database contributed by
observers worldwide.)

From Chapter 14 of An Introduction to Modern Astrophysic Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 
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FIGURE 5 The period–luminosity relation for classical Cepheids. (Figure adapted from Sandage
and Tammann, Ap. J., 151, 531, 1968.)

3 Several remote classical Cepheids were discovered in 1994 by the Hubble Space Telescope in
the galaxy denoted M100. (M100 is a member of the Virgo cluster, a rich cluster of galaxies.)
Figure 22 shows the period–luminosity relation for these Cepheids. Use the two Cepheids
nearest the figure’s best-fit line to estimate the distance to M100. The mean visual extinction is
AV = 0.15 ± 0.17 magnitudes for the M100 Cepheids. Compare your result to the distance
of 17.1 ± 1.8 Mpc obtained by Wendy Freedman and her colleagues. You are referred to
Freedman et al. (1994) for more information on the discovery and importance of these remote
pulsating stars.

27
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V
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Log10 P

M100

LMC

FIGURE 22 A composite period–luminosity relation for Problem 3. The white circles denote
Cepheids in M100, and the black circles show nearby Cepheids found in the Large Magellanic Cloud
(a small galaxy that neighbors our Milky Way Galaxy). The average visual magnitudes of the LMC
Cepheids have been increased by the same amount to match those of the M100 variables. The required
increase in V for a best fit is then used to find the relative distances to the LMC and M100. (Adapted
from Freedman et al., Nature, 371, 757, 1994.)
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4 Make a graph similar to Fig. 5 showing the period–luminosity relation for both the classical
Cepheids and W Virginis stars.

6 Use Eq. ( 6) to estimate the pulsation period that the Sun would have if it were to oscillate
radially.

7 Derive Eq. ( 11) by linearizing the adiabatic relation

PV γ = constant.

8 (a) Linearize the Stefan–Boltzmann equation in the form of the below equation to show that

δL

L0
= 2

δR

R0
+ 4

δT

T0
.

(6)

δP

P0
= −3γ

δR

R0
(11)

(b) Linearize the adiabatic relation T V γ−1 = constant, and so find a relation between δL/L0

and δR/R0 for a spherical blackbody model star composed of an ideal monatomic gas.

9 Consider a general potential energy function, U(r), for a force F = −(dU/dr)r̂ on a particle
of mass m. Assume that the origin (r = 0) is a point of stable equilibrium. By expanding U(r)

in a Taylor series about the origin, show that if a particle is displaced slightly from the origin
and then released, it will undergo simple harmonic motion about the origin. This explains why the
linearization procedure of Section 3 of St ll r  Pulsation is guaranteed to result insinusoidal
oscillations.

Stellar Pulsation: Problem Set
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L = 4πR2σT 4
e .

.

5 Assuming (incorrectly) that the oscillations of δ Cephei are sinusoidal, calculate the greatest
excursion of its surface from its equilibrium position.

Π ≈
√

3π
2γGρ

.
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10 Figure 23 shows a view of a hypothetical nonradially pulsating (ℓ = 2, m = −2), rotating
star from above the star’s north pole. From the vantage point of Earth, astronomers view
the star along its equatorial plane. Assuming that a spectral absorption line appears
when the bottom of Fig. 23 is facing Earth, sketch the changes in the appearance of the

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

act
>

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

ad

line profile due to Doppler shifts caused by the total surface velocity as the star rotates. (Don’t
worry about the timing; just sketch the spectral line as seen from the eight different points
of view shown that are directly over the star’s equator.) Assume that the equivalent width
of the line does not change. You may wish to compare your line profiles with those actually
observed for a nonradially pulsating star such as the β Cephei star 12 Lacertae; see Smith, Ap.
J., 240, 149, 1980. For convenience, the magnitudes of the rotation and pulsation velocities
are assumed to be equal.

11 Show that the below equation, the condition for convection to occur, is the same as the require-
A>0, where A is given by Eq. ( 17). Assume that the mean molecular weight, µ, does

not vary.
ment that

A ≡ 1
ρ

dρ

dr
− 1
γP

dP

dr
(17)

12 In a convection zone, the timescale for convection is related to the value of A (Eq. 17) by

tc ≃ 2
√

2/Ag.

Table 2 shows the values of the pressure and density at two points near the top of the Sun’s
convection zone as described by a solar model. Use these values and γ = 5/3 to obtain an
estimate of the timescale for convection near the top of the Sun’s convection zone. How does
your answer compare with the range of periods observed for the Sun’s p-modes?
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FIGURE 23 Surface velocities for a rotating, pulsating star (ℓ = 2, m = −2) for Problem 10.
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TABLE 2 Data from a Solar Model for Problem 12. (Data from Joyce Guzik, private
communication.)

r (m) P (N m−2) ρ (kg m−3)

6.959318 × 108 9286.0 2.2291 × 10−4

6.959366 × 108 8995.7 2.1925 × 10−4

COMPUTER PROBLEM

13 In this problem you will carry out a nonlinear calculation of the radial pulsation of the one-zone
model described in Example 3.1 of Stellar Pulsation. The equations that describe the oscil-

star are Newton’s second law for the forces on the shell,

m
dv

dt
= −GMm

R2
+ 4πR2P, (20)

and the definition of the velocity, v, of the mass shell,

v = dR

dt
. (21)

As in Example 3.1, we assume that the expansion and contraction of the gas are adiabatic:

PiV
γ
i = Pf V

γ
f , (22)

where the “initial” and “final” subscripts refer to any two instants during the pulsation cycle.
(a) Explain in words the meaning of each term in Eq. (20).

(b) Use Eq. (22) to show that

(c) You will not be taking derivatives. Instead, you will take the difference between the initial
and final values of the radius R and radial velocity v of the shell divided by the time interval
"t separating the initial and final values. That is, you will use (vf − vi)/"t instead of
dv/dt , and (Rf − Ri)/"t instead of dR/dt in Eqs. ( 20) and ( 21). A careful analysis
shows that you should use R = Ri and P = Pi on the right-hand side of Eq. ( 20), and
use v = vf on the left-hand side of Eq. ( 21). Make these substitutions in Eqs. ( 20)
and ( 21), and show that you can write

lation of this model

vf = vi +
(

4πR2
i Pi

m
− GM

R2
i

)

"t (24)

and Rf = Ri + vf"t. (25)
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m
dv

dt
= −GMm

R2
+ 4πR2P, (20)

PiR
3γ
i = Pf R

3γ
f . (23)

m
dv

dt
= −GMm

R2
+ 4πR2P, (20)

v = dR

dt
. (21)



new initial values, and find new values for R, v, and P after two time intervals (at time
t = 2 × 104 s). Continue to find R, v, and P for 150 time intervals, until t = 1.5 × 106 s.
Make three graphs of your results: R vs. t , v vs. t , and P vs. t . Plot the time on the horizontal
axis.

(e) From your graphs, measure the period Π of the oscillation (both in seconds and in days)
and the equilibrium radius, R0, of the model star. Compare this value of the period with that
obtained from Eq. ( 14). Also compare your results with the period and radial velocity
observed for δ Cephei.

Stellar Pulsation: Problem Set

Π = 2π
√

4
3πGρ0(3γ − 4)

,

and use a time interval of"t = 104 s. Take the ratio of specific heats to be γ = 5/3 for an
ideal monatomic gas. Use Eq. ( 24) to calculate the final velocity vf at the end of one
time interval (at time t = 1 × 104 s); then use Eq. ( 25) to calculate the final radius Rf

and Eq. ( 23) to calculate the final pressure Pf . Now take these final values to be your

(d) Now you are ready to calculate the oscillation of the model star. The mass of a typical
classical Cepheid is M = 1 × 1031 kg (5 M⊙), and the mass of the surface layers may be
arbitrarily assigned m = 1 × 1026 kg. For starting values at time t = 0, take

Ri = 1.7 × 1010 m

vi = 0 m s−1

Pi = 5.6 × 104 N m−2

( 4)1

vf = vi +
(

4πR2
i Pi

m
− GM

R2
i

)

"t (24)

Rf = Ri + vf"t. (25)
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2 THE CLASSIFICATION OF SUPERNOVAE
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FIGURE 9

3 CORE-COLLAPSE SUPERNOVAE

Example 3.1.

E = mc

m = E/c = /c = × = . ⊙.

N =
( ×

. /

)(

. × −

)

= . × ,
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⊙
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Stellar Remnants of a Core-Collapse Supernova
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Woosley (sometimes also referred to as a hypernova model). Neutron stars have an upper 
mass limit based on the ability of neutron degeneracy to support the extremely compact 
star (similar to electron degeneracy pressure). Using sophisticated equations of state for 
neutrons at very high densities , investigators have estimated that the 
maximum mass of a nonrotating neutron star is about 2.2 M  . When a core-collapse 
 supernova occurs, either a neutron star or a black hole will form, depending on the mass, 
metallicity, and rotation of the progenitor star. Woosley’s models have suggested that for a 
progenitor star with sufficiently great mass (possibly a Wolf–Rayet star), the central object 
to form will be a black hole with a debris disk surrounding it. The collimating effect of the 
debris disk and associated magnetic fields would lead to a jet emanating from the center of 
the supernova. Since the jet material will be highly relativistic, it will appear to be further 
collimated. The jet will plow its way through the overlying material of the infalling stellar 
envelope producing bursts of gamma-rays. One version of Woosley’s collapsar model is 
shown in Fig. 21.
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PROBLEM SET

1 Estimate the Eddington limit for η Car and compare your answer with the luminosity of that
star. Is your answer consistent with its behavior? Why or why not?

2 During the Great Eruption of η Car, the apparent visual magnitude reached a characteristic
value of mV ∼ 0. Assume that the interstellar extinction to η Car is 1.7 magnitudes and that
the bolometric correction is essentially zero.
(a) Estimate the luminosity of η Car during the Great Eruption.
(b) Determine the total amount of photon energy liberated during the twenty years of the Great

Eruption.
(c) If 3 M⊙ of material was ejected at a speed of 650 km s−1, how much energy went into the

kinetic energy of the ejecta?

3 The angular extent of one of the lobes of η Car is approximately 8.5′′. Assuming a constant
expansion of the lobes of 650 km s−1, estimate how long it has been since the Great Eruption
that produced the lobes. Is this likely to be an overestimate or an underestimate? Justify your
answer.

4 (a) Show that the amount of radioactive material remaining in an initially pure sample is given
by Eq. (10).

N(t) = N0e
−λt ,

(b) Prove that
λ = ln 2

τ1/2
.

5 Assume that the 1 M⊙ core of a 10 M⊙ star collapses to produce a Type II supernova. Assume
further that 100% of the energy released by the collapsing core is converted to neutrinos and
that 1% of the neutrinos are absorbed by the overlying envelope to power the ejection of
the supernova remnant. Estimate the final radius of the stellar remnant if sufficient energy
is to be liberated to just barely eject the remaining 9 M⊙ to infinity. Be sure to state clearly
any additional assumptions you make in determining your estimate of the final radius of the
remnant.

6 (a) The angular size of the Crab SNR is 4′ × 2′ and its distance from Earth is approximately
2000 pc (see Fig. 4). Estimate the linear dimensions of the nebula.

The Fate of Massive Stars
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FIGURE 4 The Crab supernova remnant, located 2000 pc away in the constellation of Taurus.
The remnant is the result of a Type II supernova that was observed for the first time on July 4, 1054.
[Courtesy of NASA, ESA, J. Hester and A. Loll (Arizona State University).]

(b) Using the measured expansion rate of the Crab and ignoring any accelerations since the
time of the supernova explosion, estimate the age of the nebula.

7 Taking the distance to the Crab to be 2000 pc, and assuming that the absolute bolometric
magnitude at maximum brightness was characteristic of a Type II supernova, estimate its peak
apparent magnitude. Compare this to the maximum brightness of the planet Venus (m ≃ −4),
which is sometimes visible in the daytime.

8 Using q ,make a crude estimate of the amount of time required for the homo
logous collapse of the inner portion of the iron core of a massive star, marking the beginning
of a core-collapse supernova.

the below e uation  -

tff =
(

3π
32

1
Gρ0

)1/2

.

9 (a) Assuming that the light curve of a supernova is dominated by the energy released in the
radioactive decay of an isotope that has a decay constant of λ, show that the slope of the
light curve is given by Eq. (11).

(b) Prove that Eq. (12) follows from Eq. (11).

d log10 L

dt
= −0.434λ

or

dMbol

dt
= 1.086λ.

10 If the linear decline of a supernova light curve is powered by the radioactive decay of the
ejecta, find the rate of decline (in mag d−1) produced by the decay of 56

27Co → 56
26Fe, with a

half-life of 77.7 days.

The Fate of Massive Stars: Problem Set

(1 )1

(1 )2



11 The energy released during the decay of one 56
27Co atom is 3.72 MeV. If 0.075 M⊙ of cobalt

was produced by the decay of 56
28Ni in SN 1987A, estimate the amount of energy released per

second through the radioactive decay of cobalt:
(a) just after the formation of the cobalt.
(b) one year after the explosion.
(c) Compare your answers with the light curve of SN 1987A given in Fig. 12.

29

31

33

35

L
og
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 (
W

)

0 500 1000 1500

Days since outburst

22Na

44Ti

5 × 57Co

56Co

FIGURE 12 The bolometric light curve of SN 1987A through the first 1444 days after the
explosion. The dashed lines show the contributions expected from the radioactive isotopes produced
by the shock wave. The initial masses are estimated to be 56

28Ni (and later 56
27Co), 0.075 M⊙; 57

27Co,
0.009 M⊙ (five times the solar abundance); 44

22Ti, 1 × 10−4 M⊙; and 22
11Na, 2 × 10−6 M⊙. (Figure

adapted from Suntzeff et al., Ap. J. Lett., 384, L33, 1992.)

12 The neutrino flux from SN 1987A was estimated to be 1.3 × 1014 m−2 at the location of Earth.
If the average energy per neutrino was approximately 4.2 MeV, estimate the amount of energy
released via neutrinos during the supernova explosion.

13 Using , estimate the gravitational binding energy of a neutron star with
1.4 M⊙ and a radius of 10 km. Compare your answer with the amount of energy released

neutrinos during the collapse of the iron core of Sk −69 202 (the progenitor of SN 1987A).

qthe below e uation  a
mass
in

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
.

14 It is estimated that there are approximately 100,000 neutron stars in the Milky Way Galaxy.
Show that if the observed gamma-ray bursts are associated with neutron stars in our Galaxy,
then each source must repeat. If you make the extreme assumption that each neutron star
produces bursts, what would be the average time between bursts?

15 Consider an electron and positron that annihilate each other at the surface of a neutron star
(M = 1.4 M⊙, R = 10 km), producing two gamma-ray photons of the same energy. Show that
each gamma ray has an energy of at least 511 keV.

16 Suppose there are two populations of gamma-ray burst sources with energies E1 and E2.
Show that if the sources are distributed homogeneously throughout the universe with number
densities n1 and n2, respectively, then the total number of bursts observed to have a fluence
≥ S is proportional to S−3/2.
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17 The highest-energy cosmic-ray particle that had been recorded at the time this text was written
was measured by the Fly’s Eye HiRes experiment in the Utah desert in 1991. The energy of
the particle was 3 × 1020 eV.
(a) Convert the energy of the particle to joules.
(b) If the particle was a baseball of mass 0.143 kg, calculate the speed of the ball.
(c) Convert your answer to miles per hour and compare your answer to the speed of a fast ball

of the fastest major league pitchers (approximately 100 mph, or 45 m s−1).

18 Using Eq. ( 16), show that cosmic-ray particles with energies of greater than 1019 eV are
not likely to be bound to the Milky Way Galaxy. (A characteristic size scale for the Galaxy is
about 30 kpc.) What about particles with energies in the range of 1016 eV to 1019 eV?

r = γmc2

qcB
= E

qcB
.

19 Nonthermal spectra are often represented by power laws of the form

F = CE−α.

Figure 22 shows a power-law spectrum for cosmic rays. Determine the value of α in the
region 1011 eV to the “knee,” and from the “knee” to the “ankle.”

10–28
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Fluxes of Cosmic Rays

FIGURE 22 The flux of cosmic rays as a function of energy. (Ref: J. Cronin, T. K. Gaisser, and
S. P. Swordy, Sci. Amer., 276, 44, 1997.)

20 Calculate the Lorentz factor for a proton with an energy of 1020 eV.
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1 THE DISCOVERY OF SIRIUS B

p′′ = . ′′

⊙ ⊙
. ± . ⊙

′′

LA = . ⊙ LB = . ⊙

An Introduction to Modern Astrophysics
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FIGURE 2
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2 WHITE DWARFS

white dwarf

Classes of White Dwarf Stars

DA white dwarfs

DB white dwarfs
DC white dwarfs

DQ white dwarfs
DZ white dwarfs

Central Conditions in White Dwarfs

M

R

r =

Pc ≈ πGρ R ≈ . × − ,
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dT

dr
= −

ac

κρ

T

Lr

πr

T − Tc

R − = −
ac

κρ

T

L

πR
.

T

κ = . − X =

Tc ≈
[

κρ

ac

L

πR

] /

≈ . × .

⊙

⊙

⊙
⊙ ⊙

Spectra and Surface Composition
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FIGURE 3 ⊙

Ap. J. 394

Pulsating White Dwarfs

Te ≈
ZZ Ceti

DAV stars

m( )/m( ) ≈ − −
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DBV Te ≈

Te ≈

!

L
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FIGURE 4 Advances in
Helio- and Asteroseismology
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3 THE PHYSICS OF DEGENERATE MATTER

The Pauli Exclusion Principle and Electron Degeneracy

λ x y z

thermal

T →
all none

degenerate

The Fermi Energy

εF T =
Fermi energy

L
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electron degeneracy pressure
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T 

" "F

FIGURE 5 ε T =
ε ≤ εF T >

λx = L

Nx

, λy = L

Ny

, λz = L

Nz

,

Nx Ny Nz

px = hNx

L
, py = hNy

L
, py = hNx

L
.

ε = p

m
,

p = px + py + pz

ε = h

mL
(Nx + Ny + Nz ) = h N

mL
,

N ≡ Nx + Ny + Nz N

(Nx, Ny, Nz)

Nx Ny Nz

ms = ± /

Nx Ny Nz four

The Degenerate Remnants of Stars



N Nx = Ny = Nz =

N =
√

Nx + Ny + Nz

N Nx > Ny > Nz >

Ne =
( )(

πN

)

.

N

N =
(

Ne

π

) /

.

εF = !

m

(

π n
) /

,

m n ≡ Ne/L

εF

The Condition for Degeneracy

εF

T >

ne =
( ) ( )

=
(

Z

A

)

ρ

mH

,

Z A

mH

/

εF = !

me

[

π

(

Z

A

)

ρ

mH

] /

.
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kT

k kT < εF

kT <
!

me

[

π

(

Z

A

)

ρ

mH

] /

,

T

ρ /
<

!

mek

[

π

mH

(

Z

A

)] /

= − /

Z/A = .

D ≡ − / ,

T

ρ /
< D.

T /ρ /

Example 3.1.
Tc = . × ρc = . ×

−

Tc

ρ
/

c

= − / > D.

Tc

ρ
/

c

= − / ≪ D,
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evolve, electron degeneracy will become increasingly important (Fig. 6). The Sun will 
develop a degenerate helium core while on the red giant branch of the H–R diagram, 
leading eventually to a core helium flash. Later, on the asymptotic giant branch, the 
progenitor of a carbon–oxygen white dwarf will form in the core to be revealed when 
the Sun’s surface layers are ejected as a planetary nebula. 
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FIGURE 6
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Electron Degeneracy Pressure
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P =
(

π
) /

!

me

[(

Z

A

)

ρ

mH

] /

.

Z/A = .

. × −

Electron degeneracy pressure is responsible for maintaining hydrostatic
equilibrium in a white dwarf.

P = Kρ /

n = .

4 THE CHANDRASEKHAR LIMIT

there is a maximum mass for white dwarfs

The Mass–Volume Relation

R M

πGρ R =
(

π
) /

!

me

[(

Z

A

)

ρ

mH

] /

.

ρ = M / πR

R ≈ ( π) / !

GmeM
/

[(

Z

A

)

mH

] /

.

⊙ R ≈ . ×
M R =

M V = .
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smaller mass–volume relation

ρ ∝ M

−

v ≈ !

me

[(

Z

A

)

ρ

mH

] /

= . × − ,

smaller

Dynamical Instability

ρ < − P =
Kρ / K  γ = /

P =
(

π
) /

!c

[(

Z

A

)

ρ

mH

] /

γ = / dynamical instability

−

γ /
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nonrelativistic limit. As we discussed in Section 14.3, this means that the white dwarf 
is dynamically stable. If it suffers a small perturbation, it will return to its equilibrium 
structure instead of collapsing. However, in the extreme relativistic limit, the electron 
speed v = c must be used instead of Eq. (  10) to find the electron degeneracy pressure. 
The result is



P = Kρ / n =

Estimating the Chandrasekhar Limit

ρ = M / πR

Z/A = .

M ∼
√
π
(

!c

G

) / [(
Z

A

)

mH

]

= . ⊙

! c G

Z/A =
. M = . ⊙ Chandrasekhar limit

M M

FIGURE 7 M ≤ M T =

⊙
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T >

v < c

5 THE COOLING OF WHITE DWARFS

Energy Transport

The Degenerate Remnants of Stars

that robs them of energy. As a result, photons are normally more efficient carriers of 
energy to the stellar surface. In a white dwarf, however, the degenerate electrons can 
travel long distances before losing energy in a collision with a nucleus, since the vast 
majority of the lower-energy electron states are already occupied. Thus, in a white 
dwarf, energy is carried by electron conduction rather than by radiation. This is so 
efficient that the interior of a white dwarf is nearly isothermal, with the temperature 
dropping significantly only in the nondegenerate surface layers. Figure 8 shows that a 
white dwarf consists of a nearly constant-temperature interior surrounded by a thin non-
degenerate envelope that transfers heat less efficiently, causing the energy to leak out
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L = D πac GmH

κ k
µM T /

c

= CT /
c ,

C ≡ D πac GmH

κ k
µM

= . × −
(

M

M⊙

)

µ

Z( + X)
.

T
/

c interior
effective

Example 5.
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The Cooling Timescale
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FIGURE 9 ⊙
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Crystallization

L /L⊙ ≈ −

kT
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Comparing Theory with Observations

P

dP/dt ∝ T −

P/|dP/dt | = . ×

L /L⊙ < − .

. ± .

N
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L L  

FIGURE 10
Ap. J. Lett. 315
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6 NEUTRON STARS

neutron stars
supernova

Neutron Degeneracy

M

. ⊙/mn ≈
A ≈

neutron degeneracy pressure

R ≈ ( π) / !

GM
/

(

mH

) /

M = . ⊙

. ⊙

The Density of a Neutron Star

. ×
− ρ ≈ . × −

thin disk
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. ⊙
g = . × −

. × −

Example 6.1.

v =
√

GM /R = . × − = . c.

m

GM m/R

mc
= . .

The Equation of State

ρ ≈ −

p+ + e− → n + νe.

mnc − mpc − mec = .

T =
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gravity, called the general theory of relativity. Nevertheless, we will use both relativ-
istic formulas and the more familiar Newtonian physics to reach qualitatively correct 
conclusions about neutron stars.



Example 6.2.

p+ + e− → n + νe.
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× −

outside
neutron drip

× −

ρ

superconducting

β

ρ > ρ

pions π

n → p+ + π−

ρ > ρ

Neutron Star Models

isolated
π−
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combination of two fermions (the neutrons) is a boson and so is not subject to the 
restrictions of the Pauli exclusion principle. Because degenerate bosons can all crowd 
into the lowest energy state, the fluid of paired neutrons can lose no energy. It is a 
superfluid that flows without resistance. Any whirlpools or vortices in the fluid will 
continue to spin forever without stopping.



TABLE 1

( − )

≈ ×

≈ ×

≈ ×

≈ ×

≈ ×

≈ ×

⊙

ρ ≈ × −

ρ ≈ ρ

The Degenerate Remnants of Stars

stellar structure equations. The first quantitative model of a neutron star was calculated 
by J. Robert Oppenheimer (1904–1967) and G. M. Volkoff (1914–2000) at Berkeley in 
1939. Figure 11 shows the result of a recent calculation of a 1.4 M   neutron star model. 
Although the details are sensitive to the equation of state used, this model displays 
some typical features.
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The Chandrasekhar Limit for Neutron Stars
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Rapid Rotation and Conservation of Angular Momentum
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“Freezing In” Magnetic Field Lines

, ≡
∫

S
B · dA,

B

Bi πRi = Bf πRf .

B ≈ ×
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B ≈ B

(
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)

= . × .

B
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dA

FIGURE 12 d, = B · dA dA
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implies that the magnetic flux through the surface of a white dwarf will be conserved 
as it collapses to form a neutron star. The flux of a magnetic field through a surface S 
is defined as the surface integral



Neutron Star Temperatures

T ∼
URCA process

n → p+ + e− + νe

p+ + e− → n + νe.

⊙
T =

L = πR σTe = . × .

λ = ( )( )
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7 PULSARS
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FIGURE 14

A. J. 129
http://www.atnf.csiro.au/research/pulsar/psrcat
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General Characteristics
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Ṗ ≡ dP/dt Ṗ ≈ −
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characteristic lifetime Ṗ

P/Ṗ ≈ Ṗ

Ṗ = . × −

P/Ṗ = . ×

Possible Pulsar Models

Binary stars

⊙
. ×

. ×

decreases increase

/
√
ρ

−
− −
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Pulsating stars. White dwarfs oscillate with periods between 100 and 1000 s. 
The periods of these nonradial g-modes are much longer than the observed pul-
sar periods. Of course, it might be imagined that a radial oscillation is involved 
with the pulsars. However, the period for the radial fundamental mode is a few 
seconds, too long to explain the faster pulses.



Rotating stars

ω

R

M

ω R = G
M

R
,

P = π/ω

P = π

√
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Pulsars as Rapidly Rotating Neutron Stars
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FIGURE 15

FIGURE 6 Aust. J. Phys.
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Evidence for a Core-Collapse Supernova Origin

−

Synchrotron and Curvature Radiation

a.d.

after

synchrotron radiation
q

Fm = q(v × B),

v

curvature radiation

nonthermal
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FIGURE 17

The Energy Source for the Crab’s Synchrotron Radiation
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Example 7.1. R =
M = . ⊙

I = MR = . × .

P = . Ṗ = . × − dK/dt ≈ . ×

−

FIGURE 18
Ap. J. 448
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The Structure of the Pulses
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subpulses integrated pulse profile

drifting subpulses
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FIGURE 19
Pulsars
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FIGURE 20
Pulsar Astronomy

The Basic Pulsar Model

θ
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FIGURE 21
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FIGURE 22
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FIGURE 23
Ap. J. 258

FIGURE 24
Ap. J. 195
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FIGURE 25
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Toward a Model of Pulsar Emission
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E = mc

γ→ e− + e+

Magnetars and Soft Gamma Repeaters

The Degenerate Remnants of Stars

gamma-ray photon has so much energy that it can spontaneously convert this energy 
into an electron–positron pair via Einstein’s relation . (This process, described 
by  , is just the inverse of the annihilation process The electrons and posi-
trons are accelerated and in turn emit their own gamma rays, which create more elec-
tron–positron pairs, and so on. A cascade of pair production is thus initiated near the 
magnetic poles of the neutron star. Coherent beams of curvature radiation emitted by 
bunches of these particles may be responsible for the individual subpulses that contrib-
ute to the integrated pulse profile.

.
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PROBLEM SET

1 The most easily observed white dwarf in the sky is in the constellation of Eridanus (the River
Eridanus). Three stars make up the 40 Eridani system: 40 Eri A is a 4th-magnitude star similar
to the Sun; 40 Eri B is a 10th-magnitude white dwarf; and 40 Eri C is an 11th-magnitude red
M5 star. This problem deals only with the latter two stars, which are separated from 40 Eri A
by 400 AU.

(a) The period of the 40 Eri B and C system is 247.9 years. The system’s measured trigono-
metric parallax is 0.201′′ and the true angular extent of the semimajor axis of the reduced
mass is 6.89′′. The ratio of the distances of 40 Eri B and C from the center of mass is
aB/aC = 0.37. Find the mass of 40 Eri B and C in terms of the mass of the Sun.

(b) The absolute bolometric magnitude of 40 Eri B is 9.6. Determine its luminosity in terms
of the luminosity of the Sun.

(c) The effective temperature of 40 Eri B is 16,900 K. Calculate its radius, and compare your
answer to the radii of the Sun, Earth, and Sirius B.

(d) Calculate the average density of 40 Eri B, and compare your result with the average density
of Sirius B. Which is more dense, and why?

(e) Calculate the product of the mass and volume of both 40 Eri B and Sirius B. Is there a
departure from the mass–volume relation? What might be the cause?

2 The helium absorption lines seen in the spectra of DB white dwarfs are formed by excited He I
atoms with one electron in the lowest (n = 1) orbital and the other in an n = 2 orbital. White
dwarfs of spectral type DB are not observed with temperatures below about 11,000 K. Using
what you know about spectral line formation, give a qualitative explanation why the helium
lines would not be seen at lower temperatures. As a DB white dwarf cools below 12,000 K,
into what spectral type does it change?

3 Deduce a rough upper limit for X, the mass fraction of hydrogen, in the interior of a white
dwarf. Hint: Use the mass and average density for Sirius B in the equations for the nuclear
energy generation rate, and take T = 107 K for the central temperature. Set ψpp and fpp = 1
in qthe below e uation for the pp chain, and XCNO = 1 in for the
CNO cycle.

ϵCNO ≃ ϵ′
0,CNOρXXCNOT 19.9

6 ,

ϵpp ≃ ϵ′
0,ppρX2fppψppCppT 4

6 ,

4 Estimate the ideal gas pressure and the radiation pressure at the center of Sirius B, using 3 ×
107 K for the central temperature. Compare these values with the estimated central pressure,
Eq. (1).

qthe below e uation

Pc ≈ 2
3
πGρ2R2

wd ≈ 3.8 × 1022 N m−2,

5 By equating the pressure of an ideal gas of electrons to the pressure of a degenerate electron
gas, determine a condition for the electrons to be degenerate, and compare it with the condition
of Eq. (6). Use the exact expression (Eq. 12) for the electron degeneracy pressure.

The Degenerate Remnants of Stars
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6 In the extreme relativistic limit, the electron speed v = c must be used instead of Eq. ( 10)
to find the electron degeneracy pressure. Use this to repeat the derivation of Eq. ( 11) and
find
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7 (a) At what speed do relativistic effects become important at a level of 10%? In other words,
for what value of v does the Lorentz factor, γ , become equal to 1.1?

(b) Estimate the density of the white dwarf for which the speed of a degenerate electron is
equal to the value found in part (a).

(c) Use the mass–volume relation to find the approximate mass of a white dwarf with this
average density. This is roughly the mass where white dwarfs depart from the mass–volume
relation.

8 Crystallization will occur in a cooling white dwarf when the electrostatic potential energy
between neighboring nuclei, Z2e2/4πϵ0r , dominates the characteristic thermal energy kT .

The ratio of the two is defined to be 4,

4 = Z2e2

4πϵ0rkT
.

In this expression, the distance r between neighboring nuclei is customarily (and somewhat
awkwardly) defined to be the radius of a sphere whose volume is equal to the volume per
nucleus. Specifically, since the average volume per nucleus is AmH /ρ, r is found from

4
3
πr3 = AmH

ρ
.

(a) Calculate the value of the average separation r for a 0.6 M⊙ pure carbon white dwarf of
radius 0.012 R⊙.

(b) Much effort has been spent on precise numerical calculations of 4 to obtain increasingly
realistic cooling curves. The results indicate a value of about 4 = 160 for the onset of
crystallization. Estimate the interior temperature, Tc, at which this occurs.

(c) Estimate the luminosity of a pure carbon white dwarf with this interior temperature.Assume
compositionlike that of Example 5.1of for the nonde
generate envelope.

(d) For roughly how many years could the white dwarf sustain the luminosity found in part (c),
using just the latent heat of kT per nucleus released upon crystallization? Compare this
amount of time (when the white dwarf cools more slowly) with Fig. 9.
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FIGURE 9 Theoretical cooling curves for 0.6 M⊙ white-dwarf models. [The solid line is from
Eq. (23), and the dashed line is from Winget et al., Ap. J. Lett., 315, L77, 1987.]

9 In the liquid-drop model of an atomic nucleus, a nucleus with mass number A has a radius of
r0A

1/3, where r0 = 1.2 × 10−15 m. Find the density of this nuclear model.

10 If our Moon were as dense as a neutron star, what would its diameter be?

11 (a) Consider two point masses, each having mass m, that are separated vertically by a distance
of 1 cm just above the surface of a neutron star of radius R and mass M . Using Newton’s
law of gravity , find an expression for the ratio of the gravitational
force on the lower mass to that on the upper mass, and evaluate this expression for
R = 10 km, M = 1.4 M⊙, and m = 1 g.

F = G
Mm

r2
,

(b) An iron cube 1 cm on each side is held just above the surface of the neutron star described
in part (a). The density of iron is 7860 kg m−3. If iron experiences a stress (force per
cross-sectional area) of 4.2 × 107 N m−2, it will be permanently stretched; if the stress
reaches 1.5 × 108 N m−2, the iron will rupture. What will happen to the iron cube? (Hint:
Imagine concentrating half of the cube’s mass on each of its top and bottom surfaces.)
What would happen to an iron meteoroid falling toward the surface of a neutron star?

12 Estimate the neutron degeneracy pressure at the center of a 1.4 M⊙ neutron star (take the
central density to be 1.5 × 1018 kg m−3), and compare this with the estimated pressure at the
center of Sirius B.

13 (a) Assume that at a density just below neutron drip, all of the neutrons are in heavy neutron-
rich nuclei such as 118

36Kr. Estimate the pressure due to relativistic degenerate electrons.
(b) Assume (wrongly!) that at a density just above neutron drip, all of the neutrons are free

(and not in nuclei). Estimate the speed of the degenerate neutrons and the pressure they
would produce.

14 Suppose that the Sun were to collapse down to the size of a neutron star (10-km radius).
(a) Assuming that no mass is lost in the collapse, find the rotation period of the neutron star.
(b) Find the magnetic field strength of the neutron star.

Even though our Sun will not end its life as a neutron star, this shows that the conservation
of angular momentum and magnetic flux can easily produce pulsar-like rotation speeds and
magnetic fields.

The Degenerate Remnants of Stars: Problem Set
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15 (a) Use with γ = 5/3 to calculate the fundamental radial pulsation period
one-zone model of a pulsating white dwarf (use the values for Sirius B) and a 1.4 M⊙

neutron star. Compare these to the observed range of pulsar periods.

the eq ation  below  

Π = 2π
√

4
3πGρ0(3γ − 4)

,

(b) Use Eq. ( 29) to calculate the minimum rotation period for the same stars, and compare
them to the range of pulsar periods.

Pmin = 2π

√

R3

GM
.

(c) Give an explanation for the similarity of your results.

16 (a) Determine the minimum rotation period for a 1.4 M⊙ neutron star (the fastest it can spin
without flying apart). For convenience, assume that the star remains spherical with a radius
of 10 km.

(b) Newton studied the equatorial bulge of a homogeneous fluid body of mass M that is slowly
rotating with angular velocity5. He proved that the difference between its equatorial radius
(E) and its polar radius (P ) is related to its average radius (R) by

E − P

R
= 552R3

4GM
.

Use this to estimate the equatorial and polar radii for a 1.4 M⊙ neutron star rotating with
twice the minimum rotation period you found in part (a).

17 If you measured the period of PRS 1937+214 and obtained the value on page 588, about how
long would you have to wait before the last digit changed from a “5” to a “6”?

18 Consider a pulsar that has a period P0 and period derivative Ṗ0 at t = 0. Assume that the
product P Ṗ remains constant for the pulsar (cf. Eq. 32).

−32π5B2R6 sin2 θ

3µ0c3P 4
= −4π2I Ṗ

P 3
.

(a) Integrate to obtain an expression for the pulsar’s period P at time t .
(b) Imagine that you have constructed a clock that would keep time by counting the radio

pulses received from this pulsar. Suppose you also have a perfect clock (Ṗ = 0) that is
initially synchronized with the pulsar clock when they both read zero. Show that when the
perfect clock displays the characteristic lifetime P0/Ṗ0, the time displayed by the pulsar
clock is (

√
3 − 1)P0/Ṗ0.

19 During a glitch, the period of the Crab pulsar decreased by |&P | ≈ 10−8P . If the increased
rotation was due to an overall contraction of the neutron star, find the change in the star’s
radius. Assume that the pulsar is a rotating sphere of uniform density with an initial radius of
10 km.

20 The Geminga pulsar has a period of P = 0.237 s and a period derivative of Ṗ = 1.1 × 10−14.
Assuming that θ = 90◦, estimate the magnetic field strength at the pulsar’s poles.

21 (a) Find the radii of the light cylinders for the Crab pulsar and for the slowest pulsar, PSR 1841-
0456. Compare these values to the radius of a 1.4 M⊙ neutron star.

(b) The strength of a magnetic dipole is proportional to 1/r3. Determine the ratio of the
magnetic field strengths at the light cylinder for the Crab pulsar and for PSR 1841-0456.

22 (a) Integrate Eq. ( 32) to obtain an expression for a pulsar’s period P at time t if its initial
period was P0 at time t = 0.

−32π5B2R6 sin2 θ

3µ0c3P 4
= −4π2I Ṗ

P 3
.
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(b) Assuming that the pulsar has had time to slow down enough that P0 ≪ P , show that the
age t of the pulsar is given approximately by

t = P

2Ṗ
,

where Ṗ is the period derivative at time t .
(c) Evaluate this age for the case of the Crab pulsar, using the values found in Example 7.1

Compare your answer with the known age.

23 One way of qualitatively understanding the flow of charged particles into a pulsar’s magneto-
sphere is to imagine a charged particle of mass m and charge e (the fundamental unit of charge)
at the equator of the neutron star. Assume for convenience that the star’s rotation carries the
charge perpendicular to the pulsar’s magnetic field. The moving charge experiences a magnetic
Lorentz force of Fm = evB and a gravitational force, Fg . Show that the ratio of these forces is

Fm

Fg

= 2πeBR

Pmg
,

where R is the star’s radius and g is the acceleration due to gravity at the surface. Evaluate this
ratio for the case of a proton at the surface of the Crab pulsar, using a magnetic field strength
of 108 T.

24 Find the minimum photon energy required for the creation of an electron–positron pair via the
pair-production process γ → e− + e+. What is the wavelength of this photon? In what region
of the electromagnetic spectrum is this wavelength found?

25 A subpulse involves a verynarrowradio beam with a width between 1◦ and 3◦. Use
for the headlight effect to calculate the minimum speed of the electrons responsible

a 1◦ subpulse.

of
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sin θ = vy

v
=
√

1 − u2/c2 = γ−1,
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General Relativity
and Black Holes

1 The General Theory of Relativity
2 Intervals and Geodesics
3 Black Holes

1 THE GENERAL THEORY OF RELATIVITY

Gravity, the weakest of the four forces of nature, plays a fundamental role in sculpting the
universe on the largest scale. Newton’s law of universal gravitation,

F = G
Mm

r2
, (1)

remained an unquestioned cornerstone of astronomers’ understanding of heavenly motions
until the beginning of the twentieth century. Its application had explained the motions of
the known planets and had accurately predicted the existence and position of the planet
Neptune in 1846. The sole blemish on Newtonian gravitation was the inexplicably large
rate of shift in the orientation of Mercury’s orbit.

The gravitational influences of the other planets cause the major axis of Mercury’s
elliptical orbit to slowly swing around the Sun in a counterclockwise direction relative to
the fixed stars; see Fig. 1. The angular position at which perihelion occurs shifts at a
rate of 574′′ per century.1 However, Newton’s law of gravity was unable to explain 43′′ per
century of this shift, an inconsistency that led some mid-nineteenth century physicists to
suggest that Eq. ( 1) should be modified from an exact inverse-square law. Others thought
that an unseen planet, nicknamed Vulcan, might occupy an orbit inside Mercury’s.

The Curvature of Spacetime

Between the years 1907 and 1915, Albert Einstein developed a new theory of gravity,
his general theory of relativity. In addition to resolving the mystery of Mercury’s orbit,
it predicted many new phenomena that were later confirmed by experiment. In this and
the next section we will describe just enough of the physical content of general relativity
to provide the background needed for future discussions of black holes and cosmology.

1The value of 1.5◦ per century encountered in some texts includes the very large effect of the precession of Earth’s
rotation axis on the celestial coordinate system.

From Chapter 1  of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 
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Sun

FIGURE 1 The perihelion shift of Mercury’s orbit. Both the eccentricity of the orbit and the
amount of shift in the location of perihelion in successive orbits have been exaggerated to better show
the effect.

Einstein’s view of the universe provides an exhilarating challenge to the imaginations of
all students of astrophysics. But, before embarking on our study of general relativity, it will
be helpful to take an advanced look at this new gravitational landscape.

The general theory of relativity is fundamentally a geometric description of how distances
(intervals) in spacetime are measured in the presence of mass. For the moment, the effects
on space and time will be considered separately, although you should always keep in mind
that relativity deals with a unified spacetime. Near an object, both space and time must be
described in a new way.

Distances between points in the space surrounding a massive object are altered in a
way that can be interpreted as space becoming curved through a fourth spatial dimension
perpendicular to all of the usual three spatial directions. The human mind balks at picturing
this situation, but an analogy is easily found. Imagine four people holding the corners of
a rubber sheet, stretching it tight and flat. This represents the flatness of empty space that
exists in the absence of mass. Also imagine that a polar coordinate system has been painted
on the sheet, with evenly spaced concentric circles spreading out from its center. Now
lay a heavy bowling ball (representing the Sun) at the center of the sheet, and watch the
indentation of the sheet as it curves down and stretches in response to the ball’s weight,
as pictured in Fig. 2. Closer to the ball, the sheet’s curvature increases and the distance
between points on the circles is stretched more. Just as the sheet curves in a third direction
perpendicular to its original flat two-dimensional plane, the space surrounding a massive
object may be thought of as curving in a fourth spatial dimension perpendicular to the usual
three of “flat space.”2 The fact that mass has an effect on the surrounding space is the first
essential element of general relativity. The curvature of space is just one aspect of the effect

2It is important to note that this fourth spatial dimension has nothing at all to do with the role played by time as a
fourth nonspatial coordinate in the theory of relativity.
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Bowling ball

Tennis ball

FIGURE 2 Rubber sheet analogy for curved space around the Sun. It is assumed that the rubber
sheet is much larger than the area of curvature, so that the edges of the sheet have no effect on the
curvature produced by the central mass.

Sun

A C B

FIGURE 3 A photon’s path around the Sun is shown by the solid line. The bend in the photon’s
trajectory is greatly exaggerated.

of mass on spacetime. In the language of unified spacetime, mass acts on spacetime, telling
it how to curve.

Now imagine rolling a tennis ball, representing a planet, across the sheet. As it passes
near the bowling ball, the tennis ball’s path is curved. If the ball were rolled in just the
right way under ideal conditions, it could even “orbit” the more massive bowling ball. In
a similar manner, a planet orbits the Sun as it responds to the curved spacetime around it.
Thus curved spacetime acts on mass, telling it how to move.

The passage of a ray of light near the Sun can be represented by rolling a ping-pong ball
very rapidly past the bowling ball. Although the analogy with a massless photon is strained,
it is reasonable to expect that as the photon moves through the curved space surrounding
the Sun, its path will be deflected from a straight line. The bend of the photon’s trajectory is
small because the photon’s speed carries it quickly through the curved space; see Fig. 3.
In general relativity, gravity is the result of objects moving through curved spacetime, and
everything that passes through, even massless particles such as photons, is affected.

General Relativity and Black Holes
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Actual path

A B
C

FIGURE 4 Comparison of two photon paths through curved space between points A and B.
The projection of the path ACB onto the plane is the straight line depicted in Fig. 3.

Figure 3 hints at another aspect of general relativity. Since nothing can move between
two points in space faster than light, light must always follow the quickest route between
any two points.3 In flat, empty space, this path is a straight line, but what is the quickest
route through curved space? Suppose we use a series of mirrors to force the light beam to
travel between points A and B by the apparent “shortcut” indicated by the dashed lines in
Figs. 3 and 4. Would the light taking the dashed path outrace the beam free to follow
its natural route through curved space? The answer is no—the curved beam would win the
race. This result seems to imply that the beam following the dashed line would slow down
along the way. However, this inference can’t be correct because, according to the postulates

general relativity, these effects contribute equally to delaying the light beam’s trip from A

to B along the dashed line. The curving light beam actually does travel the shorter path. If
two space travelers were to lay meter sticks end-to-end along the two paths, the dashed path
would require a greater number of meter sticks because it penetrates farther into curved
space, as shown in Fig. 4. In addition, the curvature of space involves a concomitant
slowing down of time, so clocks placed along the dashed path would actually run more
slowly. This is the final essential feature of general relativity: Time runs more slowly in
curved spacetime.

It is important to note that all of the foregoing ideas have been tested experimentally
many times, and in every case the results agree with general relativity. As soon as Einstein
completed his theory, he applied it to the problem of Mercury’s unexplained residual per-
ihelion shift of 43′′ per century. Einstein wrote that his heart raced when his calculations
exactly explained the discrepancy in terms of the planet’s passage through the curved space
near the Sun, saying that, “For a few days, I was beside myself with joyous excitement.”
Another triumph came in 1919 when the curving path of starlight passing near the Sun
was first measured, by Arthur Stanley Eddington, during a total solar eclipse. As shown

3Throughout this chapter, light is assumed to be traveling in a vacuum.
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of relativity, every observer, including one at point C, measures the same value for the 
speed of light. There are just two possible answers. The distance along the dashed line 
might actually be longer than the light beam’s natural path, and/or time might run more 
slowly along the dashed path; either would retard the beam’s passage. In fact, according to
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FIGURE 5 Bending of starlight measured during a solar eclipse.

in Fig. 5, the apparent positions of stars close to the Sun’s eclipsed edge were shifted
from their actual positions by a small angle. Einstein’s theory predicted that this angular
deflection would be 1.75′′, in good agreement with Eddington’s observations. General rel-
ativity has been tested continuously ever since. For instance, the superior conjunction of
Mars that occurred in 1976 led to a spectacular confirmation of Einstein’s theory. Radio
signals beamed to Earth from the Viking spacecraft on Mars’s surface were delayed as they
traveled deep into the curved space surrounding the Sun. The time delay agreed with the
predictions of general relativity to within 0.1%.

The Principle of Equivalence

It is now time to retrace our steps and discover how Einstein came to his revolutionary
understanding of gravity as geometry. One of the postulates of special relativity states that
the laws of physics are the same in all inertial reference frames. Accelerating frames of
reference are not inertial frames, because they introduce fictitious forces that depend on the
acceleration. For example, an apple at rest on the seat of a car will not remain at rest if the
car suddenly brakes to a halt. However, the acceleration produced by the force of gravity
has a unique aspect. This may be clearly seen by noting a fundamental difference between
Newton’s law of gravity and Coulomb’s law for the electrical force.

Consider two objects separated by a distance r , one of mass m and charge q, and the
other of mass M and charge Q. The magnitude of the acceleration (ag) of mass m due to
the gravitational force is found from

mag = G
mM

r2
, (2)
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while the magnitude of the acceleration (ae) due to the electrical force is found from

mae = qQ

4πϵ0r2
. (3)

The mass m on the left-hand sides is an inertial mass and measures the object’s resistance
to being accelerated (its inertia). On the right-hand sides, the masses m and M and charges
q and Q are numbers that couple the masses or charges to their respective forces and
determine the strength of these forces. The mystery is the appearance of m on both sides of
the gravitational formula.

Why should a quantity that measures an object’s inertia (which exists even in the complete
absence of gravity) be the same as the “gravitational charge” that determines the force of
gravity? The answer is that the notation in Eq. ( 2) is flawed, and the expression should
properly be written as

miag = G
mgMg

r2

or

ag = G
Mg

r2

mg

mi

(4)

to clearly distinguish between the inertial and gravitational mass of each object. Similarly,
for Eq. (3),

ae = 1
4πϵ0

qQ

r2

1
mi

.

In this case the only mass that enters the expression is the inertial mass.
It is an experimental fact, tested to a precision of 1 part in 1012, that mg/mi in Eq. ( 4)

is a constant. For convenience, this constant is chosen to be unity so the two types of mass
will be numerically equal; if the gravitational mass were chosen to be twice the inertial mass,
for example, the laws of physics would be unchanged except the gravitational constant G

would be assigned a new value only one-fourth as large. The proportionality of the inertial
and gravitational masses means that at a given location, all objects experience the same
gravitational acceleration. The constancy of mg/mi is sometimes referred to as the weak
equivalence principle.

This distinctive aspect of gravity, that every object falls with the same acceleration, has
been known since the time of Galileo. It presented Einstein with both a problem and an
opportunity to extend his theory of special relativity. He realized that if an entire laboratory
were in free-fall, with all of its contents falling together, there would then be no way to detect
its acceleration. In such a freely falling laboratory, it would be impossible to experimentally
determine whether the laboratory was floating in space, far from any massive object, or
falling freely in a gravitational field. Similarly, an observer watching an apple falling with
an acceleration g toward the floor of a laboratory would be unable to tell whether the
laboratory was on Earth or far out in space, accelerating at a rate g in the direction of the
ceiling, as illustrated in Fig. 6. This posed a serious problem for the theory of special
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FIGURE 6 Gravity is equivalent to an accelerating laboratory: (a) a laboratory on Earth, and
(b) a laboratory accelerating in space.

relativity, which requires that inertial reference frames have a constant velocity. Because
gravity is equivalent to an accelerating laboratory, an inertial reference frame cannot even
be defined in the presence of gravity. Einstein had to find a way to remove gravity from the
laboratory.

In 1907, Einstein had “the happiest thought of my life.”

I was sitting in a chair in the patent office at Bern when all of a sudden a thought
occurred to me: “If a person falls freely he will not feel his own weight.” I was
startled. This simple thought made a deep impression on me. It impelled me
toward a theory of gravitation.

The way to eliminate gravity in a laboratory is to surrender to it by entering into a state of
free-fall; see Fig. 7.4 However, there was an obstacle to applying this to special relativity
because its inertial reference frames are infinite collections of meter sticks and synchronized

realized that he would have to use local reference frames, just small enough that the ac-
celeration due to gravity would be essentially constant in both magnitude and direction
everywhere inside the reference frame (see Fig. 8). Gravity would then be abolished
inside a local, freely falling reference frame.

4Free-fall means that there are no nongravitational forces accelerating the laboratory. In his meditation on general
relativity, A Journey into Gravity and Spacetime (see Suggested Readings), John A. Wheeler prefers the term
free-float. Since gravity has been abolished, why should falling even be mentioned? You are also urged to browse
through the pages of Gravitation by Misner, Thorne, and Wheeler (1973) for additional insights into general
relativity.

General Relativity and Black Holes

clocks. It would be impossible to eliminate gravity everywhere in an infinite, freely 
falling reference frame, because different points would have to be falling at differ-
ent rates in different directions (toward the center of Earth, for example). Einstein
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FIGURE 7 Gravity abolished in a freely falling laboratory: (a) a laboratory in free-fall, and
(b) a laboratory floating in space.

 g ª constant

FIGURE 8 A local inertial reference frame, with g ≈ constant inside. The arrows denote the
gravitational acceleration vectors at those points around the mass.

In 1907 Einstein adopted this as the cornerstone of his theory of gravity, calling it the
principle of equivalence.

The Principle of Equivalence: All local, freely falling, nonrotating laborato-
ries are fully equivalent for the performance of all physical experiments.

The restriction to nonrotating labs is necessary to eliminate the fictitious forces associated
with rotation, such as the Coriolis and centrifugal forces. We will call these local, freely
falling, nonrotating laboratories local inertial reference frames.

Note that special relativity is incorporated into the principle of equivalence. For example,
measurements made from two local inertial frames in relative motion are related by the
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The Bending of Light

We now move on to two simple thought experiments involving the equivalence principle
that demonstrate the curvature of spacetime. For the first experiment, imagine a laboratory
suspended above the ground by a cable [see Fig. 9(a)]. Let a photon of light leave a
horizontal flashlight at the same instant the cable holding the lab is severed [Fig. 9(b)].
Gravity has been abolished from this freely falling lab, so it is now a local inertial reference
frame. According to the equivalence principle, an observer falling with the lab will measure
the light’s path across the room as a straight horizontal line, in agreement with all of the
laws of physics. But another observer on the ground sees a lab that is falling under the
influence of gravity. Because the photon maintains a constant height above the lab’s floor,
the ground observer must measure a photon that falls with the lab, following a curved
path. This displays the spacetime curvature represented by the rubber sheet analogy. The
curved path taken by the photon is the quickest route possible through the curved spacetime
surrounding Earth.

The angle of deflection, φ, of the photon is very slight, as the following bit of geometry
shows.Although the photon does not follow a circular path, we will use the best-fitting circle
of radius rc to the actual path measured by the ground observer. Referring to Fig. 10,
the center of the best-fitting circle is at point O, and the arc of the circle subtends an angle
φ (exaggerated in the figure) between the radii OA and OB. If the width of the lab is ℓ,
then the photon crosses the lab in time t = ℓ/c. (The difference between the length of the
arc and the width of the lab is negligible.) In this amount of time, the lab falls a distance

Photon Photon path
seen from
the ground!

!

t = 0 t = !/c

(a) (b)

FIGURE 9 The equivalence principle for a horizontally traveling photon. The photon (a) leaves
the left wall at t = 0, and (b) arrives at the right wall at t = ℓ/c.

General Relativity and Black Holes

Lorentz transformations using the instantaneous value of the relative velocity between 
the two frames. Thus general relativity is in fact an extension of the theory of special 
relativity.
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FIGURE 10 Geometry for the radius of curvature, rc, and angular deflection, φ.

d = 1
2gt2. Because triangles ABC and OBD are similar (each containing a right angle and

another angle φ/2),

BC/AC = BD/OD
(

1
2
gt2
)/

ℓ =
[

ℓ

2 cos(φ/2)

]/

OD.

In fact, φ is so small that we can set cos(φ/2) ≃ 1 and the distance OD ≃ rc. Then, using
t = ℓ/c and g = 9.8 m s−2 for the acceleration of gravity near the surface of Earth, we find

rc = c2

g
= 9.17 × 1015 m, (5)

for the radius of curvature of the photon’s path, which is nearly a light-year!
Of course, the angular deflection φ depends on the width ℓ of the lab. For example, if

ℓ = 10 m, then

φ = ℓ

rc

= 1.09 × 10−15 rad,

or only 2.25 × 10−10 arcsecond. The large radius of the photon’s path indicates that space-
time near Earth is only slightly curved. Nonetheless, the curvature is great enough to produce
the circular orbits of satellites, which move slowly through the curved spacetime (slowly,
that is, compared to the speed of light).
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Gravitational Redshift and Time Dilation

Our second thought experiment also begins with the laboratory suspended above the ground
by a cable. This time, monochromatic light of frequency ν0 leaves a vertical flashlight on
the floor at the same instant the cable holding the lab is severed. The freely falling lab
is again a local inertial frame where gravity has been abolished, and so the equivalence
principle requires that a frequency meter in the lab’s ceiling record the same frequency, ν0,
for the light that it receives. But an observer on the ground sees a lab that is falling under
the influence of gravity. As shown in Fig. 11, if the light has traveled upward a height h

toward the meter in time t = h/c, then the meter has gained a downward speed toward the
light of v = gt = gh/c since the cable was released. Accordingly, we would expect that
from the point of view of the ground observer, the meter should have measured a blueshifted
frequency greater than ν0. For the slow free-fall speeds involved here, this expected
increase in frequency is

&ν

ν0
= v

c
= gh

c2
.

But in fact, the meter recorded no change in frequency. Therefore there must be another
effect of the light’s upward journey through the curved spacetime around Earth that exactly
compensates for this blueshift. This is a gravitational redshift that tends to decrease the
frequency of the light as it travels upward a distance h, given by

&ν

ν0
= −v

c
= −gh

c2
. (6)

An outside observer, not in free-fall inside the lab, would measure only this gravitational

Photon path

h

Photon

Meter

Meter

t = 0 t = h/c

(a) (b)

FIGURE 11 Equivalence principle for a vertically traveling light. The photon (a) leaves the floor
at t = 0, and (b) arrives at the ceiling at t = h/c.
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redshift. If the light were traveling downward, a corresponding blueshift would be measured.
It is left as an exercise to show that this formula remains valid even if the light is traveling
at an angle to the vertical, as long as h is taken to be the vertical distance covered by the
light.

Example 1.1. In 1960, a test of the gravitational redshift formula was carried out at
Harvard University. A gamma ray was emitted by an unstable isotope of iron, 57

26Fe, at the
bottom of a tower 22.6 m tall, and received at the top of the tower. Using this value for h,
the expected decrease in frequency of the gamma ray due to the gravitational redshift is

&ν

ν0
= −gh

c2
= −2.46 × 10−15, (7)

in excellent agreement with the experimental result of&ν/ν0 = −(2.57 ± 0.26) × 10−15.
More precise experiments carried out since that time have obtained agreement to within
0.007%.

In actuality, the experiment was performed with both upward- and downward-traveling
gamma rays, providing tests of both the gravitational redshift and blueshift.

An approximate expression for the total gravitational redshift for a beam of light that
escapes out to infinity can be calculated by integrating Eq. ( 6) from an initial position
r0 to infinity, using g = GM/r2 (Newtonian gravity) and setting h equal to the differential
radial element, dr for a spherical mass, M , located at the origin. Some care must be taken
when carrying out the integration, because Eq. ( 7) was derived using a local inertial
reference frame. By integrating, we are really adding up the redshifts obtained for a chain
of different frames. The radial coordinate r can be used to measure distances for these
frames only if spacetime is nearly flat [that is, if the radius of curvature given by Eq. ( 5)
is very large compared with r0]. In this case, the “stretching” of distances seen previously
in the rubber sheet analogy is not too severe, and we can integrate

∫ ν∞

ν0

dν

ν
≃ −

∫ ∞

r0

GM

r2c2
dr,

where ν0 and ν∞ are the frequencies at r0 and infinity, respectively. The result is

ln
(

ν∞
ν0

)

≃ −GM

r0c2
,

which is valid when gravity is weak (r0/rc = GM/r0c
2 ≪ 1). This can be rewritten as

ν∞
ν0

≃ e−GM/r0c
2
. (8)

Because the exponent is ≪ 1, we use e−x ≃ 1 − x to get

ν∞
ν0

≃ 1 − GM

r0c2
. (9)

This approximation shows the first-order correction to the frequency of the photon.
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The exact result for the gravitational redshift, valid even for a strong gravitational field,
is

ν∞
ν0

=
(

1 − 2GM

r0c2

)1/2

. (10)

When gravity is weak and the exponent in Eq. ( 8) is ≪ 1, we use (1 − x)1/2 ≃ 1 − x/2
to recover Eq. (9).

The gravitational redshift can be incorporated into the redshift parameter giving

z = λ∞ − λ0

λ0
= ν0

ν∞
− 1

=
(

1 − 2GM

r0c2

)−1/2

− 1 (11)

≃ GM

r0c2
, (12)

where Eq. (12) is valid only for a weak gravitational field.
To understand the origin of the gravitational redshift, imagine a clock that is constructed

to tick once with each vibration of a monochromatic light wave. The time between ticks
is then equal to the period of the oscillation of the wave, &t = 1/ν. Then according to
Eq. (10), as seen from an infinite distance, the gravitational redshift implies that the
clock at r0 will be observed to run more slowly than an identical clock at r = ∞. If an
amount of time&t0 passes at position r0 outside a spherical mass, M , then the time&t∞ at
r = ∞ is

&t0

&t∞
= ν∞
ν0

=
(

1 − 2GM

r0c2

)1/2

. (13)

For a weak field,

&t0

&t∞
≃ 1 − GM

r0c2
. (14)

We must conclude that time passes more slowly as the surrounding spacetime becomes more
curved, an effect called gravitational time dilation. The gravitational redshift is therefore
a consequence of time running at a slower rate near a massive object.

In other words, suppose two perfect, identical clocks are initially standing side by side,
equally distant from a spherical mass. They are synchronized, and then one is slowly lowered
below the other and then raised back to its original level. All observers will agree that when
the clocks are again side by side, the clock that was lowered will be running behind the
other because time in its vicinity passed more slowly while it was deeper in the mass’s
gravitational field.

,
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Example 1.2. The white dwarf Sirius B has a radius of R = 5.5 × 106 m and a mass
of M = 2.1 × 1030 kg. The radius of curvature of the path of a horizontally traveling light
beam near the surface of Sirius B is given by Eq. (5),

rc = c2

g
= R2c2

GM
= 1.9 × 1010 m.

The fact that GM/Rc2 = R/rc ≪ 1 indicates that the curvature of spacetime is not severe.
Even at the surface of a white dwarf, gravity is considered relatively weak in terms of its
effect on the curvature of spacetime.

From Eq. ( 12), the gravitational redshift suffered by a photon emitted at the star’s
surface is

z ≃ GM

Rc2
= 2.8 × 10−4.

This is in excellent agreement with the measured gravitational redshift for Sirius B of
(3.0 ± 0.5) × 10−4.

To compare the rate at which time passes at the surface of Sirius B with the rate at a great
distance, suppose that exactly one hour is measured by a distant clock. The time recorded
by a clock at the surface of Sirius B would be less than one hour by an amount found using
Eq. (14):

&t∞ −&t0 = &t∞

(

1 − &t0

&t∞

)

≃ (3600 s)
(

GM

Rc2

)

= 1.0 s.

The clock at the surface of Sirius B runs more slowly by about one second per hour compared
to an identical clock far out in space.

The preceding experimental results (results obtained from tests of the equivalence prin-
ciple) confirm the curvature of spacetime. In Section 2, we will learn that a freely falling
particle takes the straightest possible path through curved spacetime.

2 INTERVALS AND GEODESICS

We now consider the united concepts of space and time as expressed in spacetime, with
four coordinates (x, y, z, t) specifying each event.5 Einstein’s crowning achievement was
the deduction of his field equations for calculating the geometry of spacetime produced by
a given distribution of mass and energy. His equations have the form

G = −8πG

c4
T . (15)

5Nothing special (in fact, nothing at all) need happen at an event. n event is simply a location in spacetime
identified by (x, y, z, t).

A

General Relativity and Black Holes



On the right is the stress–energy tensor, T , which evaluates the effect of a given distribution
of mass and energy on the curvature of spacetime, as described mathematically by the
Einstein tensor, G (for Gravity), on the left.6 The appearance of Newton’s gravitational
constant, G, and the speed of light symbolizes the extension of relativity theory to include
gravity. It is far beyond the scope of this book to delve further into this fascinating equation.
We will be content merely to describe the curvature of spacetime around a spherical object of
mass M and radius R, then demonstrate how an object moves through the curved spacetime
it encounters.

Worldlines and Light Cones

Figure 12 shows three examples of some paths traced out in spacetime. In these spacetime
diagrams, time is represented on the vertical axis, while space is depicted by the horizontal
x–y plane. The third spatial dimension, z, cannot be shown, so this figure deals only with
motion that occurs in a plane. The path followed by an object as it moves through spacetime
is called its worldline. Our task will be to calculate the worldline of a freely falling object
in response to the local curvature of spacetime. The spatial components of such a worldline
describe the trajectory of a baseball arcing toward an outfielder, a planet orbiting the Sun,
or a photon attempting to escape from a black hole.

The worldlines of photons in flat spacetime point the way to an understanding of the
geometry of spacetime. Suppose a flashbulb is set off at the origin at time t = 0; call this
event A. As shown in Fig. 13, the worldlines of photons traveling in the x–y plane
form a light cone that represents a widening series of horizontal circular slices through
the expanding spherical wavefront of light. The graph’s axes are scaled so that the straight
worldlines of light rays make 45◦ angles with the time axis.

x

t

y

x

t

y

x

y

(a) (b) (c)

t

FIGURE 12 Worldlines for (a) a man at rest, (b) a woman running with constant velocity, and
(c) a satellite orbiting Earth.

6Note that Erest = mc2 implies that both mass and energy contribute to the curvature of spacetime.
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FIGURE 13 Light cones generated by horizontally traveling photons leaving the origin at time
t = 0.

A massive object initially at event A must travel slower than light, so the angle between
its worldline and the time axis must be less than 45◦. Therefore the region inside the light
cone represents the possible future of event A. It consists of all of the events that can possibly
be reached by a traveler initially at event A—and therefore all of the events that the traveler
could ever influence in a causal way.

Extending the diverging photon worldlines back through the origin generates a lower
light cone. Within this lower light cone is the possible past of event A, the collection of all
events from which a traveler could have arrived just as the bulb flashed. In other words, the
possible past consists of the locations in space and time of every event that could possibly
have caused the flashbulb to go off.

Outside the future and past light cones is an unknowable elsewhere, that part of spacetime
of which a traveler at event A can have no knowledge and over which he or she can have
no influence. It may come as a surprise to realize that vast regions of spacetime are hidden
from us. You just can’t get there from here.

In principle, every event in spacetime has a pair of light cones extending from it. The
light cone divides spacetime into that event’s future, past, and elsewhere. For any event in
the past to have possibly influenced you, that event must lie within your past light cone,
just as any event that you can ever possibly affect must lie within your future light cone.
Your entire future worldline, your destiny, must therefore lie within your future light
cone at every instant. Light cones act as spacetime horizons, separating the knowable from
the unknowable.

Spacetime Intervals, Proper Time, and Proper Distance

Measuring the progress of an object as it moves along its worldline involves defining a
“distance” for spacetime. Consider the familiar case of purely spatial distances. If two
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points have Cartesian coordinates

(x1, y1, z1) and (x2, y2, z2),

then the distance &ℓ measured along the straight line between the two points in flat space
is defined by

(&ℓ)2 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2.

The analogous measure of “distance” in spacetime is called the spacetime interval (or
simply interval for short). Let two events A and B have spacetime coordinates

(xA, yA, zA, tA) and (xB, yB, zB, tB),

measured by an observer in an inertial reference frame, S. Then the interval &s measured
along the straight worldline between the two events in flat spacetime is defined by

(&s)2 = [c(tB − tA)]2 − (xB − xA)2 − (yB − yA)2 − (zB − zA)2. (16)

In words,

(interval)2 = (distance traveled by light in time |tB − tA|)2

− (distance between events A and B)2.

This definition of the interval is very useful because (&s)2 is invariant under a Lorentz
transformation. An observer in another inertial reference frame, S ′, will measure the same
value for the interval between events A and B; that is, &s = &s ′.

Note that (&s)2 may be positive, negative, or zero. The sign tells us whether light has
enough time to travel between the two events. If (&s)2 > 0, then the interval is timelike and
light has more than enough time to travel between events A and B. An inertial reference
frame S can therefore be chosen that moves along the straight worldline connecting events
A and B so that the two events happen at the same location in S (at the origin, for example);
see Fig. 14. Because the two events occur at the same place in S, the time measured
between the two events is &s/c. By definition, the time between two events that occur at
the same location is the proper time, &τ , where

&τ ≡ &s

c
(17)

The proper time is just the elapsed time recorded by a watch moving
along the worldline from A to B. An observer in any inertial reference frame can use the
interval to calculate the proper time between two events that are separated by a timelike
interval.
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FIGURE 14 An inertial reference frame S moving along the timelike worldline connecting
events A and B. Both events occur at the origin of S.

If (&s)2 = 0, then the interval is lightlike or null. In this case, light has exactly enough
time to travel between events A and B. Only light can make the journey from one event to
the other, and the proper time measured along a null interval is zero.

Finally, if (&s)2 < 0, then the interval is spacelike; light does not have enough time to
travel between events A and B. No observer could travel between the two events because
speeds greater than c would be required. The lack of absolute simultaneity in this situation,
however, means that there are inertial reference frames in which the two events occur in
the opposite temporal order, or even at the same time. By definition, the distance measured
between two events A and B in a reference frame for which they occur simultaneously
(tA = tB) is the proper distance separating them,7

&L =
√

−(&s)2. (18)

If a straight rod were connected between the locations of the two events, this would be the
rest length of the rod. An observer in any inertial reference frame can use this to calculate
the proper distance between two events that are separated by a spacelike interval.8

The interval is clearly related to the light cones discussed in the foregoing paragraphs.
Let event A be a flashbulb set off at the origin at time t = 0. The surfaces of the light cones,
where the photons are at any time t , are the locations of all events B that are connected to
A by a null interval. The events within the future and past light cones are connected to A by
a timelike interval, and the events that occur elsewhere are connected to A by a spacelike
interval.

The Metric for Flat Spacetime

Returning to three-dimensional space for a moment, it is obvious that a path connecting
two points in space doesn’t have to be straight. Two points can be connected by infinitely
many curved lines. To measure the distance along a curved path, P , from one point to the

7 hen the emphasis s on length rather than distance, this s called the proper length. The
terms may be used interchangeably, depending on the context.
8For both proper time and proper distance, the term proper has the connotation of “measured by an observer who
is right there, moving along with the clock or the rod.”

W i i
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other, we use a differential distance formula called a metric,

(dℓ)2 = (dx)2 + (dy)2 + (dz)2.

Then dℓ may be integrated along the path P (a line integral) to calculate the total distance
between the two points,

&ℓ =
∫ 2

1

√

(dℓ)2 =
∫ 2

1

√

(dx)2 + (dy)2 + (dz)2 (along P).

The distance between two points thus depends on the path connecting them. Of course, the
shortest distance between two points in flat space is measured along a straight line. In fact,
we can define the “straightest possible line” between two points as the path for which &ℓ
is a minimum.

Similarly, a worldline between two events in spacetime is not required to be straight; the
two events can be connected by infinitely many curved worldlines. To measure the interval
along a curved worldline, W , connecting two events in spacetime with no mass present, we
use the metric for flat spacetime,

(ds)2 = (c dt)2 − (dℓ)2 = (c dt)2 − (dx)2 − (dy)2 − (dz)2. (19)

Then ds is integrated to determine the total interval along the worldline W ,

&s =
∫ B

A

√

(ds)2 =
∫ B

A

√

(c dt)2 − (dx)2 − (dy)2 − (dz)2 (along W).

The interval is still related to the proper time measured along the worldline by Eq. (17).
The interval measured along any timelike worldline divided by the speed of light is always
the proper time measured by a watch moving along that worldline. The proper time is zero
along a null worldline and is undefined for a spacelike worldline.

In flat spacetime, the interval measured along a straight timelike worldline between two
events is a maximum. Any other worldline between the same two events will not be straight
and will have a smaller interval. For a massless particle such as a photon, all worldlines
have a null interval (so

∫
√

(ds)2 = 0).
The maximal character of the interval of a straight worldline in flat spacetime is easily

demonstrated. Figure 15 is a spacetime diagram showing two events, A and B, that occur
at times tA and tB . The events are observed from an inertial reference frame, S, that moves
from A to B, chosen such that the two events occur at the origin of S. The interval measured
along the straight worldline connecting A and B is

&s(A → B) =
∫ B

A

√

(ds)2

=
∫ B

A

√

(c dt)2 − (dx)2 − (dy)2 − (dz)2

=
∫ tB

tA

c dt = c(tB − tA).
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FIGURE 15 Worldlines connecting events A and B.

Now consider the interval measured along another worldline connecting A and B that
includes event C, which occurs at (x, y, z, t) = (xC, 0, 0, tC). In this case,

&s(A → C → B) =
∫ C

A

√

(ds)2 +
∫ B

C

√

(ds)2

=
∫ C

A

√

(c dt)2 − (dx)2 − (dy)2 − (dz)2

+
∫ B

C

√

(c dt)2 − (dx)2 − (dy)2 − (dz)2.

Using dx/dt = vAC for the constant velocity along worldline A → C in the first integral,
and dx/dt = vCB for the constant velocity along C → B in the second integral, leads to

&s(A → C → B) = (tC − tA)

√

c2 − v2
AC + (tB − tC)

√

c2 − v2
CB

< c(tC − tA) + c(tB − tC)

< &s(A → B).

Thus the straight worldline has the longer interval. Any worldline connecting event A and
B can be represented as a series of short segments, so we can conclude that the interval&s

is indeed a maximum for the straight worldline.

Curved Spacetime and the Schwarzschild Metric

In a spacetime that is curved by the presence of mass, the situation is slightly more compli-
cated. Even the “straightest possible worldline” will be curved. These straightest possible
worldlines are called geodesics. In flat spacetime a geodesic is a straight worldline.

In curved spacetime, a timelike geodesic between two events has either a maximum
or a minimum interval. In other words, the value of &s along a timelike geodesic is an
extremum, either a maximum or a minimum, when compared with the intervals of nearby
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worldlines between the same two events.9 In the situations we will encounter in this chapter,
the intervals of timelike geodesics will be maxima. A massless particle such as a photon
follows a null geodesic, with

∫
√

(ds)2 = 0.10 Einstein’s key realization was that the paths
followed by freely falling objects through spacetime are geodesics.

We are now prepared to deal with the effect of mass on the geometry of spacetime, based
on the three fundamental features of general relativity:

• Mass acts on spacetime, telling it how to curve.

• Spacetime in turn acts on mass, telling it how to move.

• Any freely falling particle (including a photon) follows the straightest possible world-
line, a geodesic, through spacetime. For a massive particle, the geodesic has a maxi-
mum or a minimum interval, while for light, the geodesic has a null interval.

These components of the theory will allow us to describe the curvature of spacetime
around a massive spherical object and to determine how another object will move in re-
sponse, whether it is a satellite orbiting Earth or a photon orbiting a black hole. For situations
with spherical symmetry, it will be more convenient to use the familiar spherical coordi-
nates (r, θ,φ) instead of Cartesian coordinates. The metric between two nearby points in
flat space is then

(dℓ)2 = (dr)2 + (r dθ)2 + (r sin θ dφ)2, (20)

and the corresponding expression for the flat spacetime metric is

(ds)2 = (c dt)2 − (dr)2 − (r dθ)2 − (r sin θ dφ)2. (21)

Of course, spacetime will not be flat in the vicinity of a massive object. The specific
situation to be investigated here is the motion of a particle through the curved spacetime
produced by a massive sphere. It could be a planet, a star, or a black hole. The first task is to
calculate how this massive object acts on spacetime, telling it how to curve. This requires
a description of the metric for this curved spacetime that will replace Eq. ( 21) for a flat
spacetime.

Before presenting this metric, we must emphasize that the variables r , θ , φ, and t that
appear in the expression for the metric are the coordinates used by an observer at rest a
great (≃ infinite) distance from the origin. In the absence of a central mass at the origin,
r would be the distance from the origin, and differences in r would measure the distance
between points on a radial line. The time t measured by clocks scattered throughout the
coordinate system would remain synchronized, advancing everywhere at the same rate.

9In fact, a calculation of the intervals of nearby worldlines would show that the interval of a timelike geodesic
corresponds to a maximum, a minimum, or an inflection point. You are referred to Section 13.4 of Misner, Thorne,
and Wheeler (1973) for an interesting discussion of geodesics as worldlines of extremal proper time.
10The extremal principle for intervals cannot be directly applied to find the straightest possible worldline for a
photon, since its interval is always null. However, the straightest possible worldline for a massless particle is the
same as that for a massive particle in the limit of a vanishingly small mass as its velocity v → c.
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Now we place a sphere of mass M and radius R (which will be called a “planet”) at the
origin of our coordinate system. Some care must be taken in laying out the radial coordinate.
The origin (which is inside the sphere) should not be used as a point of reference, and so we
will avoid defining r as “the distance from the origin.” Instead, imagine a series of nested
concentric spheres centered at the origin. The surface area of a sphere can be measured
without approaching the origin, so the coordinate r will be defined by the surface of that
sphere having an area 4πr2. With this careful approach, we will find that these coordinates
can be used with the metric for curved spacetime to measure distances in space and the
passage of time near this massive sphere.As an object moves through this curved spacetime,
its coordinate speed is just the rate at which its spatial coordinates change.

At a large distance (r ≃ ∞) from the planet, spacetime is essentially flat, and the gravita-
tional time dilation of a photon received from the planet is given by Eq. ( 13). From this,
it might be expected that

√

1 − 2GM/rc2 would play a role in the metric for the spacetime
surrounding the planet. Furthermore, recall from Section 1 that the stretching of space
and the slowing down of time contribute equally to delaying a light beam’s passage through
curved spacetime. This provides a hint that the same factor will be involved in the metric’s
radial term. The angular terms are the same as those in Eq. ( 21) for flat spacetime.

These effects are indeed present in the metric that describes the curved spacetime sur-
rounding a spherical mass, M . In 1916, just two months after Einstein published his general
theory of relativity, the German astronomer Karl Schwarzschild (1873–1916) solved Ein-
stein’s field equations to obtain what is now called the Schwarzschild metric:

(ds)2 =
(

c dt
√

1 − 2GM/rc2
)2

−
(

dr
√

1 − 2GM/rc2

)2

− (r dθ)2 − (r sin θ dφ)2. (22)

There is no other, easier way to obtain the Schwarzschild metric, so we must be content
with the foregoing heuristic description of its terms.

It is important to realize that the Schwarzschild metric is the spherically symmetric
vacuum solution of Einstein’s field equations. That is, it is valid only in the empty space
outside the object. The mathematical form of the metric is different in the object’s interior,
which is occupied by matter.

The Schwarzschild metric contains all of the effects considered in the last section. The
“curvature of space” resides in the radial term. The radial distance measured simultaneously
(dt = 0) between two nearby points on the same radial line (dθ = dφ = 0) is just the proper
distance, Eq. (18),

dL =
√

−(ds)2 = dr
√

1 − 2GM/rc2
. (23)

Thus the spatial distance dL between two points on the same radial line is greater than the
coordinate difference dr . This is precisely what is represented by the stretched grid lines
in the rubber sheet analogy of the previous section. The factor of 1

/
√

1 − 2GM/rc2 must
be included in any calculation of spatial distances. This is analogous to using a topographic
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FIGURE 16 Topographical map with elevation contour lines. The shortest distance between two
points on the map may not be a straight line. (Courtesy of USGS.)

map when planning a hike up a steep trail. The additional information provided by the map’s
elevation contour lines must be included in any calculation of the actual hiking distance,
which is always greater than the difference in map coordinates; see Fig. 16.

The Schwarzschild metric also incorporates time dilation and the gravitational redshift
(two aspects of the same effect). If a clock is at rest at the radial coordinate r , then the proper
time dτ it records (Eq. 17) is related to the time dt that elapses at an infinite distance by

dτ = ds

c
= dt

√

1 − 2GM

rc2
, (24)

which is, of course, just Eq. ( 13). Since dτ < dt , this shows that time passes more slowly
closer to the planet.

The Orbit of a Satellite

Having finally learned how a spherical object of any mass acts on spacetime, telling it how
to curve, we are now ready to calculate how curved spacetime acts on a particle, telling it
how to move. The rest of this section will be devoted to using general relativity to find the
motion of a satellite about the planet. All we need is the rule that it will follow the straightest
possible worldline, the worldline with an extremal interval.11

At this point, you may be fondly recalling the simplicity of Newtonian gravity.According
to Newton, the motion of a satellite in a circular orbit around Earth is found by simply
equating the centripetal and gravitational accelerations. That is,

v2

r
= GM

r2
,

11It is assumed that the satellite’s mass m is small enough that its effect on the surrounding spacetime is negligible.
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where v is the orbital speed. This immediately results in

v =
√

GM

r
.

Einstein and Newton must agree in the limiting case of weak gravity, so this result must
be concealed within the Schwarzschild metric for curved spacetime.12 It can be found by
using the Schwarzschild metric to find the straightest possible worldline for the satellite’s
circular orbit.

Powerful tools are available for calculating the worldline with the maximum interval
between two fixed events. If we employed such an approach, the orbit of the satellite
would emerge along with the laws of the conservation of energy, momentum, and angular
momentum because they are built into Einstein’s field equations. However, we will use
a simpler strategy and assume from the beginning that the satellite travels above Earth’s
equator (θ = 90◦) in a circular orbit with a specified angular speedω = v/r . Inserting these
choices, along with dr = 0, dθ = 0, and dφ = ω dt , into the Schwarzschild metric gives

(ds)2 =
[

(

c
√

1 − 2GM/rc2
)2

− r2ω2
]

dt2 =
(

c2 − 2GM

r
− r2ω2

)

dt2.

Integrating, the spacetime interval for one orbit is just

&s =
∫ 2π/ω

0

√

c2 − 2GM

r
− r2ω2 dt. (25)

When finding the value of r for which the interval is an extremum, we must be certain
that the endpoints of the satellite’s worldline remain fixed. That is, the satellite’s orbit must
always begin and end at the same position, r0, for all of the worldlines. To accommodate
orbits of different radii, consider the “orbit” shown in Fig. 17. We start the satellite at r0

and then move it (at nearly the speed of light) radially outward to the radius r of its actual
orbit. At the end of the orbit, the satellite returns just as rapidly to its starting point at r0.
Fortunately, the quick radial excursions at the beginning and the end of the orbit can be
made with negligible contribution to the integral for the spacetime interval. (At almost the
speed of light, the contribution is nearly null.) The net effect is a purely circular motion, so
Eq. ( 25) can be used to evaluate the interval.

In Eq. ( 25), the limits of integration are constant and the only variable is r . The value
of the radial coordinate r for the orbit actually followed by the satellite must be the one for
which &s is an extremum. This value may be found by taking the derivative of &s with
respect to r and setting it equal to zero:

d

dr
(&s) = d

dr

(

∫ 2π/ω

0

√

c2 − 2GM

r
− r2ω2 dt

)

= 0.

12To avoid succumbing to Newtonian nostalgia, you should remember that when Einstein and Newton disagree,
nature sides with Einstein.
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FIGURE 17 The “orbit” of a satellite, showing the radial motions used to keep the endpoints of
the satellite’s worldline fixed. The net effect is a circular orbit.

The derivative may be taken inside the integral to obtain

d

dr

√

c2 − 2GM

r
− r2ω2 = 0,

implying

2GM

r2
− 2rω2 = 0.

Thus, as promised,

v = rω =
√

GM

r
(26)

is the coordinate speed of the satellite for a circular orbit. [By coordinate speed, we simply
mean that v = r dφ/dt is speed of the satellite measured in the (r, θ,φ, t) coordinate system
used by a distant observer.] Figure 18 illustrates how this straightest possible worldline
through curved spacetime is projected onto the orbital plane, resulting in the satellite’s
circular orbit around Earth. In fact, this result is valid even for the very large spacetime
curvature encountered around a black hole.

3 BLACK HOLES

In 1783 John Michell (1724–1793), an English clergyman and amateur astronomer, con-
sidered the implications of Newton’s corpuscular theory of light. If light were indeed a
stream of particles, then it should be influenced by gravity. In particular, he conjectured
that the gravity of a star 500 times larger than the Sun, but with the Sun’s average density,
would be sufficiently strong that even light could not escape from it.

he escape velocity of Michell’s star would be the speed of light. NaivelyT
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FIGURE 18 The straightest possible worldline through curved spacetime and its projection onto
the orbital plane of the satellite.

setting the Newtonian formula for the escape velocity equal to c shows that R = 2GM/c2

is the radius of a star whose escape velocity equals the speed of light. In terms of the mass
of the Sun, R = 2.95(M/M⊙) km. Even if this Newtonian derivation were correct, the
resulting radius of such a star seemed unrealistically small, and so it held little interest for
astronomers until the middle of the twentieth century.

In 1939 American physicists J. Robert Oppenheimer and Hartland Snyder (1913–1962)

be more massive than about 3 M⊙.13 Oppenheimer and Snyder pursued the question of the
fate of a degenerate star that might exceed this limit and surrender completely to the force
of gravity.

The Schwarzschild Radius

For the simplest case of a nonrotating star, the answer lies in the Schwarzschild metric,
Eq. (22):

(ds)2 =
(

c dt
√

1 − 2GM/rc2
)2

−
(

dr
√

1 − 2GM/rc2

)2

− (r dθ)2 − (r sin θ dφ)2.

13 he upper mass limit of a neutron star is between 2.2 M⊙ and 2.9 M⊙ depending on the
amount of rotation. We will adopt an approximate value of 3 M⊙ for the purposes of this discussion.

T
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described the ultimate gravitational collapse of a massive star that had exhausted its 
sources of nuclear fusion. It was earlier that year that Oppenheimer and Volkoff had 
calculated the first models of neutron stars. We have seen that a neutron star cannot



When the radial coordinate of the star’s surface has collapsed to

RS = 2GM/c2, (27)

called the Schwarzschild radius, the square roots in the metric go to zero. The resulting
behavior of space and time at r = RS is remarkable. For example, according to Eq. ( 17),
the proper time measured by a clock at the Schwarzschild radius is dτ = 0. Time has slowed
to a complete stop, as measured from a vantage point that is at rest a great distance away.14

From this viewpoint, nothing ever happens at the Schwarzschild radius!
This behavior is quite curious; does it imply that even light is frozen in time? The speed

of light measured by an observer suspended above the collapsed star must always be c.
But from far away, we can determine that light is delayed as it moves through curved
spacetime. (Recall the time delay of radio signals from the Viking lander on Mars described
in Section 1.) The apparent speed of light, the rate at which the spatial coordinates of
a photon change, is called the coordinate speed of light. Starting with the Schwarzschild
metric with ds = 0 for light,

0 =
(

c dt
√

1 − 2GM/rc2
)2

−
(

dr
√

1 − 2GM/rc2

)2

− (r dθ)2 − (r sin θ dφ)2,

we can calculate the coordinate speed of a vertically traveling photon. Inserting dθ = dφ =
0 shows that, in general, the coordinate speed of light in the radial direction is

dr

dt
= c

(

1 − 2GM

rc2

)

= c

(

1 − RS

r

)

. (28)

When r ≫ RS , dr/dt ≃ c, as expected in flat spacetime. However, at r = RS , dr/dt = 0
(see Fig. 19). Light is indeed frozen in time at the Schwarzschild radius. The spherical
surface at r = RS acts as a barrier and prevents our receiving any information from within.
For this reason, a star that has collapsed down within the Schwarzschild radius is called a
black hole.15 It is enclosed by the event horizon, the spherical surface at r = RS . Note
that the event horizon is a mathematical surface and need not coincide with any physical
surface.

Although the interior of a black hole, inside the event horizon, is a region that is forever
hidden from us on the outside, its properties may still be calculated. A nonrotating black
hole has a particularly simple structure. At the center is the singularity, a point of zero
volume and infinite density where all of the black hole’s mass is located. Spacetime is
infinitely curved at the singularity.16 Cloaking the central singularity is the event horizon,

14You should recall that the spacetime coordinates (r, θ,φ, t) in the Schwarzschild metric were established for
use by an observer at rest at r ≃ ∞.
15The term black hole is the 1968 invention of the American theoretical physicist John A. Wheeler.
16The black hole’s singularity is a real physical entity. It is not a mathematical artifact, as is the mathematical sin-
gularity exhibited by the Schwarzschild metric at the event horizon (where 1/

√

1 − 2GM/rc2 → ∞). Choosing
another coordinate system would remove the divergence at the event horizon, so that divergence has no physical
significance.
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FIGURE 19 Coordinate speed of light, and coordinate speeds of a freely falling frame S seen
by an observer at rest at infinity and by an observer in the frame S. The radial coordinates are in terms
of RS for a 10 M⊙ black hole having a Schwarzschild radius of ≈ 30 km.

so the singularity can never be observed. In fact, there is a hypothesis dubbed the “Law of
Cosmic Censorship” that forbids a naked singularity from appearing unclothed (without an
associated event horizon).

A Trip into a Black Hole

An object as bizarre as a black hole deserves closer scrutiny. Imagine an attempt to investi-
gate the black hole by starting at a safe distance and reflecting a radio wave from an object
at the event horizon. How much time will it take for a radio photon (or any photon) to reach
the event horizon from a radial coordinate r ≫ RS and then return? Since the round trip is
symmetric, it is necessary only to find the time for either the journey in or out and then dou-
ble the answer. It is easiest to integrate the coordinate speed of light in the radial direction,
Eq. (28), between two arbitrary values of r1 and r2 to obtain the general answer,

&t =
∫ r2

r1

dr

dr/dt
=
∫ r2

r1

dr

c(1 − RS/r)
= r2 − r1

c
+ RS

c
ln
(

r2 − RS

r1 − RS

)

,

assuming that r1 < r2. Inserting r1 = RS for the photon’s original position, we find that
&t = ∞. Now, since the trip is symmetric, the same result applies if the photon started at
RS . According to the distant observer, the radio photon will never reach the event horizon.
Instead, according to gravitational time dilation, the photon’s coordinate velocity will slow
down until it finally stops at the event horizon in the infinite future. In fact, any object falling
toward the event horizon will suffer the same fate. Seen from the outside, even the surface
of the star that collapsed to form the event horizon would be frozen, and so a black hole is
in this sense a frozen star.

Abrave (and indestructible) astronomer decides to test this remarkable conclusion. Start-
ing from rest at a great distance, she volunteers to fall freely toward a 10 M⊙ black hole

General Relativity and Black Holes



(RS ≃ 30 km). We remain behind to watch her local inertial frame S as it falls with coordi-
nate speed dr/dt all the way to the event horizon. She gradually accelerates as she monitors
her watch and shines a monochromatic flashlight back in our direction once every second.
As her fall progresses, the light signals arrive farther and farther apart for several reasons:
Subsequent signals must travel a longer distance as she accelerates, and her proper time τ
is running more slowly than our coordinate time t due to her location (gravitational time
dilation) and her motion (special relativity time dilation). Furthermore, the coordinate speed
of light becomes slower as she approaches the black hole, so the signals travel back to us
more slowly. The frequency of the light waves we receive is also increasingly redshifted.
This is caused by both her acceleration away from us and the gravitational redshift. The
light becomes dimmer as well, as the rate at which her flashlight emits photons decreases
(seen from our vantage point) and the energy per photon (hc/λ) also declines. Then when
she is about 2RS from the event horizon, the time between her signals begins to increase
without limit as the strength of the signals decreases. The light is redshifted and dimmed
into invisibility as time dilation brings her coordinate speed to zero (see Figs. 19 and
20). She is frozen in time, held for eternity like a fly caught in amber. Our successors
could watch for millennia while stars were born, evolved, and died without receiving a
single photon from her.

How does all of this appear to the brave astronomer, freely falling toward the black
hole? Because gravity has been abolished in her local inertial frame, initially she does not
notice her approach to the black hole. She monitors her watch (which displays her proper
time, τ ), and she turns on her flashlight once per second. However, as she draws closer,
she begins to feel as though she is being stretched in the radial direction and compressed
in the perpendicular directions; see Fig. 21. The gravitational pull on her feet (nearer
the black hole) is stronger than on her head, and the variation in the direction of gravity
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FIGURE 20 Coordinate r(t) of a freely falling frame S according to an observer at rest at infinity,
and r(τ ) according to an observer in the frame S. The radial coordinates are in terms of RS for a
10 M⊙ black hole.
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FIGURE 21 Tidal forces near a black hole.

from side to side produces a compression that is even more severe. These differential tidal
forces increase in strength as she falls. In other words, the size of her local inertial frame
(where gravity has been abolished) becomes increasing smaller as the spatial variation in the
gravitational acceleration vector, g, increases. Were she not indestructible, our astronomer
would be torn apart by the tidal force while still several hundred kilometers from the black
hole.

In just two milliseconds (proper time), she falls the final few hundred kilometers to the
event horizon and crosses it. Her proper time continues normally, and she encounters no
frozen stellar surface since it has fallen through long ago.1 However, once inside the event
horizon, her fate is sealed. It is impossible for any particle to be at rest when r < RS , as
can be seen from the Schwarzschild metric (Eq. 22). Using dr = dθ = dφ = 0 for an
object at rest, the interval is given by

(ds)2 = (c dt)2
(

1 − RS

r

)

< 0

when r < RS . This is a spacelike interval, which is not permitted for particles. Therefore
it is impossible to remain at rest where r < RS . Within the event horizon of a nonrotating
black hole, all worldlines converge at the singularity. Even photons are pulled in toward the
center. This means that the astronomer never has an opportunity to glimpse the singularity
because no photons can reach her from there. She can, however, see the light that falls in
behind her from events in the outside universe, but she does not see the entire history of

1 The presence or absence of a frozen stellar surface at the event horizon makes no real difference; the Schwarz-
schild metric specifies the same spacetime curvature outside.
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the universe as it unfolds. Although the elapsed coordinate time in the outside world does
become infinite, the light from all of these events does not have time to reach the astronomer.
Instead, these events occur in her “elsewhere.” Just 6.6 × 10−5 s of proper time after passing
the event horizon, she is inexorably drawn to the singularity.1

Mass Ranges of Black Holes

Black holes appear to exist with a range of masses. Stellar-mass black holes, with masses in
the range of 3 to 15 M⊙ or so, may form directly or indirectly as a consequence of the core-

the degeneracy pressure to support it, again resulting in a black hole.
Intermediate-mass black holes (IMBHs) may exist that range in mass from roughly

100 M⊙ to in excess of 1000 M⊙ (or perhaps even greater than 104 M⊙). Evidence for
them exists in the detection of sources known as ultraluminous X-ray sources (ULXs)
that have been discovered by satellites such as Chandra and XMM-Newton. It is not entirely
clear how these objects might form, although the correlation of IMBHs with the cores of
globular clusters and low-mass galaxies suggests that they may develop in these dense
stellar environments either by the mergers of stars to form a supermassive star that then
core-collapses, or by the merger of stellar-mass black holes.

Supermassive black holes (SMBH) are known to exist at the centers of many (and
probably most) galaxies. These enormous black holes range in mass from 105 M⊙ to 109 M⊙
(our own Milky Way Galaxy has a central black hole of mass M = 3.7 ± 0.2 × 106 M⊙).
How these behemoths formed remains an open question. One popular suggestion is that
they formed from collisions between galaxies; another is that they formed as an extension
of the formation process of IMBHs. Whatever the process, SMBHs appear to be closely
linked with some bulk properties of galaxies, implying an important connection between
galaxy formation and the formation of SMBHs.

Black holes may have also been manufactured in the earliest instants of the universe.
Presumably, these primordial black holes would have been formed with a wide range of
masses, from 10−8 kg to 105 M⊙. The only criterion for a black hole is that its entire mass
must lie within the Schwarzschild radius, so the Schwarzschild metric is valid at the event
horizon.

Example 3.1. If Earth could somehow (miraculously) be compressed sufficiently to
become a black hole, its radius would only be RS = 2GM⊕/c2 = 0.009 m. Although a
primordial black hole could be this size, it is almost impossible to imagine packing Earth’s
entire mass into so small a ball.

18A thorough description of the final view of the falling astronomer may be found in Rothman et al. (1985).
You are reminded that the Schwarzschild metric is valid only outside matter. It does not describe the spacetime

inside Earth.
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collapse of a sufficiently massive supergiant star. The direct collapse of the core to 
a black hole may be responsible for the production of collapsar, whereas a delayed 
collapse of a rapidly rotating neutron star may result in a supranova. It is also pos-
sible that a neutron star in a close binary system may gravitationally strip enough 
mass from its companion that the neutron star’s self-gravity exceeds the ability of



Black Holes Have No Hair!

Whatever the formation processes of black holes, they are certain to be very complicated. For
example, the core-collapse of a star is almost certainly not symmetrical. Detailed calcula-
tions have demonstrated, however, that any irregularities are radiated away by gravitational

Another complication is the fact that all stars rotate, and therefore so will the resulting
black hole. Remarkably, however, any black hole can be completely described by just three
numbers: its mass, angular momentum, and electric charge.2 Black holes have no other
attributes or adornments, a condition commonly expressed by saying that “a black hole has
no hair.”2

There is a firm upper limit for a rotating black hole’s angular momentum given by

Lmax = GM2

c
. (29)

If the angular momentum of a rotating black hole were to exceed this limit, there would be
no event horizon and a naked singularity would appear, in violation of the Law of Cosmic
Censorship.

Example 3.2. The maximum angular momentum for a solar-mass black hole is

Lmax = GM2
⊙

c
= 8.81 × 1041 kg m2 s−1.

By comparison, the angular momentum of the Sun (assuming uniform rotation) is 1.63 ×
1041 kg m2 s−1, about 18% of Lmax. We should expect that many stars will have angular
momenta that are comparable to Lmax, and so vigorous (if not maximal) rotation ought to
be common for stellar-mass black holes.

Spacetime Frame Dragging

The structure of a maximally rotating black hole is shown in Fig. 22.2 The rotation
has distorted the central singularity from a point into a flat ring, and the event horizon has
assumed the shape of an ellipsoid. The figure also shows additional features caused by the
rotation. As a massive object spins, it induces a rotation in the surrounding spacetime, a
phenomenon known as frame dragging. To gain some insight into this effect, recall the
behavior of a pendulum swinging at the north pole of Earth. As Earth rotates, the plane
of the pendulum’s swing remains fixed with respect to the distant stars. The stars define

20If magnetic monopoles exist, the “magnetic charge” would also be required for a complete specification. How-
ever, both magnetic and electric charge can be safely ignored because stars should be very nearly neutral.
21The “no hair” theorem actually applies only to the universe outside the event horizon. Inside, the spacetime
geometry is complicated by the mass distribution of the collapsed star.
2 The Kerr metric for a rotating black hole was derived from Einstein’s field equations by a New Zealand mathe-
matician, Roy Kerr, in 1963.
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waves. As a result, once the surface of the collapsing star reaches the event horizon, the 
exterior spacetime horizon is spherically symmetric and described by the Schwarzschild 
metric.
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FIGURE 22 The structure of a maximally rotating black hole, with the ring singularity seen
edge-on. The location of the event horizon at the equator is r = 1

2 RS = GM/c2.

a nonrotating frame of reference for the universe, and it is relative to this frame that the
pendulum’s swing remains planar. However, the rotating spacetime close to a massive
spinning object produces a local deviation from the nonrotating frame that describes the
universe at large. Near a rotating black hole, frame dragging is so severe that there is
a nonspherical region outside the event horizon called the ergosphere where any particle
must move in the same direction that the black hole rotates. Spacetime within the ergosphere
is rotating so rapidly that a particle would have to travel faster than the speed of light to
remain at the same angular coordinate (e.g., at the same value of φ in the coordinate system
used by a distant observer). The outer boundary of the ergosphere is called the static limit,
so named because once beyond this boundary, a particle can remain at the same coordinate
as the effect of frame dragging diminishes.

Even Earth’s rotation produces very weak frame dragging. Detecting the effect of frame
dragging was the mission of the Stanford Gravity Probe B experiment. The polar-orbit
spacecraft was launched in April 2004 and ended data collection in October 2005 when the
cryogenic liquid helium was used up. The experiment employed four superconducting gyro-
scopes made of precisely shaped spheres of fused quartz 3.8 cm in diameter. The gyroscopes
were so nearly freely rotating that they formed an almost perfect spacetime reference frame.
Although the predicted precession rate of the gyroscopes was only 0.042′′ yr−1, the effect
of frame dragging is cumulative. It is anticipated that frame dragging will be measurable
by comparing the changes that occurred in the gyroscopes’ different initial orientations.2

At this point, you should be warned that the previous descriptions of a black hole’s
structure inside the event horizon, such as Fig. 22, are based on vacuum solutions to
Einstein’s field equations. These solutions were obtained by ignoring the effects of the mass
of the collapsing star, so the vacuum solutions do not describe the interior of a real black hole.
Furthermore, the present laws of physics, including general relativity, break down under

2 At the time the text was written, the year-long, painstaking process of data analysis was under way. Results of
the experiment are expected to be announced in late 2006 (for updates, visit the Stanford Gravity Probe B website
at http://einstein.stanford.edu/).
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the extreme conditions found very near the center. The details of the singularity cannot be
fully described until a theory of quantum gravity is found. The presence of a singularity
seems assured, however. In 1965 an English mathematician, Roger Penrose, proved that
every complete gravitational collapse must form a singularity.

Tunnels in Spacetime

The possibility of using a black hole as a tunnel connecting one location in spacetime with
another (perhaps in a different universe) has inspired both physicists and science fiction
writers. Most conjectures of spacetime tunnels are based on vacuum solutions to Einstein’s
field equations and as such don’t apply to the interiors of real black holes. Still, they have
become part of the popular culture, and we will consider them briefly here. Figure 23
depicts a spacetime tunnel called a Schwarzschild throat (also known as an Einstein–Rosen
bridge), which uses the Schwarzschild geometry of a nonrotating black hole to connect two
regions of spacetime. The width of the throat is a minimum at the event horizon, and the
“mouths” may be interpreted as opening onto two different locations in spacetime. It is
tempting to imagine this as a tunnel, and writers of speculative fiction have dreamed of
white holes pouring out mass or serving as passageways for starships. However, it appears
that any attempt to send a tiny amount of matter or energy (even a stray photon) through
the throat would cause it to collapse. For a real nonrotating black hole, all worldlines end
at the inescapable singularity, where spacetime is infinitely curved. There is simply no way
to bypass the singularity.

The story is somewhat different for a rotating black hole. Although spacetime is still
infinitely curved at the ring singularity, all worldlines need not converge there. In fact, it
is difficult for an infalling object to hit the singularity in a rotating black hole. Theorists
have calculated worldlines for vacuum solutions that miss the singularity and emerge in the
spacetime of another universe. But just as for nonrotating black holes, any attempt to pass

FIGURE 23 Depiction of a Schwarzschild throat connecting two different regions of spacetime.
Any attempted passage of matter or energy through the throat would cause it to collapse.
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the smallest amount of matter or energy along such a route would cause the passageway to
collapse, thereby pinching it off. In summary, it seems extremely unlikely that black holes
can provide a stable passageway for any matter or energy, even for idealized cases. For
more realistic situations, any voyager attempting a trip through a black hole would end up
being torn apart by the singularity.

Another possibility is that of a wormhole, a hypothetical tunnel between two points in
spacetime separated by an arbitrarily great distance.24 We will briefly consider nonrotating,
spherically symmetric wormholes. They are described by nonvacuum solutions to Einstein’s
field equation. In other words, a wormhole must be threaded by some sort of exotic material
whose tension prevents the collapse of the wormhole. There is no known mechanism that
would allow a wormhole to arise naturally; it would have to be constructed by an incredibly
advanced civilization. However, the theoretical possibilities alone are fascinating. These
solutions to Einstein’s field equations have no event horizon (permitting two-way trips
through the wormhole) and involve survivable tidal forces. Journey times from one end
through to the other can be less than one year (traveler’s proper time), although the ends of
the wormhole may be separated by interstellar or intergalactic distances.

The catch, of course, is the problematic existence of the exotic material needed to stabilize
the wormhole. The unusual nature of the exotic material becomes apparent if we consider
two light rays that converge on the wormhole and enter it, only to diverge when they
exit the other end. This implies that the exotic material must be capable of gravitationally
defocusing light, an “antigravity” effect involving the gravitational repulsion of the light by
the material through which the rays pass. Exotic material meeting this requirement would
have a negative energy density (ρc2 < 0), at least as experienced by the light rays. Although
a negative energy density arises in certain quantum situations, it may or may not be allowed
physically on macroscopic scales. We will leave wormholes as a fascinating possibility and
abandon the discussion at this point, recalling Einstein’s remark that “all our thinking is of
the nature of a free play with concepts.”25

Stellar-Mass Black Hole Candidates

You may feel as though much of this section was borrowed from the pages of a science fiction
novel. Extraordinary claims require extraordinary proof, and proof of the mere existence of
black holes has been difficult to obtain. The problem lies in detecting an object only a few
tens of kilometers across that emits no radiation directly. The best hope of astronomers has
been to find a black hole in a close binary system. If the black hole in such a system is able
to pull gas from the envelope of the normal companion star, the angular momentum of their
orbital motion would cause a disk of gas to form around the black hole (see Fig. 24).
As the gas spirals down toward the event horizon, it is compressed and heated to millions
of kelvins and emits X-rays. Only the gravity of a neutron star or a black hole can produce
X-rays in a close binary system, and in fact the compact object in most X-ray binaries is

24The term wormhole recalls the holes eaten in some ancient map books by worms, providing a symbolic shortcut
between the distant locations portrayed on the maps.
2 You are referred to Morris and Thorne (1988) and Thorne (1994) for more details and further speculations
concerning wormholes.
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FIGURE 24 Gas pulled from a companion star forms an X-ray emitting disk around a black
hole.

believed to be a neutron star. However, if an X-ray binary can be found in which the mass of
the compact object exceeds 3 M⊙, then a strong case can be made that the compact object
is a black hole.

The first black hole to be tentatively identified in this way is Cygnus X-1, near the bright
star η Cygni in the middle of the swan’s neck. Another promising candidate is LMC X-3,
an X-ray binary in the Large Magellanic Cloud. Yet another compelling case involves the
X-ray binary A0620−00, also known as V616 Mon.2 The orbital velocities along the line
of sight of both components of A0620−00 have been determined using Doppler-shifted
spectral lines. A simple application of Kepler’s laws shows that the mass of the compact
object must be at least 3.82 ± 0.24 M⊙, well above the 3 M⊙ upper limit for a neutron star.

a companion star of type K0 IV with a radial velocity amplitude of 211 ± 4 km s−1 and an
orbital period of 6.473 ± 0.001 d. The best estimate of the mass of the unseen companion
to the K0 IV star is 12 ± 2 M⊙. As more evidence accumulates, it seems that astronomers
have finally found the extraordinary proof required for the existence of a black hole.

Hawking Radiation

The black holes of classical general relativity last forever. A very general result derived
by Stephen Hawking states that the surface area of a black hole’s event horizon can never
decrease. If a black hole coalesces with any other object, the result is an even larger black

2 A0620−00 (V616 Mon) is on the border of the constellations Monoceros and Orion, about one-third of the way
along a line from Betelgeuse to Sirius.

6

6
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However, perhaps the strongest candidate is V404 Cygni. Originally determined to 
be a recurrent nova, V404 Cyg underwent an X-ray outburst in 1989 that was detect-
ed by the Ginga satellite. Examination with ground-based optical telescopes revealed



hole. In 1974, however, Hawking discovered a loophole in this law when he combined
quantum mechanics with the theory of black holes and found that black holes can slowly
evaporate. The key to this process is pair production, the formation of a particle–antiparticle
pair just outside the event horizon of a black hole. Ordinarily the particles quickly recombine
and disappear, but if one of the particles falls into the event horizon while its partner escapes,
as shown in Fig. 25, this disappearing act may be thwarted. The black hole’s gravitational
energy was used to produce the two particles, and so the escaping particle has carried away
some of the black hole’s mass. The net effect as seen by an observer at a great distance is
the emission of particles by the black hole, known as Hawking radiation, accompanied by
a reduction in the black hole’s mass.

The rate at which energy is carried away by particles in this manner is inversely pro-
portional to the square of the black hole’s mass, or 1/M2. For stellar-mass black holes, the
emitted particles are photons and the rate of emission is minuscule. As the black hole’s mass
declines, however, the rate of emission increases. The final stage of a black hole’s evapora-
tion proceeds extremely rapidly, releasing a burst of all types of elementary particles. This
tremendous explosion probably leaves behind only an empty region of flat spacetime.

The lifetime of a primordial black hole prior to its evaporation, tevap, is quite long,

tevap = 2560π2
(

2GM

c2

)2 (
M

h

)

(30)

≈ 2 × 1067
(

M

M⊙

)3

yr.

Since the age of the universe is 13.7 billion years, this process is of no consequence for
black holes formed by a collapsing star. However, a primordial black hole with a mass of

t

Event
horizon
worldline

Pair
production

x

y

FIGURE 25 Spacetime diagram showing particle–antiparticle pairs created near the event hori-
zon of a black hole.
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roughly 1.7 × 1011 kg would evaporate in about 13 billion years. Thus primordial black
holes with this mass should be in the final, explosive stage of evaporation right now and
could possibly be detected. The final burst of Hawking radiation is thought to release high-
energy (≈ 100 MeV) gamma rays at a rate of 1013 W, together with electrons, positrons,
and many other particles. The subsequent decay of these particles should produce additional
gamma rays that would be observable by Earth-orbiting satellites. To date, measurements
of the cosmic gamma-ray background at this energy have not detected anything that can be
identified with the demise of a nearby primordial black hole. Although there is as yet no
positive evidence that primordial black holes exist, this negative result is still important.
It implies that on average there cannot be more than 200 primordial black holes with this
mass in every cubic light-year of space.
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PROBLEM SET

From Chapter  of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
 by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.

1 In the rubber sheet analogy of Section 1 a keen
eye would notice that the depresses the sheet slightly, and so the bowling ball constantly tilts
slightly toward the tennis ball as they orbit each other. Qualitatively compare this with the
motion of two stars in a binary orbit.

2 Show that Eq. (6) for the gravitational redshift r emains valid even if the light travels upward
at an angle θ measured from the vertical as long as h is taken to be the vertical distance traveled
by the light pulse.

 

&ν

ν0
= −v

c
= −gh

c2
.

3 A photon near the surface of Earth travels a horizontal distance of 1 km. How far does the
photon “fall” in this time?

4 Leadville, Colorado, is at an altitude of 3.1 km above sea level. If a person there lives for 75
years (as measured by an observer at a great distance from Earth), how much longer would
gravitational time dilation have allowed that person to live if he or she had moved at birth from
Leadville to a city at sea level?

5 (a) Estimate the radius of curvature of a horizontally traveling photon at the surface of a
1.4 M⊙ neutron star, and compare the result with the 10-km radius of the star. Can general
relativity be neglected when studying neutron stars?

(b) If one hour passes at the surface of the neutron star, how much time passes at a great
distance? Compare the times obtained from the exact and approximate expressions,
Eqs. (13) and (14), respectively.

&t0

&t∞
= ν∞
ν0

=
(

1 − 2GM

r0c2

)1/2

.

&t0

&t∞
≃ 1 − GM

r0c2
.

6 Imagine a series of rectangular local inertial reference frames suspended by cables in a line
near the Sun’s surface, as shown in Fig. 26. The frames are carefully lined up so that the tops
and sides of neighboring frames are parallel, and the tops of the frames lie along the
photon travels unhindered through the frames. As the photon enters each frame, the frame is
released from rest and falls freely toward the center of the Sun.
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“

“ ”

(6)

(13)

(14)

z-axis. A

(a) Show that as it passes through the frame located at angle α (shown in the figure), the
angular deflection of the photon’s path is

dφ = g0 cos3 α

c2
dz,



(b) Integrate the result you found in part (a) from α = −π/2 to +π/2 and so find the total
angular deflection of the photon as it passes through the curved spacetime near the Sun.

(c) Your answer (which is also the answer obtained by Einstein in 1911 before he arrived at
his field equations) is only half the correct value of 1.75′′. Can you qualitatively account
for the missing factor of two?

7 Assume that you are at the origin of a laboratory reference system at time t = 0 when you start
your clock (event A). Determine whether the following events are within the future light cone
of event A, within the past light cone of event A, or elsewhere.
(a) A flashbulb goes off 7 m away at time t = 0.
(b) A flashbulb goes off 7 m away at time t = 2 s.
(c) A flashbulb goes off 70 km away at time t = 2 s.
(d) A flashbulb goes off 700,000 km away at time t = 2 s.
(e) A supernova explodes 180,000 ly away at time t = −5.7 × 1012 s.
(f) A supernova explodes 180,000 ly away at time t = 5.7 × 1012 s.
(g) A supernova explodes 180,000 ly away at time t = −5.6 × 1012 s.
(h) A supernova explodes 180,000 ly away at time t = 5.6 × 1012 s.
For items (e) and (g), could an observer in another reference frame moving relative to yours
measure that the supernova exploded after event A? For items (f) and (h), could an observer
in another frame measure that the supernova exploded before event A?

8 τ Ceti is the closest single star that is similar to the Sun. At time t = 0, Alice leaves Earth in
her starship and travels at a speed of 0.95c to τ Ceti, 11.7 ly away as measured by astronomers
on Earth. Her twin brother, Bob, remains at home, at x = 0.

(a) According to Bob, what is the interval betweenAlice’s leaving Earth and arriving at τ Ceti?

(b) According to Alice, what is the interval between her leaving Earth and arriving at τ Ceti?

(c) Upon arriving at τ Ceti, Alice immediately turns around and returns to Earth at a speed
of 0.95c. (Assume that the actual turnaround takes negligible time.) What was the proper
time for Alice during her round trip to τ Ceti?

(d) When she and Bob meet on her return to Earth, how much younger will Alice be than her
brother?
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FIGURE 26 Local inertial frames for measuring the deflection of light near the Sun.

where dz is the width of the reference frame and g0 is the Newtonian gravitational accel-
eration at the point of closest approach, O. The angular deflection is small, so assume that
the photon is initially traveling in the z-direction as it enters the frame. (Hint: The width
of the frame in the z-direction is dz, so the time for the photon to cross the frame can be
taken to be dz/c.)



(b) Both observers use Wien’s law, , to determine the blackbody’s
temperature. Show that

T∞ = T

√

1 − 2GM

Rc2
.

λmaxT = 0.002897755 m K.

(c) Both observers use the Stefan–Boltzmann law, , to determine the
spherical blackbody. Show that

R∞ = R
√

1 − 2GM/Rc2
.

L = 4πR2σT 4
e .

Thus, using the Stefan–Boltzmann law without including the effects of general relativity
will lead to an overestimate of the size of a compact blackbody.

10 In 1792 the French mathematician Simon-Pierre de Laplace (1749–1827) wrote that a hypo-
thetical star, “of the same density as Earth, and whose diameter would be two hundred and
fifty times larger than the Sun, would not, in consequence of its attraction, allow any of its rays
to arrive at us.” Use Newtonian mechanics to calculate the escape velocity of Laplace’s star.

11 Qualitatively describe the effects on the orbits of the planets if the Sun were suddenly to
become a black hole.

12 Consider four black holes with masses of 1012 kg, 10 M⊙, 105 M⊙, and 109 M⊙.

(a) Calculate the Schwarzschild radius for each.

(b) Calculate the average density, defined by ρ = M/( 4
3πR3

S), for each.

13 (a) Show that the proper distance from the event horizon to a radial coordinate r is given by

&L = r

√

1 − RS

r
+ RS

2
ln
(

1 + √
1 − RS/r

1 − √
1 − RS/r

)

.

This illustrates the danger of interpreting r as a distance instead of a coordinate. Hint:
Integrate Eq. ( 23).

dL =
√

−(ds)2 = dr
√

1 − 2GM/rc2
.

(b) Make a graph of &L as a function of r for values of r between r = RS and r = 10RS .

the below equation
radius of the

the below equation
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temperature. Show that

( 23)

9 Consider a spherical blackbody of constant temperature and mass M whose surface lies at radial
coordinate r = R. An observer located at the surface of the sphere and a distant observer both
measure the blackbody radiation given off by the sphere.

(a) If the observer at the surface of the sphere measures the luminosity of the blackbody to
be L, use the gravitational time dilation formula, Eq. ( 13), to show that the observer at
infinity measures

L∞ = L

(

1 − 2GM

Rc2

)

.

&t0

&t∞
= ν∞
ν0

=
(

1 − 2GM

r0c2

)1/2

. (13)



Find an expression for the coordinate speed of light in the φ-direction.
(b) Consider Eq. ( 26) in the limit that the particle’s mass goes to zero and its speed ap-

proaches that of light. Use your result for part (a) to show thatr = 1.5RS for the circular
orbit of a photon around a black hole.

(c) Find the orbital period (in coordinate time t) for this orbit around a 10 M⊙ black hole.
(d) If a flashlight were beamed in the φ-direction at r = 1.5RS, he

surface at r = 1.5RS is called the photon sphere.)

v = rω =
√

GM

r

17 To obtain a crude estimate for the maximum angular momentum of a rotating black hole,
imagine (obviously incorrectly!) that the black hole’s mass is distributed uniformly throughout
a solid sphere of radius RS (the Schwarzschild radius). From basic physics, the moment of
inertia of a uniform, rotating sphere is I = 2

5 MR2, and the angular momentum of the sphere is
L = Iω, where ω is the sphere’s angular velocity. From this classical approach, estimate the
maximum angular momentum of the solid sphere, and compare your answer with Eq. ( 29).
(Be sure to specify any additional assumptions you have made.) What is the percentage error
in your estimate compared to the exact result?

18 Use Eq. ( 29) to compare the maximum angular momentum of a 1.4 M⊙ black hole with
the angular momentum of the fastest known pulsar, which rotates with a period of 0.00139 s.
Assume that the pulsar is a 1.4 M⊙ uniform sphere of radius 10 km.

Lmax = GM2

c
.

19 An electron is a point-like particle of zero radius, so it is natural to wonder whether an electron
could be a black hole. However, a black hole of mass M cannot have an arbitrary amount of
angular momentum L and charge Q. These values must satisfy an inequality,

(

GM

c

)2

≥ G

(

Q

c

)2

+
(

L

M

)2

.

If this inequality were violated, the singularity would be found outside the event horizon, in
violation of the Law of Cosmic Censorship. Use !/2 for the electron’s angular momentum to
determine whether or not an electron is a black hole.
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16 (a)

Lmax = GM
2

c
. (29)

(a) Find the coordinate speed of a particle in the smallest stable orbit around a 10 M⊙ black
hole.

(b) Find the orbital period (in coordinate time t) for this smallest stable orbit around a 10 M⊙
black hole

(2 )6

 what would happen? (T

(29)

15 Equation ( 26) describes the coordinate speed of a massive particle orbiting a nonrotating
black hole. However, it can be shown that the orbit is not stable unless r ≥ 3RS ; any disturbance
will cause a particle in a smaller orbit to spiral down to the event horizon.

v = rω =
√

GM

r
( 23)

(c) Show that, for large values of r ,

&L ≃ r.

Thus, far from the black hole, the radial coordinate r can be treated as a distance.

14 Verify that the area of the event horizon of a black hole is 4πR2
S . (Hint: Remember that the

radial coordinate r is not the distance to the center. Use the Schwarzschild metric as your
starting point.)



22 By combining gravitation (G), thermodynamics (k), and quantum mechanics (!), Stephen
Hawking calculated the temperature, T , of a nonrotating black hole to be

kT = !c3

8πGM
= !c

4πRS

,

where RS is the Schwarzschild radius.

(a) Verify that the expression has the right units.

(b) It was mentioned in the text that if a primoridal black hole formed at the beginning of the
universe 13.7 Gyr ago with a mass of 1.7 × 1011 kg, it would be reaching the end of its life
now. Compute the temperature of a primordial black hole having a mass of 1.7 × 1011 kg.

(c) Approximately what portion of the electromagnetic spectrum would this blackbody tem-
perature correspond to?

(d) What would the radius of a sphere having the density of water be if it had a mass of
1.7 × 1011 kg?

(e) Compute the temperature of a 10 M⊙ black hole.

23 In this problem we will derive the expression for the lifetime of a nonrotating, evaporating
black hole (Eq. 30).

tevap = 2560π2
(

2GM

c2

)2 (
M

h

)

≈ 2 × 1067
(

M

M⊙

)3

yr.

(a) Consider a black hole to be a perfectly radiating blackbody of temperature T , given by
Eq. ( 34) in Problem 22. Assuming that the surface area of the black hole is given by
4πR2

S , where RS is the Schwarzschild radius, show that the luminosity of the black hole
due to Hawking radiation is

L = !c6

15360πG2M2
= !c2

3840πR2
S

.
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(30)

21 (a) Use dimensional arguments to combine the fundamental constants !, c, and G into an
expression that has units of mass. Evaluate your result, which is an estimate of the least
massive primordial black hole formed in the first instant after the Big Bang. What is the
mass in kilograms?

(b) What is the Schwarzschild radius for such a black hole?

(c) How long would it take light to travel this distance?

(d) What is the lifetime of this black hole before its evaporation?

kT = !c3

8πGM
= !c

4πRS

, (34)

(b) Evaluate this for Earth, assuming that it is a uniformly rotating sphere. Set the leading
constant equal to one, and express your answer in arcseconds per year. How much time
would it take for a pendulum at the north pole to rotate once relative to the distant stars
because of frame dragging?

(c) Repeat part (b) for the fastest known pulsar, expressing . in revolutions per second.

20 (a) The angular rotation rate, ., at which spacetime is dragged around a rotating mass must
be proportional to its angular momentum L. The expression for . must also contain the
constants G and c, together with the radial coordinate r . Show on purely dimensional
grounds that

. = constant × GL

r3c2
,

where the constant (which you need not determine) is of order unity.
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(b) Now use the value of the orbital radial velocity of the compact object to determine its
mass, assuming i = 90◦. What does this result say about the mass of the compact object?

(c) The X-rays are not eclipsed in this system, so the angle of inclination must be less than
approximately 85◦. Suppose that the angle of inclination were 45◦. What would the mass
of the compact object be then?

25 From the data in the text, make an estimate of the lower mass limit of the compact companion
in V404 Cyg by setting the orbital inclination i = 90◦. ake a rough determination of the mass
of the K0 IV companion. Why does your calculation result in a lower limit? What further
information would be required to make a more precise determination?

M

24 In the X-ray binary system A0620−00, the radial orbital velocities for the normal star and the
compact object are vs,r = 457 km s−1 and vc,r = 43 km s−1, respectively. The orbital period
is 0.3226 day.
(a) Calculate the mass function (the right-hand side o ),

m3
c

(ms + mc)2
sin3 i,

where ms is the mass of the normal star, mc is the mass of its compact companion, and
i is the angle of inclination of the orbit. What does this result say about the mass of the
compact object? (Note that the value of vc,r was not needed to obtain this result.)

f this equation

m3
2

(m1 + m2)
2 sin3 i = P

2πG
v3

1r . (7)

(b) The luminosity of the black hole must originate from a loss in the black hole’s internal
energy. Assuming that the energy of the black hole is given by E = Mc2 and that L =
dE/dt , show that the time required for the black hole to lose all of its mass to Hawking
radiation is given by Eq. (30).

tevap = 2560π2
(

2GM

c2

)2 (
M

h

)

(30)

≈ 2 × 1067
(

M

M⊙

)3

yr.
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1 GRAVITY IN A CLOSE BINARY STAR SYSTEM

another. They evolve essentially independently, living out their lives in isolation except for
the gentle grip of gravity that binds them together.

If the stars are very close, with a separation roughly equal to the diameter of the larger
star, then one or both stars may have their outer layers gravitationally deformed into a
teardrop shape. As a star rotates through the tidal bulge raised by its partner’s gravitational

Lagrangian Points and Equipotential Surfaces

To understand how gravity operates in a close binary star system, consider two stars in a
circular orbit in the x–y plane with angular velocity ω = v1/r1 = v2/r2. Here, v1 and r1

are the orbital speed of Star 1 and its distance from the center of mass of the system, and
similarly for Star 2. It is useful to choose a corotating coordinate system that follows the

1If one of the stars is a compact object such as a white dwarf or a neutron star, its spin may not be synchronized.

From Chapter 1  of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.

8 ,

At least half of all “stars” in the sky are actually multiple systems, consisting of two 
(or more) stars in orbit about their common center of mass. In most of these sys-
tems the stars are sufficiently far apart that they have a negligible impact on one

pull, it is forced to pulsate. Orbital and rotational energy is dissipated in this way until 
the systemreaches the state of minimum energy for its (constant) angular momentum, 
resulting in synchronous rotation and circular orbits. Thereafter the same side of each 
star always faces the other as the system rotates rigidly in space, and no further en-
ergy can be lost by tidally driven oscillations.1 The distorted star may even lose some 
of its photospheric gases to its companion. The spilling of gas from one star onto 
another can lead to some spectacular celestial fireworks, the subject of this chapter.



rotation of the two stars about their center of mass. If the center of mass is at the origin,
then the stars will be at rest in this rotating reference frame, with their mutual gravitational
attraction balanced by the outward “push” of a centrifugal force.2 The centrifugal force
vector on a mass m in this frame a distance r from the origin is then

Fc = mω2r r̂, (1)

in the outward radial direction.
It is usually easier to work with the gravitational potential energy, given by,

Ug = −G
Mm

r
,

instead of with the gravitational force.3 To do this in a rotating coordinate system, we must
include a fictitious “centrifugal potential energy” in the potential energy term through the
use of:

Uf − Ui = "Uc = −
∫ rf

ri

Fc · dr.

Here, Fc is the centrifugal force vector, ri and rf are the initial and final position vectors,
respectively, and dr is the infinitesimal change in the position vector. The change in
centrifugal potential energy is thus

"Uc = −
∫ rf

ri

mω2r dr = −1
2
mω2 (r2

f − r2
i

)

.

Realizing that only changes in potential energy are physically meaningful, we can arbitrarily
choose Uc = 0 at r = 0 to give the final result for the centrifugal potential energy,

Uc = −1
2
mω2r2. (2)

Figure 1 shows a corotating coordinate system in which two stars with masses M1

and M2 are separated by a distance a. The stars are located on the x-axis at distances r1 and
r2, respectively, from the center of mass, which is placed at the origin. Thus

r1 + r2 = a and M1r1 = M2r2. (3)

Including the centrifugal term, the effective potential energy for a small test mass m located
in the plane of the orbit (the x–y plane) is

U = −G

(

M1m

s1
+ M2m

s2

)

− 1
2
mω2r2.

2The centrifugal force is an inertial force (as opposed to a physical force) that must be included when describing
motion in a rotating coordinate system. There is another inertial force, called the Coriolis force, that will be
neglected in what follows.
3Most stars can be treated as point masses in what follows because the mass is concentrated at their centers,
allowing their teardrop shapes to be neglected.
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FIGURE 1 Corotating coordinates for a binary star system.

For convenience, the effective potential energy can be divided by m to obtain the effective
gravitational potential, #:

# = −G

(

M1

s1
+ M2

s2

)

− 1
2
ω2r2. (4)

This is just the effective potential energy per unit mass. From the law of cosines, the
distances s1 and s2 are given by

s2
1 = r2

1 + r2 + 2r1r cos θ (5)

s2
2 = r2

2 + r2 − 2r2r cos θ . (6)

The angular frequency of the orbit, ω, comes from Kepler’s third law for the orbital period,
P ,

ω2 =
(

2π
P

)2

= G(M1 + M2)

a3
. (7)

Equations ( 3) and ( 4– 7) can be used to evaluate the effective gravitational
potential# at every point in the orbital plane of a binary star system. For example, Fig. 2
shows the value of # along the x-axis. The significance of this graph becomes clear when
the x-component of the force on a small test mass m, initially at rest on the x-axis, is written
as

Fx = −dU

dx
= −m

d#

dx
(8)

The three “hilltops” labeled L1 ,L2, and L3 are Lagrangian points, where
there is no force on the test mass ( d#/dx = 0). At these three equilibrium points, the
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FIGURE 2 The effective gravitational potential # for two stars of mass M1 = 0.85 M⊙, M2 =
0.17 M⊙ on the x-axis. The stars are separated by a distance a = 5 × 108 m = 0.718 R⊙, with their
center of mass located at the origin. The x-axis is in units of a, and # is expressed in units of
G(M1 + M2)/a = 2.71 × 1011 J kg−1. (In fact, the figure is the same for any M2/M1 = 0.2.) The
dashed line is the value of # at the inner Lagrangian point. If the total energy per unit mass of a
particle exceeds this value of#, it can flow through the inner Lagrangian point between the two stars.

gravitational forces on m due to M1 and M2 are balanced by the centrifugal force.4 These
equilibrium points are unstable because they are local maxima of #; if the test mass is
displaced slightly, the minus sign in Eq. ( 8) indicates that it will accelerate “downhill,”
away from its equilibrium position. The inner Lagrangian point, L1, plays a central role in
close binary systems. Approximate expressions for the distances from L1 to M1 and M2,
denoted respectively by ℓ1 and ℓ2, are

ℓ1 = a

[

0.500 − 0.227 log10

(

M2

M1

)]

(9)

ℓ2 = a

[

0.500 + 0.227 log10

(

M2

M1

)]

. (10)

Points in space that share the same value of# form an equipotential surface. Figure 3
shows equipotential contours that outline the intersection of several equipotential surfaces
with the plane of the orbit. Very close to either of the masses M1 or M2, the equipotential
surfaces are nearly spherical and centered on each mass. Farther away, the combined gravi-
tational influence of M1 and M2 distorts the equipotential surfaces into teardrop shapes until

4From an inertial (nonrotating) frame of reference, this motion would be described by saying that gravitational
forces of M1 and M2 produce the inward centripetal acceleration of the test mass as it orbits the center of mass of
the system.
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FIGURE 3 Equipotentials for M1 = 0.85 M⊙, M2 = 0.17 M⊙, and a = 5 × 108 m = 0.718 R⊙.
The axes are in units of a, with the system’s center of mass (the “×”) at the origin. Starting at the top of
the figure and moving down toward the center of mass, the values of# in units of G(M1 + M2)/a =
2.71 × 1011 J kg−1 for the equipotential curves are # = −1.875, −1.768, −1.583, −1.583, −1.768
(the “dumbbell”), −1.875 (the Roche lobe), and −3 (the spheres). L4 and L5 are local maxima, with
# = −1.431.

they finally touch at the inner Lagrangian point. At even greater distances, the equipotential
surfaces assume a “dumbbell” shape surrounding both masses.5

These equipotential surfaces are level surfaces for binary stars. In a binary system, as
one of the stars evolves, it will expand to fill successively larger equipotential surfaces
(somewhat like inflating a balloon). To see this, consider that the effective gravity at each
point is always perpendicular to the equipotential surface there.6 Hydrostatic equilibrium
guarantees that the pressure is constant along a surface of constant#; there is no component
of gravity parallel to an equipotential surface, and so a pressure difference in that direction

5We will not be concerned with the other equipotential contours on Fig. 3 that pass through the Lagrangian
points L3, L4, and L5. However, the Trojan asteroids that accumulate at two locations along Jupiter’s orbit are
collections of interplanetary rubble found at Lagrangian points L4 and L5. (If M1 > 24.96M2, as for the Sun and
Jupiter, then the Coriolis force is strong enough to cause L4 and L5 to be stable equilibrium points.) Each of the
Lagrangian points L4 and L5 forms an equilateral triangle with masses M1 and M2 in Fig. 3, so the Trojan
asteroids are found at about 60◦ ahead of and behind Jupiter in its orbit, with a spread due to the finite width of
the potential well.
6The mathematical statement of this is F = −m∇#. This is analogous to an electric field vector being oriented
perpendicular to an electrical equipotential surface, pointing from higher to lower voltage.
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cannot be balanced and maintained. And because the pressure is due to the weight of the
overlying layers of the star, the density must also be the same along each equipotential
surface in order to produce a constant pressure there.

Classes of Binary Star Systems

The appearance of a binary star system depends on which equipotential surfaces are filled
by the stars. Binary stars with radii much less than their separation are nearly spherical

If one star expands enough to fill the “figure-eight” contour in Fig. 3, then its atmo-
spheric gases can escape through the inner Lagrangian point L1 to be drawn toward its
companion. The teardrop-shaped regions of space bounded by this particular equipotential
surface are called Roche lobes.7 The transfer of mass from one star to the other can be-
gin when one of the stars has expanded beyond its Roche lobe. Such a system is called a
semidetached binary. The star that fills its Roche lobe and loses mass is usually called
the secondary star, with mass M2, and its companion the primary star has mass M1. The
primary star may be either more or less massive than the secondary star.

It may happen that both stars fill, or even expand beyond, their Roche lobes. In this case,
the two stars share a common atmosphere bounded by a dumbbell-shaped equipotential
surface, such as the one passing through the Lagrangian point L2. Such a system is called
a contact binary. Figure 4 illustrates the three classes of binary stars.

Mass Transfer Rate

A crude estimate of the rate at which mass is transferred in a semidetached binary may
be obtained for the case of two stars of equal mass. Let the radius of the star that has
expanded beyond its Roche lobe be R. The equipotential surface at the radius of this star
will be modeled by two spheres of radius R that overlap slightly by a distance d, as shown
in Fig. 5. We will assume that stellar gas will escape from the filled lobe through the
circular opening of radius x. If the density of the stellar material at the opening is ρ and its
speed toward the opening of area A = πx2 is v, then it is left as an exercise to show that
the rate at which mass leaves the filled lobe, the mass transfer rate, is

Ṁ = ρvA. (11)

A bit of geometry shows that

x =
√

Rd (12)

when d ≪ R. he thermal velocity of the gas particles results in the

7The term Roche lobe was chosen in honor of the nineteenth-century French mathematician Edouard Roche
(1820–1883).

T
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(as shown by the small circles in Fig.  3). This situation describes a detached binary 
in which the stars evolve nearly independently. Detached binary systems are a primary 
source of astronomical information about the basic properties of stars.
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FIGURE 4 The classification of binary star systems. (a) A detached system. (b) A semidetached
system in which the secondary star has expanded to fill its Roche lobe. (c) A contact binary.
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FIGURE 5 Intersecting spheres used to estimate the mass transfer rate, Ṁ .

estimate

Ṁ ≈ ρvrmsπx2 (13)

or

Ṁ ≈ πR dρ

√

3kT

mH

, (14)

assuming a gas of hydrogen atoms. As the overfill distance d becomes larger, the values of
the density and temperature increase at the opening.
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Example 1.1. Suppose a star like the Sun is in a semidetached binary system with a
companion of equal mass, and it slightly overfills its Roche lobe to a point just below its
photosphere. Using zone i = 9 for the Stat Star model, we have d = r0 − r9 =
1.52 × 106 m, T = 6348 K, and ρ = 2.87 × 10−7 kg m−3. Using R = 7.10 × 108 m at the
outermost point of the model, the rate at which this Sun-like star would lose its atmospheric
gases would be roughly

Ṁ ≈ πR dρ

√

3kT

mH

= 1.2 × 1013 kg s−1 = 1.9 × 10−10 M⊙ yr−1.

This is typical of the mass transfer rates for semidetached binary systems. The values of
Ṁ inferred from observations of various systems range from 10−11 to 10−7 M⊙ yr−1. For
comparison, the solar wind transports mass away from the Sun at a much smaller rate,
approximately 3 × 10−14 M⊙ yr−1.

Before moving on to consider the consequences of the transfer of mass in semidetached
binaries, it is worthwhile to consider the enormous energy that can be released when matter
falls onto a star, especially onto a compact object such as a white dwarf or a neutron star.

Example 1.2. Consider a mass m = 1 kg that starts at rest infinitely far from a star of
mass M and radius R. The initial total mechanical energy of the mass m is

E = K + U = 0.

Using conservation of energy, we find that the kinetic energy of the mass when it arrives at
the star’s surface is

K = −U = G
Mm

R
.

This kinetic energy will be converted into heat and light upon impact with the star. If the star
is a white dwarf with M = 0.85 M⊙ and R = 6.6 × 106 m = 0.0095 R⊙, then the energy
released by one kilogram of infalling matter is

G
Mm

R
= 1.71 × 1013 J.

This is 0.019% of the rest energy (mc2) of one kilogram of material. For comparison, the
amount of energy released by the thermonuclear fusion of one kilogram of hydrogen is

0.007mc2 = 6.29 × 1014 J
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If the star is a neutron star with mass M = 1.4 M⊙ and radius R = 10 km, then the
energy released is much greater:

G
Mm

R
= 1.86 × 1016 J.

This is 21% of the rest energy of one kilogram, nearly 30 times greater than the energy that
hydrogen fusion could provide! The calculations show that infalling matter is capable of
generating immense amounts of energy.

Observations of celestial X-ray sources have revealed objects with a steady X-ray lu-
minosity of approximately 1030 W. If this radiation were produced by gases pulled from
a companion star that then fell onto a neutron star’s surface, the amount of mass per sec-
ond transferred between the two stars that would be needed to account for the observed
luminosity is

Ṁ = 1030 W

1.86 × 1016 J kg−1 = 5.38 × 1013 kg s−1,

which is only about 10−9 M⊙ yr−1. This is similar to the mass transfer rate found in the
previous example, a fortuitous agreement because Ṁ for semidetached systems can vary
by several orders of magnitude.

2 ACCRETION DISKS

The orbital motion of a semidetached binary can prevent the mass that escapes from the
swollen secondary star from falling directly onto the primary star. The primary’s movement
is often enough to keep it out of the path of the gases that spill through the inner Lagrangian
point. If the radius of the primary star is less than about 5% of the binary separation a, the
mass stream will miss striking the primary’s surface. Instead, the mass stream goes into orbit
around the primary to form a thin accretion disk of hot gas in the orbital plane, as shown in
Fig. 6.8 Viscosity, an internal friction that converts the directed kinetic energy
of bulk mass motion into random thermal motion, causes the orbiting gases to lose energy
and slowly spiral inward toward the primary. The physical mechanism responsible for the
viscosity in accretion disks is as yet poorly understood. The familiar molecular viscosity
due to interparticle forces is far too weak to be effective. Other possibilities involve random
motions of the gas, such as turbulence in the disk material caused by thermal convection or by
a magnetohydrodynamic instability in the magnetic fields that interact with the differentially

8Astronomers refer to the process of accumulating mass from an outside source as accretion.
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rotating disk. Whatever the mechanism, the gas is heated throughout its descent to 
increasingly higher temperatures as the lost orbital energy is converted into thermal 
energy. Finally, the plunging gas ends its journey at the star’s surface.
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FIGURE 6 A semidetached binary showing the accretion disk around the primary star and the
hot spot where the mass streaming through the inner Lagrangian point impacts the disk. This system’s
parameters correspond to those of Z Chamaeleontis, described in Example 4.1.

The Temperature Profile and Luminosity

Just as a star may be treated as a blackbody in a rough first approximation, the assumption of
an optically thick accretion disk radiating as a blackbody provides a simple, useful model.
At each radial distance, an optically thick disk emits blackbody radiation with a continuous
spectrum corresponding to the local disk temperature at that distance.

To estimate the temperature of a model accretion disk at a distance r from the center of
the primary star of mass M1 and radius R1, let’s assume that the inward radial velocity of
the disk gases is small compared with their orbital velocity. Then, to a good approximation,
the gases follow circular Keplerian orbits, and the details of the viscous forces acting within
the disk may be neglected. Furthermore, since the mass of the disk is very small compared
with that of the primary, the orbiting material feels only the gravity of the central primary star.
The total energy (kinetic plus potential) of a mass m of orbiting gas is given by,

E = −G
M1m

2r
.

As the gas spirals inward, its total energy E becomes more negative. The lost energy
maintains the disk’s temperature and is ultimately emitted in the form of blackbody radiation.

Now consider an annular ring of radius r and width dr within the disk, as shown in
Fig. 7. If the rate at which mass is transferred from the secondary to the primary star is
a constant Ṁ , then in time t the amount of mass that passes through the outer boundary
of the circular ring shown in Fig. 7 is Ṁt . Assuming a steady-state disk that does not
change with time, no mass is allowed to build up within the ring. Therefore during this time
an amount of mass Ṁt must also leave through the ring’s inner boundary.

Conservation of energy requires that the energy dE radiated by the ring in time t be equal
to the difference in the energy that passes through the ring’s outer and inner boundaries:

dE = dE

dr
dr = d

dr

(

−G
M1m

2r

)

dr = G
M1Ṁt

2r2
dr,
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FIGURE 7 One of the (imaginary) annular rings constituting the accretion disk.

where m = Ṁt has been used for the orbiting mass entering and leaving the ring. If the
luminosity of the ring is dLring, then the energy radiated by the ring in time t is related to
dLring by

dLringt = dE = G
M1Ṁt

2r2
dr.

Canceling the t ’s and using the Stefan–Boltzmann with A = 2(2πr dr) for the
surface area of the ring (both sides) gives

dLring = 4πrσT 4 dr (15)

= G
M1Ṁ

2r2
dr (16)

for the luminosity of the ring. Solving for T , the disk temperature at radius r , results in

T =
(

GMṀ

8πσR3

)1/4 (
R

r

)3/4

. (17)

The “1” subscript has been dropped, with the understanding that M and R are the mass and
radius of the primary star, and that Ṁ is the mass transfer rate for the semidetached binary
system.

A more thorough analysis would take into account the thin turbulent boundary layer that
must be produced when the rapidly orbiting disk gases encounter the surface of the primary
star. This results in a better estimate of the disk temperature:

T =
(

3GMṀ

8πσR3

)1/4 (
R

r

)3/4
(

1 −
√

R/r
)1/4

(18)

= Tdisk

(

R

r

)3/4
(

1 −
√

R/r
)1/4

, (19)

law 
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where

Tdisk ≡
(

3GMṀ

8πσR3

)1/4

(20)

is a characteristic temperature of the disk. Actually, Tdisk is roughly twice the maximum
disk temperature,

Tmax = 0.488
(

3GMṀ

8πσR3

)1/4

= 0.488Tdisk, (21)

which occurs at r = (49/36)R; see Fig. 13.9 When r ≫ R, the last term on the right-hand
side of Eq. ( 19) may be neglected, leaving

T =
(

3GMṀ

8πσR3

)1/4 (
R

r

)3/4

= Tdisk

(

R

r

)3/4

(r ≫ R). (22)

This differs from our simple estimate, Eq. ( 17), by a factor of 31/4 = 1.32.
Integrating Eq. ( 16) for the luminosity of each ring from r = R to r = ∞ results in

an expression for the disk luminosity,

Ldisk = G
MṀ

2R
. (23)

However, recall from Example 1.2 that without an accretion disk, the accretion lumi-
nosity (the rate at which falling matter delivers kinetic energy to the primary star) is twice
as great:

Lacc = G
MṀ

R
. (24)

Thus, if half of the available accretion energy is radiated away as the gases spiral down
through the disk, then the remaining half must be deposited at the surface of the star (or in
the turbulent boundary layer between the rapidly rotating disk and the more slowly rotating
primary star).10

Example 2.1. The maximum disk temperature, Tmax, and the value of the disk lumi-
nosity for the white dwarf and neutron star used in Example 1.2 can now be eval-
uated. For a white dwarf with M = 0.85 M⊙, R = 0.0095 R⊙, and Ṁ = 1013 kg s−1

(1.6 × 10−10 M⊙ yr−1), Eq. (21) is

Tmax = 0.488
(

3GMṀ

8πσR3

)1/4

= 2.62 × 104 K.

9Including the boundary layer results in T = 0 where the disk meets the star’s surface, an unrealistic artifact of
the assumptions of the model.
10This result is just another consequence of the virial theorem.
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According to Wien’s displacement law, at this temperature the blackbody spec-
trum peaks at a wavelength of

λmax = (500 nm)(5800 K)

26,200 K
= 111 nm,

which is in the ultraviolet region of the electromagnetic spectrum. From Eq. (23), the
luminosity of the accretion disk is

Ldisk = G
MṀ

2R
= 8.55 × 1025 W,

or about 0.22 L⊙.
Turning now to a neutron star with M = 1.4 M⊙, R = 10 km, and Ṁ = 1014 kg s−1

(1.6 × 10−9 M⊙ yr−1), the maximum disk temperature is

Tmax = 0.488
(

3GMṀ

8πσR3

)1/4

= 6.86 × 106 K.

Its blackbody spectrum peaks at a wavelength of

λmax = (500 nm)(5800 K)

686,000 K
= 0.423 nm,

which is in the X-ray region of the electromagnetic spectrum. The luminosity of the neutron
star’s accretion disk is

Ldisk = G
MṀ

2R
= 9.29 × 1029 W,

over 2400 L⊙. Thus the inner regions of accretion disks around white dwarfs should shine
in the ultraviolet, whereas those around neutron stars will be strong X-ray sources.11

The Radial Extent of an Accretion Disk

The radial extent of the accretion disk can be estimated by finding the value of r = rcirc

where a continuous stream of mass that passes through L1 will settle into a circular orbit
around the primary star. This may be done by considering the angular momentum of a parcel
of mass m about the primary star; see Fig. 8. Assuming that the motion of the mass at the
inner Lagrangian point is due solely to the orbital motion of the binary system, the angular
momentum, L, of the mass located there is

L = mωℓ2
1 = mℓ2

1

√

G(M1 + M2)

a3
,

where Eq. ( 7) has been used for the angular frequency of the orbit, and ℓ1 is given by
Eq. (9).

11Actually, as we will see in Section 6, the accretion disk around a white dwarf or neutron star may be disrupted
by the star’s magnetic field and so may not extend down to its surface. Such systems are strong sources of X-rays.
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FIGURE 8 A parcel of mass m passing through the inner Lagrangian point L1, seen from a
frame of reference with the primary star at rest at the origin.

The mass m does not immediately enter into a circular orbit. Instead, the stream of mass
to which m belongs flows around the primary star and collides with itself after one orbit.
The orbits of the mass parcels are made circular around the primary by the collisions as
energy is lost while angular momentum is conserved. When the parcel of mass has settled
into a circular orbit of radius rcirc around M1, its angular momentum is

L = m
√

GM1rcirc,

with µ = mM1/(m + M1) ≃ m . Equating these two expressions for the angular
momentum results in

rcirc = a

(

ℓ1

a

)4 (

1 + M2

M1

)

= a

[

0.500 − 0.227 log10

(

M2

M1

)]4 (

1 + M2

M1

)

. (25)

Since the total angular momentum must be conserved when only internal and central
forces act, you may wonder what happens to the angular momentum lost by the infalling
material as it spirals through the accretion disk.As shown in Pringle (1981), orbiting material
that is initially in the form of a narrow ring at r = rcirc will spread, moving both inward
and outward. The time for this migration of the disk material probably ranges from a few
days to a few weeks. While most of the matter spirals inward, a small amount of the mass
carries the “missing” angular momentum to the outer edge of the disk. From there, the
angular momentum may be carried away from the system by wind-driven mass loss. If the
accretion disk extends 80% to 90% of the way out to the inner Lagrangian point, angular
momentum may also be returned to the orbital motion of the two stars by tides raised in the
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disk by the secondary star. Because of this outward migration of mass, we will adopt

Rdisk ≈ 2rcirc (26)

as a rough estimate of the outer radius of the accretion disk.

Eclipsing, Semidetached Binary Systems

It is comforting to know that there is evidence, obtained from observing eclipsing semide-
tached binary systems, that the objects described above actually exist. Observations of light
curves for eclipsing semidetached binaries, such as shown in Fig. 9, indicate the presence
of a hot spot where the mass transfer stream collides with the outer edge of the accretion
disk. The light curve can be interpreted as the result of observing consecutive “slices” of
the disk as they disappear and then reappear from behind the primary star. In fact, Fig. 9
can be used to re-create an image of the disk itself, shown in Fig. 10.12 Because the
hot spot is on the trailing side of the disk during the eclipse (see Fig. 12), more light is
received from the disk near the beginning of the eclipse (when the hot spot is still visible)
than near the end (when the hot spot is still hidden). This produces the deficit in intensity
on the right-hand side of the light curve in Fig. 9.
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FIGURE 9 The light curve of the eclipse of the accretion disk in the LX Serpentis binary
system. The jagged line is the observed light curve, and the smooth line shows the fit calculated from
a reconstructed image of the accretion disk, shown in Fig. 10. (Figure adapted from Rutten, van
Paradijs, and Tinbergen, Astron. Astrophys., 260, 213, 1992.)

12Using slices of the emerging disk to reconstruct an image of the accretion disk is somewhat analogous to using a
CAT scan (computerized axial tomography) in a hospital to mathematically reassemble X-ray slices of the human
body. Because there is more than one model disk that will reproduce a given light curve, a technique called
maximum entropy is used to choose the smoothest possible model for the final disk image.
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FIGURE 10 A reconstructed negative image of the accretion disk in the LX Serpentis binary
system. The hot spot on the edge of the lower right portion of the disk is smeared out in the azimuthal
direction and has the appearance of a partial ring. (Figure from Rutten, van Paradijs, and Tinbergen,
Astron. Astrophys., 260, 213, 1992.)

3 A SURVEY OF INTERACTING BINARY SYSTEMS

The life history of a close binary system is quite complicated, with many possible variations
depending on the initial masses and separation of the two stars involved. As mass passes
from one star to the other, the mass ratio M2/M1 will change. The resulting redistribution
of angular momentum affects the orbital period of the system as well as the separation of
the two stars. The extent of the Roche lobes, given by Eqs. ( 9) and ( 10), depends on
both the separation and the mass ratio of the stars, so it too will vary accordingly.

The Effects of Mass Transfer

The effects of mass transfer can be illustrated by considering the total angular momentum
of the system. The contribution of the stars’ rotation to the total angular momentum is
small and may be neglected. The orbital angular momentum is given with an eccentricity
of e = 0 for a circular orbit,

L = µ
√

GMa.

In this expression, µ is the reduced mass (Eq. 2.22),

µ = M1M2

M1 + M2
,

and M = M1 + M2 is the total mass of the two stars.Assuming (to a first approximation) that
no mass or angular momentum is removed from the system via stellar winds or gravitational
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radiation, both the total mass and the angular momentum of the system remain constant as
mass is transferred between the two stars.13 That is, dM/dt = 0 and dL/dt = 0.

Some useful insights concerning the effect of the transfer of mass on the separation of
the two stars can be gained by taking a time derivative of the expression for the angular
momentum:

dL

dt
= d

dt

(

µ
√

GMa
)

0 =
√

GM

(

dµ

dt

√
a + µ

2
√

a

da

dt

)

1
a

da

dt
= − 2

µ

dµ

dt
. (27)

Remembering that the total mass, M , remains constant, we find that the time derivative of
the reduced mass is

dµ

dt
= 1

M

(

dM1

dt
M2 + M1

dM2

dt

)

.

The mass lost by one star is gained by the other. Writing Ṁ ≡ dM/dt , this means that
Ṁ1 = −Ṁ2, and so

dµ

dt
= Ṁ1

M
(M2 − M1) .

Inserting this into Eq. (27) achieves our result,

1
a

da

dt
= 2Ṁ1

M1 − M2

M1M2
. (28)

Equation ( 28) describes the consequence of mass transfer on the separation of the binary
system. The angular frequency of the orbit will also be affected, as shown by using Kepler’s
third law in the form of Eq. ( 7). Since M1 + M2 = constant, Kepler’s third law states
that ω ∝ a−3/2 so that

1
ω

dω

dt
= −3

2
1
a

da

dt
. (29)

As the orbital separation decreases, the angular frequency increases.

The Evolution of a Binary System

The following description illustrates the probable evolution of a binary system that is des-
tined to become a cataclysmic variable. The starting point is a widely separated binary
system with main-sequence stars having an initial orbital period ranging from a few months

13In fact, gravitational radiation, which will be discussed in Section 6, is primarily responsible for the loss of
angular momentum in some short-period binary systems (P < 14 hours).
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to a few years.At the start, suppose that Star 1 is more massive than Star 2, so M1 − M2 > 0.
Star 1 therefore evolves more rapidly and, depending on its mass, may become a red giant
or supergiant before it begins to overflow its Roche lobe. This initiates the transfer of mass
from Star 1 to Star 2 (so Ṁ1 < 0). According to Eqs. ( 28) and ( 29), in this situation
da/dt is negative and dω/dt is positive; the stars spiral closer together with an increasingly
shorter period.

Now, from Eq. ( 9), as a decreases and M2/M1 increases, the Roche lobe around Star 1
shrinks, as measured by the distance of Star 1 from the inner Lagrangian point. The mass
transfer rate accelerates under the positive feedback of a shrinking Roche lobe, eventually
producing an extended atmosphere around both stars, as shown in Fig. 4(c). The system
is now a contact binary, with the degenerate core of Star 1 and the main-sequence Star 2
sharing a common gaseous envelope. The two stars transfer angular momentum to this
envelope as they slowly spiral inward to a much smaller separation and shorter period.
If the cores of the two stars merge, the result will be single star, which may explain the

After emerging from their gaseous cocoon, the system is a detached binary; Star 2 (the
secondary) lies inside its Roche lobe as Star 1 (the primary) cools to become a white dwarf.
Eventually, the originally less-massive secondary star evolves and fills its Roche lobe, and
mass begins to flow in the opposite direction, with Ṁ1 > 0. In this case a negative feedback
mitigates the mass transfer process, because, as Eq. ( 28) implies, the stars will now
spiral farther apart (assuming that M1 is still greater than M2) as the Roche lobe around
the secondary star expands according to Eq. ( 10). If the mass flow is to persist, either
the secondary must expand faster than the Roche lobe grows or the stars must move closer
together as angular momentum is removed from the system, either by torques due to stellar
winds confined by magnetic fields or by gravitational radiation. Whatever the mechanism,
a steady rate of mass transfer from the secondary to the white dwarf is maintained, and the
stage is set for the outbursts of a cataclysmic variable, as will be described in Section 4.

As the secondary star continues to evolve, another common envelope stage may occur.
Figure 11 shows an example of the life history of a close binary system that begins
with two intermediate-mass stars (between 5 and 9 M⊙) and culminates with two carbon–

supernova.1

1 In Section 5, we will find that nuclear reactions begin in the core of the white dwarf before the Chandrasekhar
limit is reached.
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oxygen white dwarfs in a very tight orbit, circling each other every 15 s to 30 s. The 
larger, less massive white dwarf overflows its Roche lobe and dissolves into a heavy 
disk that is accreted by the more massive dwarf. The accumulation of mass pushes 
the primary white dwarf toward the Chandrasekhar limit, and it explodes as a Type Ia

observations of blue stragglers in stellar clusters. Alternatively, the envelope surrounding 
the stars may be ejected. In fact, several systems have been observed in which a binary is 
found at the center of a planetary nebula, possibly the result of the ejection of a common 
envelope. (For the sake of the following discussion, we will consider the situation where 
envelope ejection occurs.)
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FIGURE 11 One possibility for the evolution of a close binary system, ending in a Type Ia
supernova. The masses and radii of the stars, and their orbital separation (A), orbital period, and mass
transfer rate, are given for some stages, along with the duration (τ ). (Figure adapted from Iben and
Tutukov, Ap. J. Suppl., 54, 335, 1984.)
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Types of Interacting Binary Systems

There are many types of close binary systems, too many to discuss in any detail. The
following list1 describes the main classes of interacting binaries, together with some of the
features that make these systems important for astronomers. Many of the classes are named
after the prototype object for that class.

• Algols. These are two normal stars (main-sequence stars or subgiants) in a semide-
tached binary system. They provide checks on stellar properties and evolution, and
they yield information on mass loss and mass exchange.ActiveAlgols (the W Serpens
stars) provide laboratories for studying rapid (short-lived) stages of stellar and binary
star evolution. These systems are important for studying accretion processes and ac-
cretion disks. Mass loss from Algols may contribute to the chemical enrichment of
the interstellar medium.

• RS Canum Venaticorum and BY Draconis Stars. These stars are chromospher-
ically active binaries that are important systems for investigating dynamo-driven
magnetic activity in cool stars (spectral type F and later). Manifestations of enhanced
magnetic activity include starspots, chromospheres, coronae, and flares. These sys-
tems also contribute to our understanding of the magnetic activity of the Sun—the
so-called solar–stellar connection.

• W Ursae Majoris Contact Systems. These short-period (0.2–0.8 day) contact bina-
ries display very high levels of magnetic activity and are important stars for studying
the stellar dynamo mechanism at extreme levels. The drag of magnetic braking may
cause these binaries to coalesce into single stars.

• Cataclysmic Variables and Nova-like Binaries. These systems have short periods
and contain white dwarf components together with cool M-type secondaries that fill
their Roche lobes. They provide valuable information on the final stages of stellar
evolution. These binaries are also important for studying accretion phenomena and
accretion disk properties.

• X-ray Binaries with Neutron Star and Black Hole Components. These systems
are powerful (Lx > 1028 W) X-ray sources that have neutron star or (more rarely)
black hole components. The X-rays are due to the accretion of gas onto the degenerate
component of the system from a nondegenerate companion. Observations of neutron
star systems supplement the information on their structure and evolution that comes
from pulsars (such as masses, radii, rotation, and magnetic fields). Systems such as
V404 Cygni,A0620−00, and Cygnus X-1 provide evidence for the existence of black
holes; see Section 6.

• ζ Aurigae and VV Cephei Systems. These long-period interacting binaries contain a
late-type supergiant component and a hot (usually spectral type B) companion. ζ -Aur

1 Quoted with permission from E. F. Guinan, Evolutionary Processes in Interacting Binary Stars, Kondo, Sisteró,
and Polidan (eds.), Kluwer Academic Publishers, Dordrecht, 1992. Reprinted by permission of Kluwer Academic
Publishers.
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systems contain G or K supergiant stars, and VV Cep binaries contain M supergiants.
Although not originally interacting binaries, they became so when the more massive
star evolved to become a supergiant. When eclipses occur, the atmosphere and wind
of the cooler supergiant can be probed as the hotter star passes behind.

• Symbiotic Binaries. Symbiotic stars are long-period interacting binaries consisting
of an M giant (sometimes a pulsating Mira-type variable) and an accreting com-
ponent that can be a white dwarf, subdwarf, or low-mass main-sequence star. The
common feature of these systems is the accretion of the cool component’s wind onto
its hot companion. Orbital periods of symbiotic stars typically range between 200
and 1500 days. Several of the symbiotic binaries have the cool component filling its
Roche lobe, making them symbiotic Algol systems.

• Barium and S-Star Binaries. These stars are thought to be long-period binaries in

• Post-Common-Envelope Binaries. These binary systems usually contain hot white
dwarf or subdwarf components and cooler secondary stars that have presumably
passed through the common envelope phase of binary star evolution. The binary
nuclei of planetary nebulae are examples of post-common-envelope binaries. These
systems are important for studying short-lived stages of stellar evolution.

4 WHITE DWARFS IN SEMIDETACHED BINARIES

When a white dwarf is the primary component of a semidetached binary system, the result
may be a dwarf nova, a classical nova, or a supernova, in order of increasing brilliance.
It is somewhat unfortunate that the term nova (Latin for “new”) appears in each name,
because the three types of outbursts employ three very different mechanisms.

Cataclysmic Variables

Dwarf novae and classical novae belong to the general class of cataclysmic variables, of
which more than one thousand systems are known to exist. They survive their release of
energy (unlike supernovae), and the outburst process can reoccur. Cataclysmic variables are
characterized by long quiescent intervals punctuated by outbursts in which the brightness
of the system increases by a factor between 10 (for dwarf novae) and 106 (for classical
novae). The mean mass of the primary star is 0.86 M⊙, which is larger than the average of
about 0.58 M⊙ for isolated white dwarfs. The secondary star is usually a main-sequence
star of spectral type G or later and is less massive than the primary star.

The two stars orbit each other with periods ranging from 23 minutes to more than five
days, although the vast majority have orbital periods of between 78 minutes and 12 hours.
Interestingly, a “period gap” exists in the orbital periods of cataclysmic variables between

Close Binary Star Systems

which the originally more massive component evolved and transferred some of 
its  nuclear-processed gas to the present K or M  giant companion. The giant stars 
are thought to have white dwarf companions that are often too cool to be seen 
in the  ultraviolet. These systems are important for studying nucleosynthesis and 
mass loss in evolved stars.



1.5 hours and 3.25 hours; it is probably due to an abrupt change in angular momentum
transfer in the system, associated with a complex interplay of disrupted magnetic braking,
gravitational radiation, the changing size of Roche lobes, and the evolution of the stars.

The outbursts are believed to be due to a sudden increase in the rate at which mass flows
down through the disk. As the eclipsed disk emerges from behind the secondary star, the
radial variation in the disk’s temperature can be determined. During an outburst, the disk
does indeed appear to be optically thick, with T ∝ r−3/4, in agreement with Eq. ( 22).
But during quiescence the observations are not consistent with the disk model described
above, probably because the disk is not completely optically thick when it is cooler and
contains less mass.

Additional evidence supporting this view comes from the strong, wide emission lines of
hydrogen and helium that are seen in cataclysmic variables during quiescence. These lines
are usually doubly peaked, as shown in Fig. 12. However, during an eclipse a single
emission line is observed, either redshifted or blueshifted. This is what would be expected
from a rotating disk of optically thin gas; the Doppler-shifted emission lines produced on
the opposite sides of the disk disappear when one side or the other is hidden behind the
secondary star.

The source of the emission lines that appear during a cataclysmic variable’s quiescent
phase is not yet clear. During an outburst, these lines appear in absorption, as would be
expected from an optically thick disk that produces absorption lines in the same manner as
an optically thick stellar atmosphere. But during quiescence, the rate at which mass flows
down through the disk has presumably decreased, making the disk less dense and cooler. At
larger radii the disk may then be optically thin and so produce emission lines. Alternatively,
there may be a thin layer of hot gas above the disk that produces the emission lines.

To Earth To Earth To Earth To Earth

F$ F$ F$ F$

$ $ $ $

FIGURE 12 A Doppler-shifted emission line at different stages of the eclipse of an accretion
disk. The binary system orbits about its center of mass (the “×”), and is observed nearly edge-on.
The disk rotates in the direction indicated by the arrow.
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Dwarf Novae

The first observation of a dwarf nova (U Geminorum) was made in 1855. However, the basic
nature of these objects remained elusive until 1974, when Brian Warner at the University
of Cape Town showed that the outburst of an eclipsing dwarf nova, Z Chamaeleontis,
was due to a brightening of the accretion disk surrounding the white dwarf. Since most of
the light from a dwarf nova comes from the accretion disk around the white dwarf, these
systems provide astronomers with their best opportunity to study the dynamic structure of
accretion disks.1 Observations of the dwarf nova VW Hydri showed that the outburst at
visible wavelengths preceded the ultraviolet brightening by about a day. This indicates that
the outburst started in the cooler, outer part of the disk and then spread down to the hotter
central regions. For these reasons, astronomers have concluded that the outbursts of dwarf
novae are caused by a sudden increase in the rate at which mass flows down through the
accretion disk.

Example 4.1. Z Chamaeleontis is a dwarf nova. It consists of an M1 = 0.85 M⊙ white
dwarf primary with a radius of R = 0.0095 R⊙ and a late M-type main-sequence secondary
star of mass M2 = 0.17 M⊙. The orbital period of the system is P = 0.0745 day. What
does this system look like?

From Kepler’s third law, Eq. (2.37), the separation of the two stars is

a =
[

P 2G(M1 + M2)

4π2

]1/3

= 5.22 × 108 m,

about 75% of the radius of the Sun. The distance between the white dwarf primary and the
inner Lagrangian point L1 is given by Eq. (9),

ℓ1 = a

[

0.500 − 0.227 log10

(

M2

M1

)]

= 3.44 × 108 m.

Because the secondary star fills its Roche lobe in a semidetached binary system, the distance
between the secondary star and the inner Lagrangian point is a measure of the size of the
secondary. For Z Cha,

R2 ≈ ℓ2 = a − ℓ1 = 1.78 × 108 m,

which agrees quite well with the size of an M6 main-sequence star.
The value of rcirc for this system is, from Eq. (25),

rcirc = a

(

ℓ1

a

)4 (

1 + M2

M1

)

= 1.18 × 108 m,

continued

1 In some systems, the primary white dwarf has a magnetic field that is sufficiently strong (a few thousand teslas)
to prevent the formation of an accretion disk. Instead, the accretion takes place through a magnetically controlled
column that funnels mass onto one (or both) of the white dwarf’s magnetic poles. These AM Herculis stars (or
polars) will be considered in Section 6.
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and so a crude estimate of the outer radius of the disk is

Rdisk ≈ 2rcirc = 2.4 × 108 m,

(Eq. 26), which is about two-thirds of the way to the inner Lagrangian point. This is in
good agreement with observations that indicate that the Z Cha’s disk emits very little light
from beyond this radius.

The mass transfer rate inferred for Z Cha during an outburst is roughly

Ṁ = 1.3 × 10−9 M⊙ yr−1,

or 7.9 × 1013 kg s−1, which implies a maximum disk temperature of

Tmax = 0.488
(

3GMṀ

8πσR3

)1/4

= 4.4 × 104 K,

using Eq. ( 21). Figure 13 shows the variation in the disk temperature with radius for
Z Cha [calculated from Eq. ( 19)]. Moving from the inner to the outer regions of the disk,
the temperature falls from 44,000 K to 8000 K. According to Wien’s law, this
corresponds to an increase in the peak wavelength of the emitted radiation from 66 nm to
363 nm (from the far to the near portions of the ultraviolet spectrum).

The monochromatic luminosity, Lλ, for the entire disk can be calculated for the Planck
function, Bλ, over the disk area and over all directions

0.01 0.1 1

r/!1

104

105

T 
(K

)

FIGURE 13 The temperature of the accretion disk calculated for the dwarf nova Z Chamaeleon-
tis. The radius r is given in units of ℓ1, the distance from the white dwarf to the inner Lagrangian
point. The sudden drop in temperature near the surface of the white dwarf primary is an unrealistic
artifact of the assumptions.

.
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FIGURE 14 The monochromatic luminosity calculated for the accretion disk of the dwarf nova
Z Chamaeleontis.

The resulting graph of the energy emitted per second within wavelength
intervals of 1 nm is shown in Fig. 14. According to Eq. ( 23), the total luminosity of
the accretion disk (integrated over all wavelengths) is

Ldisk = G
MṀ

2R
= 6.8 × 1026 W,

which exceeds the luminosity of the Sun by about 75%.
An artist’s conception of the appearance of Z Cha is shown in Fig. 15; see also

Fig. 6.

Changes in the Mass Transfer Rate

To date, more than 250 dwarf novae have been discovered. Characteristically, they brighten
by between 2 and 6 magnitudes (factors of between 6 and 250 in luminosity) during outbursts
that usually last from about 5 to 20 days. These eruptions are separated by quiet intervals
of 30–300 days; see Fig. 16. Estimates of the rate of mass transfer through the disks of
dwarf novae have been obtained by comparing theoretical models with observations of the
amount of energy released at different wavelengths. Apparently, during the long quiescent
intervals,

Ṁ ≈ 1012 – 1013 kg s−1 ≈ 10−11 – 10−10 M⊙ yr−1,

which increases to

Ṁ ≈ 1014 – 1015 kg s−1 ≈ 10−9 – 10−8 M⊙ yr−1

Close Binary Star Systems



FIGURE 15 An artist’s conception of Z Chamaeleontis. [Courtesy of Dale W. Bryner (1935–
1999), Weber State University.]

during an outburst. Since the disk luminosity is proportional to Ṁ (Eq. 23), this increase
in the mass transfer rate by a factor of 10–100 is consistent with the observed brightening
of the system.1

The mystery remaining to be solved by astronomers is the origin of the increased rate of
mass transfer through the disk of a dwarf nova during an outburst. Possible explanations
focus on either an instability in the mass transfer rate from the secondary to the primary
star or an instability in the accretion disk itself that periodically dams up and releases the
gases flowing through it.

A modulation of the mass transfer rate must depend on the details of the mass flow
through the inner Lagrangian point, L1. One possibility is an instability in the outer layers
of the secondary star, causing it to periodically overflow its Roche lobe. Such an instability
could be powered by the hydrogen partial ionization zone (at T ≈ 10,000 K) damming up
and releasing energy.1 When one kilogram of H II ions recombines with free electrons, as
much as 1.3 × 109 J is released. If the ionization zone occurs close enough to the surface
of the secondary, this could be sufficient to propel some of the overlying stellar material
through the L1 point and initiate a dwarf nova outburst. Recall, however, that the secondary
star is usually a main-sequence star of spectral type G or later, so the ionization zone may
well lie too deep to produce the instability.

The alternative explanation involving an instability in the outer part of the accretion
disk also utilizes the hydrogen partial ionization zone. The viscosity of the disk material
governs the rate at which mass spirals down through the disk. The lower the viscosity, the
lower the resistance to the orbital motion of the disk gases; the inward drift of material
decreases, and more matter accumulates in the disk. If the viscosity periodically switches

17 difference of 5 magnitudes corresponds to a factor of 100 in brightness.
1 This is somewhat reminiscent of the κ-mechanism that is involved in stellar pulsation.
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Light curve of SS Cygni
1896–1963

FIGURE 16 Outbursts of the dwarf nova SS Cygni, about 95 pc away. This light curve, labeled
by Julian day at 500-day intervals, covers the years 1896–1963 and was compiled by the American
Association of Variable Star Observers. (We acknowledge with thanks the variable star observations
from the AAVSO International Database contributed by observers worldwide.)
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from a low to a high value, the resulting wave of stored material plunging inward could
produce the brightening of the disk observed for dwarf novae. Although the source of the
viscosity in accretion disks is poorly understood, it has been suggested that the switch
between low and high viscosity may be produced by an instability involving the periodic
ionization and recombination of hydrogen in the outer part of the disk where T ≈ 10,000 K.
In such a scenario, the viscosity is roughly proportional to the disk temperature, which in
turn depends on the opacity of the disk material. Below 104 K, a plausible chain of reasoning
then suggests

neutral hydrogen → low opacity

→ efficient cooling

→ low temperature

→ low viscosity

→ mass retained in the outer disk.

On the other hand, above 104 K,

ionized hydrogen → high opacity

→ inefficient cooling

→ high temperature

→ high viscosity

→ mass released to fall through the disk.

The instability occurs because the accumulation of matter tends to slowly heat the outer
disk, while its release results in a rapid cooling. This mechanism should operate only for
low accretion rates (< 1012 kg s−1 ≈ 10−11 M⊙ yr−1), so dwarf novae outbursts should not
occur for systems with larger values of Ṁ . This limit is in fact observed and is one reason
why most astronomers favor the disk instability explanation of dwarf novae outbursts.

Classical Novae

Higher accretion rates are associated with classical novae. The earliest record of a nova
was that of CK Vulpeculae, which occurred in 1670. Since then hundreds of others have
been observed. About 30 novae are detected in the Andromeda galaxy (M31) each year,
but only two or three per year can be seen in those regions of our own Milky Way Galaxy
that are unobscured by dust. Novae are characterized by a sudden increase in brightness
of between 7 and 20 magnitudes, with an average brightening of about 10–12 magnitudes.
The rise in luminosity is very rapid, taking only a few days, with a brief pause or standstill
when the star is about two magnitudes from its maximum brilliance. At its peak, a nova
may shine with about 105 L⊙ and release roughly 1038 J (integrated across all wavelengths)
over ∼ 100 days.

Close Binary Star Systems



The subsequent decline occurs more slowly over several months, and its rate of decline
defines the speed class of a nova. A fast nova takes a few weeks to dim by two mag-
nitudes, whereas a slow nova may take nearly 100 days to decline by the same amount
from maximum; see Figs. 17 and 18. The declines are sometimes punctuated by large
fluctuations in brightness, which in extreme cases may take the form of the complete ab-
sence of visible light from the nova for a month or so before it reappears. Fast novae are
typically three magnitudes brighter than slow novae, but in either case a nova falls to nearly
its pre-eruption appearance after a few decades.

During the first few months, the decline in brightness occurs only at visual wavelengths.
When observations at infrared and ultraviolet wavelengths are included, the bolometric
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FIGURE 17 The light curve of V1500 Cyg, a fast nova. (Figure adapted from Young, Corwin,
Bryan, and De Vaucouleurs, Ap. J., 209, 882, 1976.)
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FIGURE 18 The light curve of DQ Her, a slow nova. The photographic magnitude, mpg, is
measured from the nova’s image on photographic plates. (We acknowledge with thanks the variable
star observations from the AAVSO International Database contributed by observers worldwide.)
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FIGURE 19 The bolometric luminosity of nova FH Serpentis, in terms of its luminosity at
day 4.4. Note that during the first 60 days, the decline in visible energy was almost exactly offset
by an increase at ultraviolet wavelengths. Thereafter, the infrared rose as the visible light output
was redistributed to infrared wavelengths. (Figure adapted from Gallagher and Starrfield, Annu. Rev.
Astron. Astrophys., 16, 171, 1978. Reproduced with permission from the Annual Review of Astronomy
and Astrophysics, Volume 16, ©1978 by Annual Reviews Inc.)

luminosity of a nova is found to remain approximately constant for several months following
its outburst; see Fig. 19. In addition, spectra of novae show that they are accompanied
by the ejection of 10−5 to 10−4 M⊙ of hot gases at velocities between several hundred and
several thousand km s−1. The speed of the gases is roughly three times greater for fast
novae, but the total mass ejected is about the same for both speed classes. We will see that
the changing characteristics of this expanding shell of gas are responsible for the features
seen in Fig. 19.

The average value of the absolute visual magnitude of a nova in its quiescent state is
MV = 4.5. Assuming that the light from such a system comes primarily from the accretion
disk around the white dwarf, an estimate of the mass transfer rate for a typical nova can
be obtained. (For the purposes of this estimation, visual magnitudes will be used instead
of bolometric magnitudes. This means that the mass transfer rate will be slightly under-
estimated.) he luminosity of the system is

L = 100(MSun−MV )/5 L⊙ = 1.3 L⊙ = 4.9 × 1026 W.

With this result, the luminosity of an accretion disk (Eq. 23) can be solved for the mass
transfer rate, giving

Ṁ = 2RL

GM
= 5.7 × 1013 kg s−1,

or about 9.0 × 10−10 M⊙ yr−1.

T

Close Binary Star Systems



This is in good agreement with the accepted theoretical model of a nova, which incorpo-
rates a white dwarf in a semidetached binary system that accretes matter at a rate of about
10−8 to 10−9 M⊙ yr−1. The hydrogen-rich gases accumulate on the surface of the white
dwarf, where they are compressed and heated. At the base of this layer, turbulent mixing
enriches the gases with the carbon, nitrogen, and oxygen of the white dwarf. (Without this
mixing, the ensuing explosion would be too feeble to eject the mass observed for the ex-
panding shell of hot gases.) Spectroscopic analysis of the shell shows an enrichment of
carbon, nitrogen, and oxygen by a factor of 10 to 100 times the solar abundance of these
elements.

At the base of this enriched layer of hydrogen, the material is supported by electron
degeneracy pressure. When about 10−4 to 10−5 M⊙ of hydrogen has accumulated and the
temperature at the base reaches a few million kelvins, a shell of CNO-cycle hydrogen burn-
ing develops. For highly degenerate matter the pressure is independent of the temperature,
so the shell source cannot dampen the reaction rate by expanding and cooling. The result is
a runaway thermonuclear reaction, with temperatures reaching 108 K before the electrons
lose their degeneracy. When the luminosity exceeds the Eddington limit of about
10 31W radiation pressure can lift the accreted material and expel it into space.
The fast and slow speed classes of novae are likely due to variations in the mass of the
white dwarf and in the degree of CNO enrichment of the hydrogen surface layer. The brief
standstill that occurs before maximum luminosity is probably an effect of the changing
opacity of the ejecta.

The energy that would be released in the complete fusion of a hydrogen layer of m =
10−4 M⊙ is 0.007mc2 ≈ 1041 J, roughly 103 times larger than the energies actually observed.
If all of the hydrogen were in fact consumed, the nova would shine for several hundred
years. Most of the accumulated material must therefore be propelled into space by the
explosion. However, the kinetic energy of the ejecta (far from the nova) is much smaller
than the gravitational binding energy of the surface layer, indicating that the total energy
given to the ejecta is just barely enough to allow it to escape from the system.

Only about 10% of the hydrogen layer is ejected by the nova explosion. Following
this initial hydrodynamic ejection phase which dominates for fast novae, hydrostatic
equilibrium is established and the hydrostatic burning phase begins. During this prolonged
stage of hydrogen burning, which is most important for slow novae, energy is produced at a
constant rate approximately equal to the Eddington luminosity. The layer above the shell of
CNO burning becomes fully convective and expands by a factor of 10 to 100, extending to
some 109 m.2 At the surface of the convective envelope the effective temperature is about
105 K, much less than the 4 × 107 K in the active CNO shell source below.

Finally, the last of the accreted surface layer is ejected, from between a few months to
about a year after the hydrostatic burning phase began. Deprived of fuel, the hydrostatic
burning phase ends, and the white dwarf begins to cool. Eventually the binary system reverts
to its quiescent configuration and the accretion process begins anew. For accretion rates of

This mechanism is similar to the helium core flash.
2 The white dwarf remnant may overflow its Roche lobe. The consequences of the resulting disruption of the close
binary system are not yet clear.
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10−8 to 10−9 M⊙ yr−1, it will take some 104 to 105 years to build up another surface layer
of 10−4 M⊙.

The physical character of the ejected gases passes through three distinct phases as a
consequence of the nova explosion. During the initial fireball expansion phase, the material
blown off the star in the hydrodynamic ejection phase forms an optically thick “fireball”
that radiates as a hot blackbody of 6000–10,000 K. The observed light originates in the
“photosphere” of the expanding fireball; at this point, the spectrum of the nova resembles
that of an A or F supergiant.

The expanding model photosphere has a radius that initially increases linearly with
time and then approaches a limiting value of

R∞ = 3κṀeject

8πv
. (30)

If the luminosity, L , of the nova is also assumed to be constant, then the effective
temperature of the model photosphere approaches

T∞ =
(

L

4πσ

)1/4
(

8πv

3κṀeject

)1/2

. (31)

For an opacity of κ = 0.04 m2 kg−1 a mass ejection rate of Ṁeject ≈ 1019 kg s−1 (about
10−4 M⊙ yr−1), and an ejection speed of v ≈ 1000 km s−1, the fireball’s photosphere ap-
proaches a limiting radius of about 5 × 1010 m, or 1/3 AU. Taking L to be the Eddington
limit of about 1031 W, the effective temperature of the model photosphere approaches a
value of nearly 9000 K.

The optically thick fireball phase ends in a few days, at the point of maximum visual
brightness. Then, as the shell of gas thrown off by the nova continues to expand, it becomes
less and less dense. The rate of mass ejection, Ṁeject, has also declined in the hydrostatic
burning phase. The result, according to Eqs. ( 30) and ( 31), is that the location of the
photosphere moves inward and its temperature increases slightly. Although these general
trends are correct, the opacity is in fact very sensitive to the temperature for T < 104 K

thin phase begins. The central white dwarf, swollen by its hydrostatic burning phase, now
has the appearance of a blue horizontal-branch object located just blueward of the RR Lyrae
stars on the H–R diagram. The white dwarf envelope may burn irregularly, resulting in the
substantial fluctuations in brightness observed for some novae.

After a few months, when the temperature of the expanding envelope of gases has fallen to
about 1000 K, carbon in the ejecta can condense to form dust consisting of graphite grains.2

2 The identification of the grain composition comes in part from an infrared emission “bump” at a wavelength of
5 µm. Novae are natural laboratories for testing theories of grain formation.
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and our model is too simplistic to describe the evolution of the nova. More advanced 
 arguments show that as the visual brightness declines, more light is received from the 
nova at ultraviolet wavelengths. Finally, the shell becomes transparent and the optically



FIGURE 20 A 1949 photo of Nova Persei, which exploded in 1901. (Courtesy of Palo-
mar/Caltech.)

This initiates the dust formation phase. The resulting dust shell becomes optically thick in
roughly 50% of all novae. The visible light from a nova is undiminished by an optically thin
shell, but the formation of an optically thick cocoon of dust obscures or completely hides the
central white dwarf. In the latter case, the output of visible light suddenly plunges, as seen in
Fig. 19. The light from the white dwarf is absorbed and re-emitted by the graphite grains,
so the optically thick dust shell radiates as a ∼ 900 K blackbody at infrared wavelengths.
In this way, the nova’s bolometric luminosity remains constant as long as the white dwarf
continues to produce energy at roughly the Eddington rate while in its hydrostatic burning
phase. Figure 20 shows that the expanding shell may remain visible for years after the
hydrostatic burning phase has ended, its gases and dust enriching the interstellar medium.

Polars: X-Rays from White Dwarf Systems

AM Herculis stars (also called polars), are semidetached binaries containing white dwarfs
with magnetic fields of about 2000 T. The torque produced by the white dwarf’s field
interacting with the secondary star’s envelope results in a nearly synchronous rotation;
the two stars perpetually face each other, connected by a stream of hot gas.2 As this gas
approaches the white dwarf, it moves almost straight down toward the surface and forms
an accretion column a few tens of kilometers across. A shock front occurs above the white
dwarf’s photosphere, where the gas is decelerated and heated to a temperature of several
108 K. The hot gas emits hard X-ray photons; some escape, and some are absorbed by the
photosphere and re-emitted at soft X-ray and ultraviolet wavelengths.

2 If the white dwarf has a somewhat weaker field (Bs < 1000 T), or if the stars are farther apart, an accretion disk
may form, only to be disrupted near the star (as shown in Fig. 22). These systems, called DQ Herculis stars,
or intermediate polars, do not exhibit synchronous rotation.

2
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The visible light observed from these systems is in the form of cyclotron radiation
emitted by nonrelativistic electrons spiraling along the magnetic field lines of the accretion
column. This is the nonrelativistic analog of the synchrotron radiation emitted by relativistic
electrons. In contrast to the continuous spectrum of synchrotron radiation, most of the
energy of cyclotron radiation is emitted at the cyclotron frequency,

νc = eB

2πme

. (32)

For Bs = 1000 T, νc = 2.8 × 1013 Hz, which is in the infrared. However, a small fraction
of the energy is emitted at higher harmonics (multiples) of νc and may be detected at visible
wavelengths by astronomers on Earth. The cyclotron radiation is circularly polarized when
observed parallel to the direction of the magnetic field lines, and linearly polarized when
viewed perpendicular to the field lines.2 Thus, as the two stars orbit each other (typically
every 1 to 2 hours), the measured polarization changes smoothly between being circularly
and linearly polarized. In fact, it is this strong variable polarization (up to 30%) that gives
polars their name.

5 TYPE IA SUPERNOVAE

We have seen that there are many differences among the characteristics of individual novae.
The peak luminosity, the rate of decline, the presence of rapid fluctuations, and/or the
complete disappearance of the nova at visible wavelengths—all of these vary greatly from
system to system. On the other hand, another type of cataclysmic variable, the Type Ia
supernova, varies relatively little and in a systematic way. This means that it is possible
to use these exploding stars as calibrated luminosity sources (“standardizable candles”),
allowing astronomers to establish the distances to the systems in which they are found.

Observations

Type Ia supernovae are remarkably consistent in their energy output; at maximum light
most Type Ia’s reach an average maximum in the blue and visual wavelength bands of

⟨MB⟩ ≃ ⟨MV ⟩ ≃ −19.3 ± 0.03,

with a typical spread of less than about 0.3 magnitudes. As can be seen in Fig. 21, a clear
relationship exists between the peak brightness and the rate of decline in the light curve
(the brightest Type Ia’s decline the slowest), making it possible to accurately determine the
maximum luminosity of an individual Type Ia by measuring the rate of decline. Knowing
the luminosity (or absolute magnitude), we can compute the distance to the supernova.
Given their tremendous brightness, Type Ia supernovae serve as critically important tools

2 The electric field vector of linearly polarized light oscillates in a single plane, whereas for circularly polarized
light this plane of polarization rotates about the direction of travel.
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FIGURE 21 The rate of decline in the light curve of a Type Ia supernova is inversely correlated
with the maximum brightness of the light curve. (Figure adapted from Riess, Press, and Kirshner, Ap.
J., 438, L17, 1995.)

for measuring the distances to the galaxies in which they reside. This in turn means that
astronomers can probe the structure of the universe to great distances. In fact, Type Ia
supernovae played a crucial role in demonstrating that the expansion of the universe is
actually accelerating today, 13.7 billion years after the Big Bang, and that nearly two-thirds
of the universe consists of dark energy.

evolved objects that have either lost their hydrogen or had it converted to heavier elements,
or both. The spectral lines also show P-Cygni profiles, representative of mass loss. In
addition, the blueshifted absorption features indicate expansion velocities of the ejecta of
! 104 km s−1 (∼ 0.1c).

Models of Type Ia Supernovae

Given the remarkable consistency of Type Ia light curves and spectra, it appears that a fairly
uniform mechanism must be responsible for these extremely energetic events.

The standard model for Type Ia supernovae assumed by astronomers today is that these
events are due to the destruction of a white dwarf star in a binary system. If sufficient
mass falls onto the white dwarf, its mass can be driven to near the Chandrasekhar limit,
producing a catastrophic explosion. Still unclear at the time this text was written is the exact
mechanism (or mechanisms) that trigger the explosion.

Close Binary Star Systems

Type Ia supernovae do not exhibit hydrogen lines in their spectra and,  instead, 
show the strong presence of Si II lines, along with neutral and ionized lines 
of O, Mg, S, Ca and Fe. Given that hydrogen is the most abundant element in 
the universe, the absence of hydrogen indicates that Type Ia supernovae are



Two general scenarios have been proposed. In one scenario, known as double-
degenerate models, two white dwarf stars exist in a binary orbit. One of the most dramatic
predictions of Einstein’s general theory of relativity is the existence of gravitational waves
(or gravitational radiation). According to general relativity, mass acts on spacetime,
telling it how to curve. If the distribution of a system’s mass varies, the resulting changes
in the surrounding spacetime curvature may propagate outward as a gravitational wave,
carrying energy and angular momentum away from the system. (If the collapse of a star is
spherically symmetric, it will not produce gravitational waves; there must be a departure
from spherical symmetry.) When applied to a close binary system, general relativity shows
that the emission of gravitational radiation will cause the stars to spiral together. If the
orbital period is under about 14 hours, the loss of energy via gravitational waves governs
the subsequent evolution of a system with solar-mass components. For example, as a white
dwarf and a neutron star spiral closer together, the white dwarf may break up and donate
some of its mass and angular momentum to its companion. The result could be an isolated
millisecond pulsar. A system of two neutron stars, known as the Hulse–Taylor pulsar, has
confirmed this prediction of general relativity to incredibly high precision

In the case where two white dwarf stars are spiraling together, the less massive star
(which has the larger radius) will eventually spill over its Roche lobe and be completely
torn apart in just a few orbits. The resulting thick disk dumps its C–O-rich material onto
the more massive primary. As the mass of the primary grows and nears the Chandrasekhar
limit, nuclear reactions begin in the deep interior, eventually destroying the primary white
dwarf (this scenario was illustrated in Fig. 11).

Double-degenerate models appear to predict about the right number of mergers, con-
sistent with the observed Type Ia supernova rate in galaxies, and they naturally account
for the lack of hydrogen in the spectra of Type Ia’s. However, computer simulations of
nuclear burning suggest that the ignition may be off-center, resulting in ultimate collapse
to a neutron star, rather than complete disruption of the white dwarf as a supernova. In
addition, it appears that the production of heavy elements may be inconsistent with the
relative abundances observed in supernova spectra.

The other general scenario, known as single-degenerate models, involves an evolving
star in orbit about a white dwarf, much like the models of dwarf novae and novae. However,
in this case, the mass falling onto the white dwarf results in complete destruction of the
white dwarf in a Type Ia supernova. To date, this set of models is generally favored, but the
details of the eruption are still unclear.

One version of single-degenerate models suggests that as the material from the secondary
falls onto the primary, the helium in the gas will settle on top of the C–O white dwarf,
becoming degenerate. When enough helium has accumulated, a helium flash will occur.
Not only will this cause the helium to burn to carbon and oxygen, but it will also send
a shock wave downward into the degenerate C–O white dwarf, causing ignition of the
degenerate carbon and oxygen.

A second version of the single-degenerate models doesn’t invoke degenerate helium
burning on the surface but simply has carbon and oxygen igniting in the interior of the
white dwarf as the star nears the Chandrasekhar limit, at which point the degenerate gas is
no longer able to support the mass of the star. As the star approaches the fatal limit, two-

.
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and three-dimensional simulations suggest that multiple, independent ignition points may
occur deep within the core, resulting in nonspherical events.

What happens next is also a matter of significant debate and ongoing research. It is as yet
unclear if the resulting burning front of carbon and oxygen occurs at subsonic speeds (known
as a deflagration event) or if the front accelerates and steepens to become a supersonic
burning front (known as a detonation, or a true explosion). Precisely how the burning front
advances affects the details of the resulting light curve (the maximum luminosity and rate of
decay following maximum) as well as the relative abundances of the elements produced as
observed in the spectrum. Of course, the question of deflagration versus detonation applies
to successful double-degenerate models as well.

In all versions of the single-degenerate scenario, one of the general challenges has been
to have just the right rate of accretion from the secondary. If the accretion rate isn’t appro-
priately fine-tuned, the result could be a dwarf nova or a classical nova.

It is possible that both double- and single-degenerate mechanisms may be at work in
nature. It is also possible that some single-degenerate events (if they occur) may invoke
helium flashes while others may simply ignite carbon and oxygen in the interior without
the helium trigger. Perhaps even deflagration and detonation events occur. In any case, the
consistency of the light curves ultimately arises from the eruption of a C–O white dwarf
near 1.4 M⊙. The variations may arise from slight variations in mass and/or variations in
mechanisms.

Much work remains to be done in understanding Type Ia supernovae, which are so
critically important to so many aspects of modern astrophysics.

6 NEUTRON STARS AND BLACK HOLES IN BINARIES

If one of the stars in a close binary system is sufficiently massive that it explodes as a
core-collapse supernova, the result may be either a neutron star or a black hole orbiting
the companion star. In a semidetached system, hot gas can then spill through the inner
Lagrangian point from the distended atmosphere of the companion star onto the compact
object. A variety of intriguing phenomena are powered by the energy released when the
gas falls down the deep gravitational potential well onto the compact object. As will be
seen shortly, many of these systems emit copious quantities of X-rays. In fact, these binary
X-ray systems shine most strongly in the X-ray region of the electromagnetic spectrum.
Other systems may consist of two compact objects, such as the binary pulsars.

Formation of Binaries with Neutron Stars or Black Holes

Whether or not a binary system survives the supernova explosion of one of its component

2 We have also seen that asymmetric jets during the formation of a neutron star may give the neutron star a violent
kick, which would disrupt the system.
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stars depends on the amount of mass ejected from the system.24 Consider a system 
initially containing two stars of mass M1 and M2, separated by a distance a, that are in 
circular orbits about their common center of mass. We find that the total energy of the



system is

Ei = 1
2
M1v

2
1 + 1

2
M2v

2
2 − G

M1M2

a
= −G

M1M2

2a
. (33)

The speeds of the two stars are related by Eq. (7.4), M1v1 = M2v2. Now suppose that Star 1
explodes as a core-collapse supernova, leaving a remnant of mass MR . For a spherically
symmetric explosion, there is no change in the velocity of Star 1. Before the spherical shell
of ejecta reaches Star 2, its mass acts gravitationally as though it were still on Star 1

So far, the supernova has had no effect on the binary. However, as soon
as the shell has swept beyond Star 2, the gravitational influence of the ejecta is no longer
detectable.

Thus the main consequence of the supernova on the orbital dynamics of the binary
system arises from the ejection of mass, the removal of some of the gravitational glue that
was binding the stars together.2 Since the velocity of Star 2 is initially unchanged and
the separation of the two stars remains the same, the total energy of the system after the
explosion is now

Ef = 1
2
MRv2

1 + 1
2
M2v

2
2 − G

MRM2

a
. (34)

If the explosion results in an unbound system, then Ef ≥ 0. It is left as an exercise to show
that the mass of the remnant must satisfy

MR

M1 + M2
≤ 1

(2 + M2/M1)(1 + M2/M1)
<

1
2

(35)

for an unbound system. That is, at least one-half of the total mass of the binary system
must be ejected if the supernova explosion of Star 1 is to disrupt the system. If one-half
or more of the system’s mass is retained, the result will be a neutron star or a black hole
gravitationally bound to a companion star. For a massive companion star (M2 ≫ M1), this
is a likely result.

Capturing Isolated Neutron Stars

It is possible that isolated neutron stars, formed by core-collapse supernovae, may be grav-
itationally captured during a chance encounter with another star. Because the total energy
of two unbound stars is initially greater than zero, some of the excess kinetic energy must
be removed for a capture to occur.

other star, the resulting binary system will have a period ranging from several hours (with
a main-sequence star) to several days (with a giant).

2 The direct impact of the supernova blast on the companion star has been neglected, although this too will
contribute to disrupting the system.

5
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If the proximity of the two objects raises a tidal bulge on the nondegenerate star, 
energy may be dissipated by the damping mechanisms for pulsating stars. The out-
come of such a tidal capture depends on the nearness of the passage and the type of 
star involved. If the neutron star passes between about 1 to 3 times the radius of the



systems containing a neutron star over a period of some 1010 years. This is consistent with
the number of X-ray sources observed in globular clusters. (The estimated lifetime of a
binary X-ray system is on the order of 109 years, so only the most compact globular clusters
would be expected to harbor even one X-ray source at a given time.)

An alternative capture mechanism involves three (or more) stars. One of the stars would
be gravitationally flung from the system, removing energy and so allowing the capture to
take place.

Yet another possibility was envisioned by by Kip Thorne and Anna Żytkow of Caltech in
1977. Although a direct hit would destroy a main-sequence star, the penetration of a neutron
star into a giant star would bring it close to the star’s degenerate core. The result could be
a neutron star orbiting inside the giant star: a system that is known as a Thorne–Żytkow
object. It is thought that the envelope of the giant star would be quickly expelled, producing
a neutron star–white dwarf binary with an orbital period of about 10 minutes. (To date, these
objects remain hypothetical.)

Binary X-Ray Pulsars

Close binary systems containing neutron stars were first identified by their energetic emis-
sion of X-rays. The first source of X-rays beyond the Solar System was discovered in
1962 in the constellation Scorpius by a Geiger counter arcing above Earth’s atmosphere
in a sounding rocket. (X-rays cannot penetrate the atmosphere, so detectors and telescopes
designed for X-ray wavelengths must make their observations from space.2 ) This object,
called Sco X-1, is now known to be a binary X-ray pulsar (also called simply an X-ray
pulsar). The periodic eclipse of another X-ray pulsar, Cen X-3 in the constellation Cen-
taurus, revealed its binary nature. [It is important to note that the Crab pulsar also emits
X-rays (along with a small number of other isolated pulsars), but the Crab is primarily a
radio pulsar that radiates in every region of the electromagnetic spectrum.]

X-ray pulsars are powered by the gravitational potential energy released by accreting
matter. Recall from Example 1.2 that when mass falls from a great distance to the surface

X-ray pulsars also emit radio wavelength energy, just like isolated pulsars. However,
radio wavelength emissions are easily quelched by the accretion disk in the binary system,
and so the radio emissions are not as prominant as they are for isolated pulsars.

2 The first X-ray detector was designed to look for X-rays from the lunar surface, produced when solar wind
particles cause the lunar soil to fluoresce. The presence of enormously stronger cosmic X-ray sources came as a
surprise to astronomers at the time.
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This tidal capture process is most effective in regions that are extremely densely 
populated with stars, such as the centers of globular clusters. It is estimated that in 
a compact globular cluster, tidal capture could produce up to about ten close binary

of a neutron star, about 20% of its rest energy is released, an amount that far exceeds 
the fraction of a percent that would be produced by fusion. The observed X-ray lu-
minosities range up to 1031 W [the Eddington limit]. For a neutron star with a radius 
of 10 km, the Stefan–Boltzmann equation shows that the temperature associated with this 
luminosity is about 2 × 107 K. According to Wien’s law, the spectrum of a blackbody with 
this temperature would peak at an X-ray wavelength of about 0.15 nm.
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FIGURE 22 Accreting gas channeled onto a neutron star’s magnetic poles, where r ≈ rA.

1/r3

field. When the magnetic energy density um = B2/2µ0 becomes comparable to the
kinetic energy density uK = 1

2ρv2, the magnetic field will channel the infalling ionized
gases toward the poles of the neutron star; see Fig. 22. This occurs at a distance from
the star known as the Alfvén radius, rA, where

1
2
ρv2 = B2

2µ0
. (36)

For the special case of spherically symmetric accretion, with the gases starting at rest at a
great distance, energy conservation implies that the free-fall velocity is v = √

2GM/r for
a star of mass M . Furthermore, the density and velocity are related to the mass accretion
rate, Ṁ , by,

Ṁ = 4πr2ρv, (37)

and the radial dependence of the magnetic dipole field strength may be expressed as

B(r) = Bs

(

R

r

)3

, (38)

where Bs is the surface value of the magnetic field. Inserting these expressions into
Eq. (36) and solving for the Alfvén radius, we obtain

rA =
(

8π2B4
s R

12

µ2
0GMṀ2

)1/7

(39)

(the proof is left as an exercise). Of course, the accretion will not actually be spherically
symmetric. However, the magnetic field increases so rapidly as the falling matter approaches
the star that a more realistic calculation yields nearly the same result: The flow will be
disrupted at a disruption radius rd ,

rd = αrA, (40)

with α ∼ 0.5.

Close Binary Star Systems

Neutron stars are often accompanied by powerful magnetic fields. In fact, these 
fields may be sufficiently strong to prevent the accreting matter from even reach-
ing the star’s surface. The strength of the neutron star’s magnetic dipole field 
is proportional to , so the plunging gases encounter a rapidly increasing



Example 6.1. Before considering the details of channeled accretion onto a neutron
star, let’s look at the case of accretion onto the white dwarf considered in Example 2.1,
for which M = 0.85 M⊙, R = 0.0095 R⊙ = 6.6 × 106 m, and Ṁ = 1013 kg s−1 (1.6 ×
10−10 M⊙ yr−1). Assume that its magnetic field has a surface strength of Bs = 1000 T,
about 100 times stronger than the typical value for a white dwarf. Then, from Eq. ( 39),
the Alfvén radius is

rA = 6.07 × 108 m.

This is comparable to the separation of the stars in a cataclysmic variable (see Exam-
ple 4.1), so an accretion disk cannot form around a white dwarf with an extremely strong
magnetic field. Instead, the mass spilling through the inner Lagrangian point is confined
to a stream that narrows as it is magnetically directed toward one (or both) of the poles
of the white dwarf. In the absence of an accretion disk, all of the accretion energy will be
delivered to the pole(s) of the star, with an accretion luminosity of (Eq. 24)

Lacc = G
MṀ

R
= 1.71 × 1026 W.

A Polar Analog in a Neutron Star System

Example 6.2. Consider the case of accretion onto the neutron star described in Ex-
ample 2.1. For this star, M = 1.4 M⊙, R = 10 km, and Ṁ = 1014 kg s−1 (1.6 ×
10−9 M⊙ yr−1). Furthermore, take the value of the magnetic field at the neutron star’s
surface to be Bs = 108 T. The value of the Alfvén radius is then given by Eq. (39),

rA = 3.09 × 106 m.

Although 300 times the radius of the neutron star itself, this is much less than the value
of rcirc (Eq. 25) that describes the extent of an accretion disk. Thus an accretion disk
will form around the neutron star but will be disrupted near the neutron star’s surface as
shown in Fig. 22 (unless the magnetic field is quite weak, roughly < 104 T). As the
accreting gas is funneled onto one of the magnetic poles of the neutron star, it forms an
accretion column similar to the one described for polars. In this case, however, the accretion
luminosity (Eq. 24) is four orders of magnitude greater,

Lacc = G
MṀ

R
= 1.86 × 1030 W,

close to the Eddington limit of ∼ 1031 W. As Lacc approaches LEd, radiation pressure
elevates the shock front to heights reaching r ∼ 2R. As a result, X-rays are emitted over a
large solid angle.

Close Binary Star Systems



Eclipsing, Binary X-Ray Pulsar Systems

X-ray pulsar. Figure 23 shows the signal received from Hercules X-1, which exhibits
a pulse of X-rays every 1.245 s (the rotation period of the neutron star). Note that the broad
pulse (due to the large solid angle of the emission) may occupy ∼ 50% of the pulse period,
compared to sharper radio pulses which take up only 1% to 5%
of the pulse period. To date, about 20 binary X-ray pulsars have been found, with periods

Further confirmation that most X-ray pulsars are accreting neutron stars comes from the
observation that the periods of these objects are slowly decreasing. As time passes, they
spin faster.2 The time derivative of the star’s rotation period, Ṗ ≡ dP/dt , is related to the
rate of change of its angular momentum, L = Iω, by

dL

dt
= I

dω

dt
= I

d

dt

(

2π
P

)

= −2πI
Ṗ

P 2
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FIGURE 23 X-ray pulses from Her X-1, with a period of 1.245 s. The peaks are the X-ray counts
received from Her X-1 grouped in bins that are 0.096 s wide, and the heavier curve is a fit to the data
using sine functions. (Figure adapted from Tananbaum et al., Ap. J. Lett., 174, L143, 1972.)

2 he periods of radio pulsars increase with time as they lose energy due to magnetic dipole radiation.
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If the neutron star’s magnetic and rotation axes are not aligned, the X-ray  mitting 
region may be eclipsed periodically, and the result is an eclipsing, binary

ranging from 0.15 s to 853 s. White dwarfs cannot rotate as rapidly as the lower end 
of this period range without breaking up. This is one indication that X-ray pulsars are 
indeed accreting neutron stars.

e



where I is the moment of inertia of the neutron star. Near the disruption radius, the angular
momentum of the gas parcels orbiting in the accretion disk (L = mvr) is transferred to
the neutron star via magnetic torques. The time derivative of the neutron star’s angular
momentum is just the rate at which angular momentum arrives at the disruption radius, so
at r = rd we set

dL

dt
= Ṁvrd,

where the orbital velocity at r = rd is v = √
GM/rd [e = 0 and a = rd for a circular

orbit]. Equating these expressions for dL/dt and using the definitions of the Alfvèn and
disruption radii, Eqs. (39) and (40), results in

Ṗ

P
= −P

√
α

2πI

(

2
√

2πB2
s R

6G3M3Ṁ6

µ0

)1/7

. (41)

Example 6.3. The X-ray pulsar Centaurus X-3 has a period of 4.84 s and an X-ray
luminosity of about Lx = 5 × 1030 W. Assuming that it is a 1.4 M⊙ neutron star with a
radius of 10 km, its moment of inertia (assuming for simplicity that it is a uniform sphere)
is

I = 2
5
MR2 = 1.11 × 1038 kg m2.

Using Eq. (24) for the accretion luminosity, we find the mass transfer rate to be

Ṁ = RLx

GM
= 2.69 × 1014 kg s−1,

or 4.27 × 10−9 M⊙ yr−1. Then, for an assumed magnetic field of Bs = 108 T and α = 0.5,
Eq. (41) gives the fractional change in the period per second and per year:

Ṗ

P
= −2.74 × 10−11 s−1 = −8.64 × 10−4 yr−1.

That is, the characteristic time for the period to change is P/Ṗ = 1160 years.
The measured value for Cen X-3 is Ṗ /P = −2.8 × 10−4 yr−1, smaller than our estimate

by a factor of 3 but in good agreement with this simple argument. You may verify that if
a 0.85 M⊙ white dwarf with a radius of 6.6 × 106 m and Bs = 1000 T is used for the
accreting star, rather than a neutron star, then Ṗ /P = −1.03 × 10−5 yr−1. The measured
value is larger by a factor of 27. A white dwarf is hundreds of times larger than a neutron
star, so it has a much larger moment of inertia and is more difficult to spin up. The substan-
tially better agreement between the neutron star model and the observations obtained for
these systems is compelling evidence that neutron stars are the accreting objects in binary
X-ray pulsars.

Close Binary Star Systems
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FIGURE 24 Measured pulse arrival times (dots) for the binary X-ray pulsar SMC X-1 as a
function of its orbital phase. The curve is for the best-fit circular orbit, and the dots about the straight
line show the residuals from the best-fit orbit. (Figure adapted from Primini et al., Ap. J., 217, 543,
1977.)

As an X-ray pulsar orbits its binary companion, the distance from the pulsar to Earth
constantly changes. This results in a cyclic variation in the measured pulse period that is
analogous to the Doppler shift of a spectral line observed for a spectroscopic binary

Figure 24 shows the shift in pulse arrival times as a function of the orbital
phase for the X-ray pulsar SMC X-1 in the Small Magellanic Cloud. The orbit for this
system is almost perfectly circular, with a radius of 53.5 light-seconds = 0.107 AU, less
than one-third the size of Mercury’s orbit around the Sun.

A complete description of the binary system has been obtained for a small number of
eclipsing X-ray pulsars with visible companions. Such systems are analogous to double-
line, eclipsing, spectroscopic binaries. For example, in the SMC X-1 system the mass of the
secondary star is 17.0 M⊙ (with an uncertainty of about 4 M⊙), and its radius is 16.5 R⊙
(± 4 R⊙). The masses of the neutron stars have also been determined for these systems. The
results are consistent with a neutron star mass of 1.4 M⊙ (± 0.2 M⊙), in good agreement
with the Chandrasekhar limit.

X-Ray Bursters

If the magnetic field of the neutron star is too weak (≪ 108 T) to completely disrupt the
accretion disk and funnel the accreting matter onto its magnetic poles, these gases will settle
over the surface of the star. Without an accretion column to produce a hot spot, X-ray pulses
cannot be produced by the rotation of the neutron star. Instead, calculations indicate that
when a layer of hydrogen a few meters thick accumulates on the surface, a shell of hydrogen
slowly begins burning about a meter below the surface, with a shell of helium burning ignited
another meter below that; see Fig. 25. This fusion of helium is explosive and releases

.
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FIGURE 25 Surface layers on an accreting neutron star. (Figure adapted from Joss, Comments
Astrophys., 8, 109, 1979.)

a total of ∼ 1032 J in just a few seconds, with the surface reaching a temperature of about
3 × 107 K (twice the Sun’s central temperature). The resulting blackbody spectrum peaks
at X-ray wavelengths, and a flood of X-rays is liberated by this X-ray burster. Some of the
X-rays may be absorbed by the accretion disk and re-emitted as visible light, so an optical
flash is sometimes seen a few seconds after the X-ray burst. As the burst luminosity declines
in a matter of seconds, the spectrum matches that of a cooling blackbody with a radius of
∼ 10 km, consistent with the presence of a neutron star. After a time that can vary from a
few hours to a day or more, another layer of hydrogen accumulates and another X-ray burst
is triggered. More than 50 X-ray bursters have been found so far. Most are concentrated
near the Galactic plane, toward the center of our Galaxy, with some 20% located in old
globular clusters.

Low-Mass and Massive X-Ray Binaries

From these and other results, astronomers have identified two classes of binary X-ray
systems. The more common type consists of those with low-mass secondary stars (late
spectral-type stars with M2 ≤ 2 M⊙). These systems belong to the low-mass X-ray binaries
(LMXBs). LMXBs produce X-ray bursts rather than pulses, indicating that the neutron
star’s magnetic field is relatively weak. Because low-mass stars are small, the two stars
must orbit more closely if mass is to be transferred from one star to the other. For this
reason, the LMXBs have short orbital periods, from 33.5 days down to 11.4 minutes. About

It is thought that the gases accreting on X-ray pulsars are constantly undergoing fusion. However, recall from
Example 1.2 that the energy released in the accretion column will be about 30 times larger, so the energy from
fusion will be lost in the glare of the accretion energy.
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one-quarter of these systems are found within globular clusters, where the high number
density of stars makes the gravitational capture of a neutron star more likely. The neutron
stars in LMXBs may also have been formed by the accretion-induced collapse of a white
dwarf.

Systems with higher-mass secondaries are referred to as massive X-ray binaries
(MXRBs). About half of the approximately 130 known MXRBs are X-ray pulsars. With
giant or supergiant O and B stars available to fill their Roche lobes, the separation of the
stars can be larger and the orbital periods correspondingly longer, from 0.2 days up to
580 days. Even if the secondary star’s envelope does not overflow its Roche lobe, the
vigorous stellar winds of these stars may still provide the mass transfer rate needed to
sustain the production of X-rays. The MXRBs are found near the plane of our Galaxy,
where there are young massive stars and ongoing star formation. This is consistent with the
idea that an MXRB is the product of the normal evolution of a binary system containing a
massive star that survived the supernova explosion of its companion.

So far, only neutron stars have been considered as the accreting object in binary X-ray
systems. However, the gravitational potential well is even deeper for matter falling toward
a black hole. In this case, up to about 30% of the rest energy of the falling disk material

black hole rests on determining that the mass of a compact, X-ray-emitting object exceeds
the approximately 3 M⊙ upper limit for the mass of a rapidly rotating neutron star. Thus
the procedure for detecting a black hole in a binary X-ray system is similar to that used to
measure the masses of neutron stars in these systems.

At present, there are only a handful of X-ray binaries that allow such a dynamical deter-
mination of the masses involved. The best cases at the time of this writing are A0620−00,
V404 Cygni, Cygnus X-1, and LMC X-3. Since none of these systems exhibit eclipses,
the resulting uncertainty about their orbital inclinations means that the masses calculated

of the secondary star allows the measurement of the radial velocity of both the accretion
disk and the companion star. The identification of A0620−00 as a 3.82 ± 0.24 M⊙ black

The arguments for the other two systems, although strong, are not as conclusive. Neither
has a fully developed accretion disk, and so the velocities of both members cannot be
determined. Cygnus X-1, perhaps the best-known black hole candidate, is a bright MXRB.
Because almost all of the light comes from the secondary, Cyg X-1 is essentially a single-
line spectroscopic binary. The identification of Cyg X-1 as a black hole therefore depends
on the identification of the secondary star (HDE 226868) as a O9.7 Iab supergiant with a
mass of 17.8 M⊙. The most likely result, making reasonable assumptions about this binary
system, is that the mass of the compact object in Cyg X-1 is 10.1 M⊙. Even the worst-case
argument results in a secure lower limit of 3.4 M⊙, providing the evidence that Cyg X-1 is
a black hole.

Close Binary Star Systems

may be emitted as X-rays. In fact, these systems provide the best evidence 
for the existence of stellar-mass black holes. The gas spilling through the in-
ner Lagrangian point is heated to millions of kelvins as it spirals down through 
the black hole’s accretion disk and so emits X-rays. The identification of a

are lower limits. A0620−00 is an X-ray nova, powered by the sporadic accre-
tion of material from its companion, a K5 main-sequence star. The relative faintness

hole seems secure. V404 Cyg is also an X-ray nova, where recent measurements persua-
sively document the presence of a 12 M  black hole.⊙



The secondary star in the LMC X-3 system is a B3 main-sequence star that is orbiting
an unseen, more massive companion. Although the lower limit on the mass of the compact
companion is 3 M⊙, a more probable mass range is 4–9 M⊙—again, solid evidence for a
black hole. Other X-ray binary systems may contain black holes, such as Nova Mus 1991 in
the southern constellation Musca (the Fly), LMC X-3 in the Large Magellanic Cloud, and
CAL 87 (in the direction of the Large Magellanic Cloud), but the evidence in these cases is
not yet as strong.

SS 433

One more X-ray binary and possible black hole candidate should be mentioned: SS 433,
one of the most bizarre objects known to astronomers. In 1978, it was discovered that this
object displays three sets of emission lines. One set of spectral lines was greatly blueshifted,
another set was greatly redshifted, and a third set lacked a significant Doppler shift. Here
was an object with three components: Two were approaching and receding, respectively,
at one-quarter the speed of light while the third stayed nearly still! The wavelengths of the
shifted lines vary with a period of 164 days, while the wavelengths of the nearly stationary
lines show a smaller shift with a 13.1-day period. Furthermore, the position of SS 433 lies at
the center of a diffuse, elongated shell of gas known as W50, which is probably a supernova
remnant.

The 13.1-day period of SS 433 describes the orbit of a compact object (most probably a
neutron star, but perhaps a black hole) around the primary. The primary is thought to be a
10–20 M⊙ early-type star with a stellar wind that produces the broad stationary emission
lines.3 Surrounding the compact object is an accretion disk that contributes to the visible
light from the system equally with the secondary. A tidal interaction between the disk
and the two stars could be responsible for a precessional wobble of the disk that has a

◦

“SS” stands for the catalog of peculiar emission-line stars compiled by Bruce Stephenson and Nicholas
Sanduleak.

For example, one recent measurement of SS 433 favors a 0.8 M⊙ neutron star orbiting a 3.2 M⊙ companion.
Some astronomers have suggested that the primary may be a Wolf–Rayet star to account for the
broad stationary emission lines. Although a substantial percentage of Wolf–Rayet stars are found in binaries, these
stars’ own energetic winds, rather than the transfer of mass in a close binary system, seem to be responsible for
removing most of their hydrogen envelopes.
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period of 164 days, analogous to Earth’s 25,770-year precessional wobble There is broad 
agreement that the varying Doppler-shifted emission lines, shown in Fig. 26, come from 
two relativistic jets that expel particles at 0.26c in opposite directions along the axis of 
the disk. The jets are probably powered by the accretion of matter at a rate exceeding the 
Eddington limit, generating X-rays at a prodigious rate. This could produce a radiation 
pressure sufficient to expel a portion of the accreting gases at relativistic speeds in the 
direction of least resistance—perpendicular to the disk. As the disk precesses, two oppo-
sitely directed jets sweep out a cone in space every 164 days, resulting in cyclic variations 
in both the radial velocity of the jets and the observed Doppler shift. The collimation of the 
jets could be the result of the ionized gases moving along magnetic field lines. The axis of 
the precessional cone makes an angle of 79� with the line of sight; the cone’s axis is also 
closely aligned with the long axis of the probable supernova remnant, W50. In fact, there 
are two regions that have been observed to emit X-rays, presumably

.
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FIGURE 26 Doppler shifts measured for the emission lines in SS 433. z = 0.1 and z = 0.2
correspond to speeds of 28,500 km s−1 and 54,100 km s −1, respectively. (Figure adapted from
Margon, Grandi, and Downes, Ap. J., 241, 306, 1980.)

where the jets collide with the remnant’s gases and heat them to about 107 K. Figure 27
shows the general features of this incredible system.

The Fate of Binary X-Ray Systems

What is the fate of a binary X-ray system? As it reaches the endpoint of its evolution,
the secondary star will end up as a white dwarf, neutron star, or black hole. The effect on
the system depends on the mass of the secondary star. In low-mass systems (LMXBs), the
companion star will become a white dwarf without disturbing the circular orbit of the system.
On the other hand, the higher-mass secondary in a MXRB may explode as a supernova.
If more than half of the system’s mass is retained (Eq. 35), a pair of neutron stars will
circle each other in orbits that probably have been elongated by the blast. Otherwise, the
supernova may disrupt the system and hurl the solitary neutron stars into space. This is
consistent with observations that pulsars (like MXRBs) are concentrated near the plane of
our Galaxy and may have high space velocities that can exceed 1000 km s−1.

Millisecond Radio Pulsars

The principal way in which a binary system containing two neutron stars can be detected
is if at least one of them is a pulsar. Astronomers therefore search for cyclic variations in
the measured periods of radio pulsars, analogous to the effect described here for the X-ray
pulsars. Although half of all stars in the sky are actually multiple systems, none of the first
one hundred pulsars discovered belonged to a binary. The first binary pulsar, PSR 1913+16,
was discovered in 1974 by American astronomers Russell Hulse and Joseph Taylor, using
the Arecibo radio telescope. The search strategy for binary pulsars changed with the 1982
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FIGURE 27 SS 433. The axis of the cone swept out by the precessing jets makes a 79◦ angle
with the line of sight.

discovery by Donald Backer of UC Berkeley and his colleagues of the then-fastest known
pulsar, PSR 1937+214. With a period of 1.558 milliseconds, this pulsar spins 642 times each
second.31 Although this astounding rotation rate seemed to indicate a young pulsar, the very
small value of the period derivative (Ṗ = 1.051054 × 10−19) implies a weak magnetic field

from the secondary star could have spun up the neutron star to its present rapid rate. The
neutron star’s magnetic field may also have been rejuvenated by this process, although the
details of how this might occur are not yet clear.

A likely evolutionary picture has emerged that brings the observations of binary X-ray
sources and binary pulsars together. In this scenario, there are two classes of binary pulsars.

31Middle C on a piano has an audible frequency of 262 Hz. The pulsar’s rotation frequency is more than an octave
higher, between D# and E!
3 P/2Ṗ is an estimate of a pulsar’s age only if the pulsar’s spin has not been affected by accretion.2
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(≈ 8.6 × 104 T) and a very old pulsar. The age of the pulsar may be estimated as 
P/ 2  = 235 million years, an order of magnitude older than previously discovered 
pulsars.32 Although PSR 1937+214 is an isolated pulsar, the paradox of the oldest 
pulsar also being among the fastest quickly brought astronomers to a surprising 
conclusion: PSR 1937+214 must once have been a member of a low-mass X-ray 
 binary system. (Like PSR 1937+214, LMXBs have weak magnetic fields.) Accretion

Ṗ

Those with high-mass companions (neutron stars) have shorter periods and eccentric 
orbits and probably result from the evolution of a massive X-ray binary system. (An



MXRB that managed to retain more than half of its mass following the supernova of the
companion star would produce such a pair of neutron stars with elongated orbits.) The other
class of binary pulsars are characterized by low-mass companions (white dwarfs), longer
orbital periods, and circular orbits. These are probably the descendants of low-mass X-ray
binary systems.

Because LMXBs are common in globular clusters, radio astronomers slued their tele-
scopes toward these targets and discovered more binary and millisecond pulsars (those with
periods less than approximately 10 ms). Numerous surveys, including one conducted by the
Chandra X-Ray Observatory, suggest that 47 Tuc may have more than 300 neutron stars, ap-
proximately 25 of which are millisecond pulsars. The mounting statistics make it clear that
most of the globular cluster pulsars are members of binaries and that most (but not all) are
millisecond pulsars. (Conversely, most of the known millisecond pulsars have been found
in globular clusters.) If these pulsars are the evolutionary product of LMXBs, then how can
the absence of a white dwarf companion be explained for a significant minority of them?

Black Widow Pulsars

An answer may be found from observations of PSR 1957+20. It is a rarity: a binary mil-
lisecond pulsar that eclipses its companion, a meager 0.025 M⊙ white dwarf. However, the

The pulsar seems to be evaporating its white dwarf companion with its energetic beam of
photons and charged particles. Within a few million years, the white dwarf may disappear,
devoured by this black widow pulsar; see Fig. 28.

FIGURE 28 Gas being removed by the “black widow pulsar,” PSR 1957+20. The pulsar is at
the intersection of the white lines. (Photo courtesy of S. Kulkarni and J. Hester, Caltech.)
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eclipses last for some 10% of the orbit, implying that the light is blocked by an object 
larger than the Sun. Significantly, the dispersion of the pulsar signal increases just be-
fore and after the eclipse, indicating that the white dwarf is surrounded by ionized gas.



Another example of the ablation of an eclipsing millisecond pulsar’s companion has
been found for PSR 1744−24A in the globular cluster Terzan 5, where the eclipses last for
half of the orbital period. It is possible that some of the evaporated material may form a
disk of gas and dust around the pulsar that could eventually (after a million years or so)
condense and form planets around the pulsar. Or, if the evaporation of the companion star
is incomplete, a planet-size remnant could be left orbiting the pulsar.

Mechanisms such as these may be responsible for the three planets thought to be traveling
in circular orbits around PSR 1257+12, some 500 pc away in the constellation Virgo. As
determined from a careful analysis of pulse arrival times, the innermost planet has a mass of
0.015 M⊕ that is 0.19 AU from the pulsar, followed by a 3.4 M⊕ object that is at a distance
of 0.36 AU. The outermost planet’s mass is 2.8 M⊕, and it is at a distance of 0.47 AU.

As more millisecond pulsars are discovered, it should become clear whether the foregoing
evolutionary picture is correct.

Double Neutron Star Binaries

A small number of detached binary systems are known to exist in which both both members
are neutron stars. As highly relativistic systems with no current mass exchange between the
system members, these double neutron star binaries are exquisite natural laboratories for
the testing of predictions of the General Theory of Relativity.

The first such system discovered is the Hulse–Taylor pulsar, PSR 1913+16, with an
orbital separation just a little larger than the Sun’s diameter. A 30-year study of this system
has confirmed the existence of gravitational waves.3

Nearly everything is known about the Hulse–Taylor system with incredible precision,
as can be seen by inspecting the observational data in Table 1. Because of this level

TABLE 1 Data for the Hulse–Taylor Pulsar, PSR 1913+16.

Parameter Value Uncertainty
Pulse Frequency (ω) 16.94053918425292 Hz ± 15 × 10−14 Hz
Pulse Frequency Derivative (ω̇) −2.47583 × 10−15 Hz s−1 ± 3 × 10−20 Hz s−1

Mass (pulsar) 1.4414 M⊙ ± 0.0002 M⊙
Mass (companion) 1.3867 M⊙ ± 0.0002 M⊙
Eccentricity (e) 0.6171338 ± 0.0000004
Period of Orbit (Porb) 0.322997448930 d ± 4 × 10−13 d
Period of Oribt Derivative (Ṗorb) −2.4056 × 10−12 ± 0.0051 × 10−12

Periastron shift (ω̇orb) 4.226595◦ yr−1 ± 0.000005◦ yr−1

Notes:

1. Data for ω and ω̇ from epoch January 14, 1986;
see http://www.atnf.csiro.au/research/pulsar/psrcat/

2. Remaining data from J. M. Weisberg and J. H. Taylor (2005).

3 Russell Hulse and Joseph Taylor shared the 1993 Nobel Prize for their discovery of PSR 1913+16.
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of precision, this binary system provides an ideal natural laboratory for test-
ing Einstein’s theory of gravity. For example, as Mercury passes through the



1975 1980 1985 1990 1995 2000 2005
Year

General relativity prediction

–40

–35

–30

–25

–20

–15

–10

–5

0

C
um

ul
at

iv
e 

sh
if

t o
f p

er
ia

st
ro

n 
tim

e 
(s

)

FIGURE 29 Observations (dots) of the delay in the time of periastron for PSR 1913+16, com-
pared with the prediction of the theory of general relativity (solid line). [Adapted from a figure courtesy
of J. M. Weisberg and J. H. Taylor (2005).]

curved spacetime near the Sun, the position of perihelion in its orbit is shifted by 43′′ per

is in excellent agreement with the measurement of 4.226595 ± 0.000005◦ yr−1 (35,000
times Mercury’s rate of shift). This effect on the orbit is cumulative; with every orbit, the
pulsar arrives later and later at the point of periastron. Figure 29 shows the incredible
agreement between theoretical and observed values of the accumulating time delay.

The most spectacular aspect of the studies of PSR 1913+16 is the confirmation of the
existence of gravitational radiation. As the two neutron stars move in their orbits, gravita-
tional waves carry energy away from the system and the orbital period decreases.According
to general relativity, the rate at which the orbital period changes as a consequence of the
emission of gravitational quadrupole radiation3 is

Ṗorb = dPorb

dt
= −96

5
G3M2µ

c5

(

4π2

GM

)4/3
f (e)

P
5/3
orb

, (42)

3 The term quadrupole describes the geometry of the emitted gravitational radiation, just as electric dipole radiation
describes the electromagnetic radiation emitted by two electric charges moving around each other.
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century. For PSR 1913+16, general relativity predicts a similar shift in the point of 
periastron, where the two neutron stars are nearest each other. The theoretical value



where

M = M1 + M2

µ = M1M2

M1 + M2

and f (e) describes the effect of the eccentricity of the orbit,

f (e) =
(

1 + 73
24

e2 + 37
96

e4
)

(

1 − e2)−7/2
.

(There are also higher-order correction terms that have been neglected here.) Inserting the
preceding values for the masses and eccentricity, the theoretical rate of orbital period de-
cay is calculated to be Ṗorb,predict = −(2.40242 ± 0.00002) × 10−12, which agrees with the
measured value of Ṗorb,meas = −(2.4056 ± 0.0051) × 10−12 to within 0.13%. In presenting
the results of an earlier calculation of the orbital period decay in 1984, Joel Weisberg and
Joseph Taylor wrote, “It now seems an inescapable conclusion that gravitational radiation
exists as predicted by the general relativistic quadrupole formula.” Astronomers are fortu-
nate to have caught this superb natural laboratory before it disappears. As the separation of
the neutron stars shrinks by about 3 mm per orbit, the system will coalesce some 300 million
years in the future.

Another tremendous natural laboratory for testing general relativity was discovered in
2003. This double neutron star system is actually a binary pulsar system. J0737–3039A has
a pulse period of PA = 0.02269937855615 ± 6 × 10−14 s, and J0737–3039B has a pulse
period of PB = 2.7734607474 ± 4 × 10−10 s. As with the Hulse–Taylor pulsar, this (thus
far) unique system provides a valuable test of orbital precession and gravitational radiation.
However, J0737–3039A/B can also test the prediction of delayed arrival times for signals
from one pulsar passing through the gravitational well of the other pulsar.
As their signals interact with each other’s magnetic field and with the plasma environment,
they provide an opportunity to test theories about plasma physics as well. It may also be
possible to measure the moments of inertia of the pulsars, providing important tests of the
interior structure models of neutron stars, including their exotic equations of state.

Short–Hard Gamma Ray Bursts

ray bursts (< 2 s) are the result of the mergers of compact objects, either two neutron stars
or a neutron star and a black hole.

The first clear detections of mergers of compact objects in binaries were obtained by
the Swift and HETE-2 spacecraft in 2005. The July 9, 2005, event in particular also pro-
duced a visible-light afterglow that allowed astronomers to unambiguously identify the host
galaxy. Short–hard gamma ray bursts emit about 1000 times less energy than the long–soft
events do.

Close Binary Star Systems

What will be the consequence of the merger of the two neutron stars? 
 Extensive observations have confirmed that long–soft gamma ray bursts  
(> 2 s) are extreme examples of core-collapse supernovae (collapsars or su-
pranovas). On the other hand, it is now believed that short–hard gamma



The Hulse–Taylor system is destined to produce a short–hard gamma ray burst, although
it may or may not be observable from Earth, depending on the orientation of the jet.
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PROBLEM SET

1 Use the ideal gas law to argue that in a close binary system, the temperature of a star’s
photosphere is approximately constant along an equipotential surface. What effect could the
proximity of the other star have on your argument?

2 Each of the Lagrange points L4 and L5 forms an equilateral triangle with masses M1 and M2

in Fig. 3. Use this to confirm the value of the effective gravitational potential at L4 and L5

given in the figure caption.

–2 –1 0 1 2
–2

–1

0

1

2

M1 M2L1 L2L3

L4

L5

y/
a

x/a

FIGURE� 3 Equipotentials for M1 = 0.85 M⊙, M2 = 0.17 M⊙, and a = 5 × 108 m = 0.718 R⊙.
The axes are in units of a, with the system’s center of mass (the “×”) at the origin. Starting at the top of
the figure and moving down toward the center of mass, the values of# in units of G(M1 + M2)/a =
2.71 × 1011 J kg−1 for the equipotential curves are # = −1.875, −1.768, −1.583, −1.583, −1.768
(the “dumbbell”), −1.875 (the Roche lobe), and −3 (the spheres). L4 and L5 are local maxima, with
# = −1.431.

3 (a) Consider a gas of density ρ moving with velocity v across an area A perpendicular to the
flow of the gas. Show that the rate at which mass crosses the area is given by Eq. ( 11).

(b) Derive Eq. ( 12) for the radius of the intersection of two identical overlapping spheres,
when d ≪ R.

Close Binary Star Systems

Ṁ = ρvA. (11)

x =
√

Rd (12)

From Chapter 1  of An Introduction to Modern Astrophysic Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 
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5 Integrate Eq. ( 15) for the ring luminosity from r = R to r = ∞ [with Eq. ( 19) for the
disk temperature]. Does your answer agree with Eq. ( 23) for the disk luminosity?

dLring = 4πrσT 4 dr

= Tdisk

(

R

r

)3/4
(

1 −
√

R/r
)1/4

,

Ldisk = G
MṀ

2R
.

6 Consider an “average” dwarf nova that has a mass transfer rate of

Ṁ = 1013.5 kg s−1 = 5 × 10−10 M⊙ yr−1

during an outburst that lasts for 10 days. Estimate the total energy released and the absolute
magnitude of the dwarf nova during the outburst. Use values for Z Cha’s white dwarf from
Example 4.1

stars.

7 Assume that the absolute bolometric magnitude of a dwarf nova during quiescence is 7.5 and
that it brightens by three magnitudes during outburst. Using values for Z Cha, estimate the rate
of mass transfer through the accretion disk.

8 When the accretion disk in a cataclysmic variable is eclipsed by the secondary star, the blue-
shifted emission line is the first to disappear at the beginning of the eclipse, and the redshifted
emission line is the last to reappear when the eclipse ends. What does this have to say about
the directions of rotation of the binary system and the accretion disk?

9 (a) Show that in a close binary system where angular momentum is conserved, the change in
orbital period produced by mass transfer is given by

1
P

dP

dt
= 3Ṁ1

M1 − M2

M1M2
.

(b) U Cephei (an Algol system) has an orbital period of 2.49 days that has increased by about
20 s in the past 100 years. The masses of the two stars are M1 = 2.9 M⊙ and M2 = 1.4 M⊙.
Assuming that this change is due to the transfer of mass between the two stars in this Algol
system, estimate the mass transfer rate. Which of these stars is gaining mass?

10 Algol (the “demon” star, in Arabic) is a semidetached binary. Every 2.87 days, its brilliance is
reduced by more than half as it undergoes a deep eclipse, its apparent magnitude dimming from
2.1 to 3.4. The system consists of a B8 main-sequence star and a late-type (G or K) subgiant;
the deep eclipses occur when the larger, cooler star (the subgiant) moves in front of its smaller,
brighter companion. The “Algol paradox,” which troubled astronomers in the first half of the
twentieth century, is that according to the ideas of stellar evolution discussed in Section 10.6,
the more massive B8 star should have been the first to evolve off the main sequence. What is
your solution to this paradox? (The Algol system actually contains a third star that orbits the
other two every 1.86 years, but this has nothing to do with the solution to the Algol paradox.)

Algol may be easily found in the constellation Perseus (the Hero, who rescued Andromeda
in Greek mythology).

11 Consider a 10−4 M⊙ layer of hydrogen on the surface of a white dwarf. If this layer were
completely fused into helium, how long would the resulting nova last (assuming a luminosity
equal to the Eddington luminosity)? What does this say about the amount of hydrogen that
actually undergoes fusion during a nova outburst?

12 Consider a layer of 10−4 M⊙ of hydrogen on the surface of a white dwarf. Compare the
gravitational binding energy before the nova outburst to the kinetic energy of the ejected layer
when it has traveled far from the white dwarf and has a speed of 1000 km s−1.

primary and secondary

Close Binary Star Systems: Problem Set

(15)

(19)

(23)

of Close Binary Star Systems .“ ”
by the

4 Use Eq. ( 19) to show that the maximum disk temperature is found at r = (49/36)R and is
equal to Tmax = 0.488Tdisk.

= Tdisk

(

R

r

)3/4
(

1 −
√

R/r
)1/4

, (19)

 Neglect the small amount of light contributed



(a) Show that the density of the expanding shell at a distance r is

ρ = Ṁeject/4πr2v.

(b) Let the mean opacity, κ , of the expanding gases be a constant. Suppose that at some time
t = 0, the outer radius of the shell was R, and the radius of the photosphere, where τ = 2/3,
was R0. Show that

1
R

= 1
R0

− 1
R∞

,

where

R∞ ≡ 3κṀeject

8πv
.

(The reason for the “∞” subscript will soon become clear.)
(c) At some later time t , the radius of the shell will be R + vt and the radius of the photosphere

will be R(t). Show that

1
R + vt

= 1
R(t)

− 1
R∞

.

(d) Combine the results from parts (b) and (c) to write

R(t) = R0 + vt (1 − R0/R∞)2

1 + (vt/R∞)(1 − R0/R∞)
,

(e) Argue that terms containing R0/R∞ are very small and can be ignored, and so obtain

R(t) ≃ vt

1 + vt/R∞
.

(f) Show that the fireball’s photosphere initially expands linearly with time and then ap-
proaches the limiting value of R∞, in agreement with Eq. 30).

R∞ = 3κṀeject

8πv
.

(

(g) Using the data given in the text following Eq. ( 31), make a graph of R(t) vs. t for the
five days after the nova explodes. The “knee” in the graphs marks the end of the linear
expansion period; estimate when this occurs. How does this compare with the duration of
the optically thick fireball phase of the nova?

14 Use Eq. ( 31) to estimate the photospheric temperature of a nova fireball, adopting the
Eddington luminosity for the luminosity of the fireball.

T∞ =
(

L

4πσ

)1/4
(

8πv

3κṀeject

)1/2

.

T∞ =
(

L

4πσ

)1/4
(

8πv

3κṀeject

)1/2

.

15 Assuming that the hydrostatic-burning phase of a nova lasts for 100 days, find the (constant)
rate at which mass is ejected, Ṁeject , for a surface layer of 10−4 M⊙.

16 For each kilogram of a carbon–oxygen composition (30% 12
6C) that is burned to produce iron,

7.3 × 1013 J of energy is released. Assuming an initial 1.38 M⊙ white dwarf with a radius of
1600 km, how much iron would have to be produced to cause the star to be gravitationally
unbound? How much additional iron would have to be manufactured to produce a Type Ia

Close Binary Star Systems: Problem Set

(30)

(31)

(31)

13 In this problem, you will examine the fireball expansion phase of a nova shell. Suppose that
mass is ejected by a nova at a constant rate of Ṁeject and at a constant speed v.



17 Use Eqs. (33), (34), and the equation below to derive Eq. (35), the condition for a
disrupt a binary system.

m1

m2
= v2

v1
.

Ei = 1
2
M1v

2
1 + 1

2
M2v

2
2 − G

M1M2

a
= −G

M1M2

2a
.

MR

M1 + M2
≤ 1

(2 + M2/M1)(1 + M2/M1)
<

1
2

18 (a) Show that the Alfvèn radius is given by Eq. (39).

rA =
(

8π2B4
s R

12

µ2
0GMṀ2

)1/7

(b) Show that Ṗ /P for the spin-up of an X-ray pulsar is given by Eq. (41).

Ṗ

P
= −P

√
α

2πI

(

2
√

2πB2
s R

6G3M3Ṁ6

µ0

)1/7

.

19 Find the value of the magnetic field for which the Alfvèn radius is equal to the radius of the
white dwarf found in Example 2.1 Do the same thing for

example.
of

neutron star used in that

20 Estimate the lifetime of a binary X-ray system using the information in Example
the lifetime to be the time required to transfer a mass of 1 M⊙.

21 The X-ray pulsar 4U0115+63 has a period of 3.61 s and an X-ray luminosity of about Lx =
3.8 × 1029 W. Assuming that it is a 1.4 M⊙ neutron star with a radius of 10 km and a surface
magnetic field of 108 T, find its mass transfer rate, Ṁ , and the value of Ṗ /P . Repeat these
calculations assuming that this object is a 0.85 M⊙ white dwarf with a radius of 6.6 × 106 m and
a surface magnetic field of 1000 T. For which of these models do you obtain better agreement
with the measured value of Ṗ /P = −3.2 × 10−5 yr−1?

22 (a) Use Eq. (24) to show that the spin-up rate can be written as

Lacc = G
MṀ

R
.

Close Binary Star Systems: Problem Set

supernova to

(33)

(35)

Ef = 1
2
MRv2

1 + 1
2
M2v

2
2 − G

MRM2

a
. (34)

(39)

(41)
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. Take

(24)

−supernova with an average ejecta speed of 5000 km s 1? Take the gravitational potential
energy to be −5.1 × 1043 J for a realistic white dwarf model, and express your answers in
units of M⊙.

2.1

log10

(

− Ṗ

P

)

= log10

(

PL6/7
acc

)

+ log10

⎡

⎣

√
α

2πI

(

2
√

2πB2
s R

12

µ0 G3M3

)1/7
⎤

⎦ .

The term on the left and the first term on the right consist of quantities that can be measured
observationally. The second term on the right depends on the specific model (neutron star
or white dwarf) of the X-ray pulsar.



TABLE 2 X-ray Pulsar Data for Problem 22. (Data from Rappaport and Joss, Nature, 266,
683, 1977, and Joss and Rappaport, Annu. Rev. Astron. Astrophys., 22, 537, 1984.)

P Lacc −Ṗ /P

System (s) (1030 W) (yr −1)

SMC X-1 0.714 50 7.1 × 10−4

Her X-1 1.24 1 2.9 × 10−6

Cen X-3 4.84 5 2.8 × 10−4

A0535+26 104 6 3.5 × 10−2

GX301−2 696 0.3 7.0 × 10−3

4U0352+30 835 0.0004 1.8 ×10−4

23 (a) Consider an X-ray burster that releases 1032 J in 5 seconds. If the shape of its peak spectrum
is that of a 2 × 107 K blackbody, estimate the radius of the underlying neutron star.

(b) sing the Stefan–Boltzmann formula to find the radius of a compact blackbody can lead
to an overestimate of its radius. Use a more accurate
value for the radius of the neutron star.

U
the below equation to find

R∞ = R
√

1 − 2GM/Rc2
.

24 Make a scale drawing of the SMC X-1 binary pulsar system, including the size of the secondary
star. Assuming that the primary is a 1.4 M⊙ neutron star, locate the system’s center of mass
and its inner Lagrangian point, L1. (You can omit the accretion disk.)

25 The relativistic (v/c = 0.26) jets coming from the accretion disk in SS 433 sweep out cones in
space as the disk precesses. The central axis of these cones makes an angle of 79◦ with the line
of sight, and the half-angle of each cone is 20◦. This means that at some point in the precession
cycle, the jets are moving perpendicular to the line of sight. Yet, from Fig. 26, the radial
velocities obtained from the Doppler-shifted spectral lines do not cross at zero radial velocity,
but at ∼ 10,000 km s−1. Use to explain this discrepancy in terms of a

Doppler shift. (You can ignore the speed of the SS 433 binary system itself, which
about 70 km s−1.)

the below equation 

is only
transverse
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(b) Make a graph of log10(−Ṗ /P ) (vertical axis) vs. log10

(

PL6/7
acc

)

(horizontal axis). Use the
values from Example 6.3 to plot two lines, one for a

dwarf. Let log10

(

PL6/7
acc

)

run from 25 to 29.

(c) Use the data in Table 2 to plot the positions of six binary X-ray pulsars on your graph.
(You will have to convert −Ṗ /P into units of s−1.)

(d) Which model of a binary X-ray pulsar is in better agreement with the data? Comment on
the position of Her X-1 on your graph.

of
star and one for a white

Close Binary Star Systems“ ”
neutron



26 The distance to SS 433 is about 5.5 kpc, and the angular separation of SS 433 and the X-ray
emitting regions (where the jets interact with the gases of W50) extends as far as 44′. Estimate
a lower limit for the amount of time the jets have been active.

27 PSR 1953+29 is a millisecond pulsar with a period of 6.133 ms. The measured period derivative
for PSR 1953+29 is Ṗ = 3 × 10−20. stimate the age of this millisecond assuming that
no accretion has occurred to alter the pulsar’s spin. Also, use to estimate
the value of this pulsar’s magnetic field.

E
the belowequation   

pulsar

,

B = 1
2πR3 sin θ

√

3µ0c3IP Ṗ

2π
.

28 Integrate Eq. ( 41) for the spin-up of an X-ray pulsar to estimate the time for a millisecond
pulsar to be spun up to a final period of 1 ms from an initial period of 100 s (longer than the
longest known pulsar period of 11.7 s, and within the range of X-ray pulsar periods). Assume
a 1.4 M⊙ neutron star with a radius of 10 km. Use Bs = 104 T for the magnetic field and
Ṁ = 1014 kg s−1 for the mass transfer rate. How much mass is transferred in that time (in
kilograms and in solar masses)?

29 The three planets orbiting PSR 1257+12 have orbital periods of 25.34 d, 66.54 d, and 98.22 d.
Verify that these objects obey Kepler’s third law.

30 (a) Use Kepler’s third law to find the semimajor axis of the orbit of the binary pulsar
PSR 1913+16.

(b) What is the change in the semimajor axis after one orbital period of the pulsar?

COMPUTER PROBLEMS

3 (a) Use the StatStar model data and Eq. ( 14) to make a graph of log10 Ṁ

(vertical axis) vs. log10 d (horizontal axis). Use the slope of your graph to find how the
mass transfer rate, Ṁ , depends on d.

 below1
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FIGURE 26 Doppler shifts measured for the emission lines in SS 433. z = 0.1 and z = 0.2
correspond to speeds of 28,500 km s−1 and 54,100 km s−1 , respectively. (Figure adapted from
Margon, Grandi, and Downes, Ap. J., 241, 306, 1980.)

νobs = νrest

√

1 − u2/c2

1 + (u/c) cos θ
= νrest

√

1 − u2/c2

1 + vr/c
,



TABLE A 1 M⊙ StatStar Model for Problem 28. Te = 5504 K.

i r (m) T (K) ρ
(

kg m−3) κ
(

m2 kg−1)

0 7.100764E+08 0.000000E+00 0.000000E+00 0.000000E+00
1 7.093244E+08 3.379636E+03 2.163524E−08 2.480119E+01
2 7.092541E+08 3.573309E+03 3.028525E−08 2.672381E+01
3 7.091783E+08 3.826212E+03 4.206871E−08 2.737703E+01
4 7.090959E+08 4.133144E+03 5.814973E−08 2.708765E+01
5 7.090062E+08 4.488020E+03 8.015188E−08 2.625565E+01
6 7.089085E+08 4.887027E+03 1.103146E−07 2.517004E+01
7 7.088019E+08 5.329075E+03 1.517126E−07 2.399474E+01
8 7.086856E+08 5.815187E+03 2.085648E−07 2.281158E+01
9 7.085588E+08 6.347784E+03 2.866621E−07 2.165611E+01

10 7.084205E+08 6.930293E+03 3.939580E−07 2.054686E+01
11 7.082697E+08 7.566856E+03 5.413734E−07 1.948823E+01
12 7.081052E+08 8.262201E+03 7.439096E−07 1.848131E+01
13 7.079259E+08 9.021603E+03 1.022171E−06 1.752513E+01
14 7.077303E+08 9.850881E+03 1.404459E−06 1.661785E+01
15 7.075169E+08 1.075642E+04 1.929644E−06 1.575731E+01
16 7.072843E+08 1.174520E+04 2.651111E−06 1.494128E+01
17 7.070306E+08 1.282486E+04 3.642174E−06 1.416754E+01
18 7.067540E+08 1.400375E+04 5.003513E−06 1.343396E+01
19 7.064524E+08 1.529096E+04 6.873380E−06 1.273849E+01
20 7.061235E+08 1.669643E+04 9.441600E−06 1.207917E+01
21 7.057649E+08 1.823102E+04 1.296880E−05 1.145414E+01
22 7.053741E+08 1.990656E+04 1.781279E−05 1.086165E+01
23 7.049480E+08 2.173599E+04 2.446473E−05 1.030001E+01
24 7.044836E+08 2.373341E+04 3.359882E−05 9.767631E+00
25 7.039774E+08 2.591421E+04 4.614038E−05 9.263005E+00
26 7.034259E+08 2.829519E+04 6.335925E−05 8.784696E+00
27 7.028250E+08 3.089468E+04 8.699788E−05 8.331344E+00
28 7.021704E+08 3.373266E+04 1.194469E−04 7.901659E+00
29 7.014574E+08 3.683096E+04 1.639859E−04 7.494416E+00
30 7.006810E+08 4.021337E+04 2.251132E−04 7.108452E+00
31 6.998356E+08 4.390583E+04 3.089976E−04 6.742665E+00
32 6.989155E+08 4.793666E+04 4.240980E−04 6.396010E+00
33 6.979141E+08 5.233670E+04 5.820105E−04 6.067495E+00
34 6.968247E+08 5.713961E+04 7.986295E−04 5.756179E+00
35 6.956399E+08 6.238205E+04 1.095736E−03 5.461170E+00
36 6.943518E+08 6.810401E+04 1.503169E−03 5.181621E+00
37 6.929517E+08 7.434904E+04 2.061803E−03 4.916730E+00
38 6.914307E+08 8.116461E+04 2.827602E−03 4.665735E+00
39 6.897790E+08 8.860239E+04 3.877181E−03 4.427914E+00
40 6.879861E+08 9.671869E+04 5.315384E−03 4.202584E+00
41 6.860411E+08 1.055748E+05 7.285639E−03 3.989094E+00

Ṁ ≈ πR dρ

√

3kT

mH

,

(b) Use Eqs. (L.1) and (L.2) to show that Ṁ ∝ d4.75 near the surface, and so verify that the
mass transfer rate increases rapidly with the overlap distance d of two stars. Note that your
answer to part (a) will be slightly different from this because of the density-dependence
of tog bf (the ratio of the guillotine factor to the gaunt factor) calculated in the Opacity
routine.
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3 Use Eq. ( 19) and Wien’s law to make two log-log graphs: (1) the disk temperature, T (r),
and (2) the peak wavelength [λmax(r)] of the blackbody spectrum, for the accretion disk around
the black hole A0620−00 as a function of the radial position r . For this system, the mass of
the black hole is 3.82 M⊙, the mass of the secondary star 0.36 M⊙, and the period of the orbit
is 0.3226 day. Assume Ṁ = 1014 kg s−1 (about 10−9 M⊙ yr−1), and use the Schwarzschild
radius, RS , for the radius of the black hole. (On your graph, plot r/RS

r .) For a nonrotating black hole, the last stable orbit for a massive particle is at 3RS ,
as the inner edge of the disk. Let the outer edge of the disk be determined by

law along with Eqs. ( 25) and ( 26). On your log-log graph of λmax vs. r/RS ,
regions of the disk that emit X-ray, ultraviolet, visible, and infrared radiation.

the below equation

= Tdisk

(

R

r

)3/4
(

1 −
√

R/r
)1/4

,

rcirc = a

(

ℓ1

a

)4 (

1 + M2

M1

)

= a

[

0.500 − 0.227 log10

(

M2

M1

)]4 (

1 + M2

M1

)

.

Rdisk ≈ 2rcirc

RS = 2GM/c2,
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(19)

(25)

(26)

2



Physical Processes
in the Solar System

From Chapter 1  of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, ale A. Ostlie. Copyright 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 

9 ,



Physical Processes
in the Solar System

1 A Brief Survey
2 Tidal Forces
3 The Physics of Atmospheres

1 A BRIEF SURVEY

in some detail, namely our own. We will also consider the growing body of information
regarding extrasolar planets. However, it is beyond the scope of this text to describe all
of the fascinating details of each of the planets in our Solar System and their moons, not
to mention the meteorites, asteroids, comets, uiper Belt objects, and interplanetary dust
that is left to the many excellent books dedicated to the subject. Rather, we will consider
the basic features of these objects and extrasolar planets in the context of stellar evolution,
together with some of the underlying physical processes that have helped to shape them.

General Characteristics of the Planets

The planets have long been studied from Earth, first with the naked eye and later with
telescopes. Since the advent of space flight, we have sent manned and unmanned spacecraft
to our Moon, and, with the exception of Pluto, we have visited (with unmanned probes)
each of the other planets in the Solar System.

Each of the planets (excluding Pluto, 2003 B313,1 and other members of the uiper
belt) can be thought of as belonging to one of two major groups. The rocky terrestrial

12003 B313 was discovered in January 200 , based on images obtained in 2003. As of May 2006, an
official classification of 2003 B313 as a major planet or a minor planet had not yet been made, nor has
a formal name been given to the object. These official designations are made by the International Astronomical

nion.

Based on the observations of protostars and very young stars (e.g., HH 30, 
Vega, β Pictoris, and the proplyds in the Orion Nebula), it is evident that a natu-
ral extension of the formation of many stars includes the accompanying forma-
tion of planetary systems that develop within equatorial disks of material that 
 orbit the newborn stars. In fact the first confirmation of an extrasolar planet 
around a main-sequence star ( 1 Pegasi) was announced in 199 . After that initial 
 announcement, a total of 1  extrasolar planets were discovered in just the next 
ten years alone. We will now study one well-known example of a planetary system



TABLE 1 General Characteristics of the Planets. The range of values for some features of the
terrestrial and giant planets (M⊕ and R⊕ represent the mass and radius of Earth, respectively).

Characteristic Terrestrial Giant
Basic form Rock Gas Ice Rock
Mean orbital distance (A ) 0.39–1. 2 .2–30.0
Mean surface temperature ( ) 21 –733 70–16
Mass (M⊕) 0.0 –1.0 14. –318
Equatorial radius (R⊕) 0.38–1.0 3.88–11.2
Mean density (kg m−3) 3933– 1 687–1638
Sidereal rotation period (equator) 23.9 h–243 d 9.9 h–17.2 h
Number of known moons 0–2 13–63
Ring systems no yes

FIGURE 1 The relative si es of the Sun and the planets. From left to right are the Sun, Mercury,
Venus, Earth, Mars, Jupiter, Saturn, ranus, Neptune, and Pluto (with Charon, one of its moons).
A tenth planet, 2003 B313, which is believed to be slightly larger than Pluto, is not shown in this
montage. The distances between objects are not to scale.

(or Earth-like) planets include Mercury, Venus, Earth, and Mars, and the giant planets
(sometimes called Jovian, or Jupiter-like) include Jupiter, Saturn, ranus, and Neptune.
The giant planets are also further separated into the gas giants (Jupiter and Saturn) and the
ice giants ( ranus and Neptune). The two major groups have a number of very striking
differences, as can be seen by looking through Table 1. The relative si es of the planets
and the Sun are illustrated in Fig. 1.

Many of the differences noted in Table 1 are directly related to the distances of the
planets from the Sun and their corresponding temperatures. In fact, as we shall see, this
temperature effect profoundly influenced the evolution of the terrestrial and giant planets
by determining the extent of ice formation in the early solar nebula.

Moons of the Planets

The number of moons orbiting each planet also varies significantly between the terrestrials
and the giants. Neither Mercury nor Venus has any moons, Earth has one relatively large
moon, and Mars has two tiny satellites. On the other hand, Jupiter, Saturn, ranus, and

Physical Processes in the Solar System



Neptune are known to have at least 63, 47, 27, and 13 moons, respectively. Combined with
their ring systems, each of the giant planets possesses a complex orbital system.

With the exception of Pluto2 and its largest moon, Charon, by far the largest moon in
the Solar System relative to its parent planet is our own Moon. However, three of the four
Galilean moons of Jupiter (Io, Ganymede, and Callisto)3 and the giant satellite of Saturn
(Titan) are physically larger and more massive. In addition, both Ganymede and Titan
have radii that are slightly larger than the planet Mercury’s even though their masses are
somewhat lower.

In some respects, many of the characteristics of the giant moons of the Solar System are
similar to those of the terrestrial planets, including active volcanoes on Io and the existence
of an atmosphere on Titan. Some of the moons have features unlike anything seen on the
planets, however, including the bi arre topography on the surface of Miranda (one of the
many moons of ranus).

The Asteroid Belt

In 1766, before the discoveries of ranus, Neptune, and Pluto, Johann Titius (1729–1796)
uncovered a simple mathematical sequence representing the orbital distances of the planets
from the Sun. The sequence was populari ed several years later by Johann Elert Bode (1747–
1826) and is now known as the Titius–Bode rule, or simply Bode’s rule (see Table 2).

When Bode’s rule was proposed, it was reali ed that the rule predicted the existence
of an object at a distance of 2.8 A , between the orbits of Mars and Jupiter. It was after a
deliberate search that an Italian monk, Giuseppe Pia i (1746–1826), discovered the first

TABLE 2 Predictions of the Titius–Bode Rule. A comparison of the Titius–Bode rule with
actual mean orbital distances.

Titius–Bode Actual Mean
Planet istance (A ) istance (A )
Mercury (4 + 3 × 0 )/10 = 0.4 0.39
Venus (4 + 3 × 20)/10 = 0.7 0.72
Earth (4 + 3 × 21)/10 = 1.0 1.00
Mars (4 + 3 × 22)/10 = 1.6 1. 2
Ceres (4 + 3 × 23)/10 = 2.8 2.77
Jupiter (4 + 3 × 24)/10 = .2 .20
Saturn (4 + 3 × 2 )/10 = 10.0 9. 8

ranus (4 + 3 × 26)/10 = 19.6 19.20
Neptune (4 + 3 × 27)/10 = 38.8 30.0
Pluto (4 + 3 × 28)/10 = 77.2 39.48
2003 B313 (4 + 3 × 29)/10 = 1 4.0 67

2If it were orbiting one of the other planets rather than the Sun, Pluto would be only the eighth largest moon in
the Solar System.
3Io, Europa, Ganymede, and Callisto were the four moons discovered by Galileo to be orbiting Jupiter.
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asteroid at approximately that location on January 1, 1801, and named it Ceres, for the
patron goddess of Sicily. Today many thousands of asteroids are known, although Ceres
is the largest, containing some 30 of the entire mass of the group and having a diameter

Although Bode’s rule agrees reasonably well with the orbits of most of the planets, and
it did lead to the prediction of Ceres, it fails miserably for objects beyond ranus. It is
widely believed today that Bode’s rule is not based on any fundamental physical process
and is only a mathematical coincidence. Historically, Bode’s rule has often been referred
to as Bode’s law, even though astronomers generally believe today that it is not associated
with any basic law of nature. It is interesting to note, however, that a variation of Bode’s
rule also works for some of the moons of Jupiter, Saturn, and ranus.

While many of the larger moons were certainly formed with their parent planet, others
are little more than large rocks that may have been caught in the planet’s gravitational field
as they wandered by. Many of these rocks are probably captured asteroids.

The Comets and Kuiper Belt Objects

Another important class of objects that orbit our Sun are the comets. Once thought to be
atmospheric phenomena, and even harbingers of doom, comets are now known to be dirty
snowballs of ices and dust. Their spectacular, long tails are simply the escaped dust and gas
of the evaporating ball of ice, being driven away from the Sun by radiation pressure and
the solar wind. Some comets, like the famous Halley’s comet, have relatively short orbital
periods of less than 200 years, whereas the long-period comets can take over one million
years to orbit the Sun.

From their orbital characteristics, it seems very likely that the present-day source of the
short-period comets is the Kuiper belt, a collection of icy objects located predominantly
near the plane of the ecliptic and beyond the orbit of Neptune, typically ranging from 30 A
to perhaps 1000A or more from the Sun. It is now reali ed that Pluto and its moon Charon,
2003 B313, Sedna, and uaoar are among the largest known members of the family of
Kuiper belt objects ( BOs), also referred to as Trans-Neptunian Objects (TNOs). The
long-period comets apparently originate in the Oort cloud, an approximately spherically
symmetric cloud of cometary nuclei with orbital radii of between 3000 and 100,000 A .
Having spent most of their existence in deep free e at the outer reaches of the Solar
System, comets and uiper belt objects appear to be ancient remnants of its formation,
although perhaps not entirely unaffected by nearly 4.6 billion years of exposure to the
environment of space.

Meteorites

When asteroids collide with one another, they can produce small fragments known as
meteoroids. If a meteoroid should happen to enter Earth’s atmosphere, the heat generated
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of roughly 1000 km. Even though there are important exceptions, most asteroids orbit 
the Sun near the ecliptic plane at distances between 2 and 3.  A , a region referred to 
as the asteroid belt.



by friction results in a glowing streak across the sky, referred to as a meteor. If the rock
survives the trip through the atmosphere and strikes the surface, the remnant is known as a
meteorite. By analy ing the composition of meteorites, we can learn a great deal about the
environment in which they originated.

Another source of meteoritic material is the slow disintegration of comets exposed to
the heat of the inner Solar System. When Earth encounters the debris left in a comet’s
orbit, the result is a meteor shower of micrometeorites raining down through the planet’s
atmosphere.

Finally, the dust remaining in orbit about the Sun due to the disintegration of asteroids
and comets produces a faint glow from reflected sunlight. nfortunately, even the lights of
a small town are sufficient to obscure this zodiacal light.

Solar System Formation: A Brief Overview

All of these features of the Solar System can be understood in terms of its initial formation
and subsequent evolution. Our present understanding of Solar System evolution is based on
the hypothesis that as the Sun was forming from the gravitational collapse of the original
solar nebula, the decreasing radius of the cloud resulted in an increasing rate of spin and the
accompanying formation of a disk of material. Within this accretion disk the temperature
varied with distance from the protosun in such a way that rocks were able to consolidate
throughout the disk while ices (primarily water) were able to develop only at distances
beyond the outer part of the present-day asteroid belt. As a result, the terrestrial planets
accreted from collisions of small preplanetary chunks of material, known as planetesimals,
that were composed exclusively of rock, while the much larger giants benefited from the
additional presence of ices in the planetesimals.The higher temperatures in the inner portions
of the disk and the lower masses of the terrestrials also inhibited the capture of lighter
gases around those planets, while the cooler, more massive giants were able to accumulate
significant and, in the cases of Jupiter and Saturn, very massive primordial atmospheres.

Around the newly formed giant planets, smaller local accretion disks were forming some
of the moons seen today. Other moons appeared when planetesimals and fragmented aster-
oids were captured while wandering through the Solar System. In a different mechanism,
it appears that our own Moon was produced when a relatively large planetesimal approxi-
mately the si e of the present-day Mars collided with the young Earth.After the formation of
the planets and their moons, the rain of remnant material led to heavy cratering. Although
the rate of crater formation has decreased significantly since the time of the early Solar
System, the process remains ongoing. Evidence of that violent beginning is still readily
apparent on many worlds today.

Most of the icy objects that were drifting among the giant worlds without directly collid-
ing with or being captured by one of the giant planets had their orbits dramatically altered
through gravitational interactions. Some of the cometary nuclei passing near ranus or
Neptune were catapulted into much larger orbits, characteristic of the present-day Oort
cloud, while those that ventured near Jupiter or Saturn were ejected from the Solar System
entirely. Other planetesimals that passed near the giant planets were sent inward to collide
with the terrestrial planets or the Sun. The icy bodies that formed beyond the orbit of Nep-
tune remain in that region today, constituting the uiper belt. Closer to the Sun, just inside
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the region of ice formation, rocky remnants of the Solar System’s formation still reside in
the asteroid belt.

As a direct consequence of tidal and viscous interactions with the accretion disk, along
with the scattering of planetesimals, Jupiter migrated closer to the Sun than where it initially
began forming, whereas Saturn, ranus, and particularly Neptune migrated farther from
the Sun.

As the discussion of this section indicates, significant progress has been made in un-
derstanding the makeup and evolution of our local part of the universe.

Solar System, together
with many of the physical processes that have shaped them.

2 TIDAL FORCES

side of a moon is closer to its parent planet than is the opposite side, the planet’s gravitational
force on a small test mass must be greatest on the moon’s near side. This has the effect of
elongating the instantaneous shape of the moon. According to Newton’s third law, the same
situation must also apply to the near and far sides of the planet because of the gravitational
influence of its moon. This differential force on an object due to its non- ero si e is known
as a tidal force. The resulting nonspherical shapes of the planet and its moon can actually
influence their rotation rates by creating torques. If this tidal force is sufficiently great, it is
even possible that the smaller world could be disrupted.

The existence of tides on Earth’s surface is well known, particularly for those who
live near an ocean. There are two high tides approximately every 24 hours, 3 minutes,
depending on local coastal features. Less well known are the tidal bulges of the solid Earth,
which measure only about 10 cm in height. Since Earth is significantly more massive than
the Moon (approximately 81 times), the bulges on the Moon are much larger, resulting in
nearly 20 m of deformation at its surface.

The Physics of Tides

To better understand how tides arise on Earth, consider the force on a test mass m1 located
within the planet at a distance r from the Moon’s center of mass,

Fm = G
Mm1

r2 ,

where M is the mass of the Moon (see Fig. 2). Now consider a second mass m2 = m1 =
m, located at a distance dr from m1 along a line connecting Earth and the Moon. The

We will be
investigating in more detail the objects that populate our

Physical Processes in the Solar System

The force of gravity governs the orbits of the planets and their moons in the form 
of epler’s laws. In that study we treated those objects as point masses,  under 
the assumption that they are spherically symmetric. Important consequenc-
es arise from relaxing the constraint of spherical symmetry, however. Since one



m2 m1
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dr r

FIGURE 2 The tidal force on Earth due to the Moon arises because of the varying values for
the Moon’s gravitational attraction at different locations inside the planet.
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FIGURE 3 The geometry of the tidal force acting on Earth due to the Moon.

difference in forces (the differential force) between the two test masses is then

dFm =
(

dFm

dr

)

dr = −2G
Mm

r3 dr, (1)

where dr is taken to be the separation between their centers. Note that the differential force
decreases more rapidly with distance than does the force of gravity itself, meaning that the
closer the test masses are to the Moon, the more pronounced the effect.

The shape of the tidal bulges on Earth can be understood by analy ing the differences
in the gravitational force vectors acting at the center of the planet and at some point on
its surface (see Fig. 3). For simplicity, we will consider only forces in the x–y plane.
Neglecting rotation, the effects are symmetric about the x-axis (the line between the cen-
ters of Earth and the Moon). At the center of the planet, the x- and y-components of the
gravitational force on a test mass m due to the Moon are given by

FC,x = GMm

r2 , FC,y = 0,

while at point P the components are

FP,x = GMm

s2 cosφ, FP,y = −GMm

s2 sin φ.

The differential force between Earth’s center and its surface is

"F = FP − FC = GMm

(

cosφ
s2 − 1

r2

)

î − GMm

s2 sin φ ĵ.
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(a) (b)

FIGURE 4 (a) The gravitational force of the Moon on Earth. (b) The differential gravitational
force on Earth, relative to its center.

Next, to simplify the solution somewhat, we write s in terms of r , R, and θ ,

s2 = (r − R cos θ)2 + (R sin θ)2 ≃ r2
(

1 − 2R

r
cos θ

)

where terms of order R2/r2 ≪ 1 have been neglected. Substituting, and recalling that for
x ≪ 1, (1 + x)−1 ≃ 1 − x, we find that the differential force becomes

"F ≃ GMm

r2

[

cosφ
(

1 + 2R

r
cos θ

)

− 1
]

î

−GMm

r2

[

1 + 2R

r
cos θ

]

sin φ ĵ. (2)

Finally, using the first-order relations cosφ ≃ 1 and sin φ ≃ (R sin θ)/r , we have

"F ≃ GMmR

r3

(

2 cos θ î − sin θ ĵ
)

. (3)

Notice the extra factor of 2 in the x-component when compared with the y-component.
ou should also compare this result with the expression for the differential force given in

Eq. ( 1), noting that here R (the distance between the center and the surface) has re-
placed dr .

The situation described by Eq. ( 3) is illustrated in Fig. 4. The actual gravitational
force vectors due to the Moon are directed toward the center of mass of the Moon, but the
differential force vectors act to compress Earth in the y-direction and elongate it along the
line between their centers of mass, producing tidal bulges. It is the symmetry of the bulges
that produces two high tides in a 2 -hour period as Earth rotates under an orbiting Moon.

The Effects of Tides

In reality, Earth’s tidal bulges are not directly aligned with the Moon. This is because the
rotation period of Earth is shorter than the Moon’s orbital period and frictional forces on
the surface of the planet drag the bulge axis ahead of the Earth–Moon line. Because friction
is a dissipative force, rotational kinetic energy is constantly being lost and Earth’s spin rate
is continually decreasing. At the present time, Earth’s rotation period is lengthening at the
rate of 0.0016 s century−1, which, although slow, is measurable.
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FIGURE 5 Earth’s bulge A is closer to the Moon than is bulge B, resulting in a net torque on
the planet. Note that the diagram is not to scale.

The Moon is also known to be drifting away from Earth by 3 to 4 cm yr−1. The increasing
Earth–Moon distance is determined by bouncing laser beams off the mirrors left on the Moon
by the Apollo astronauts in the early 1970s and measuring the round-trip light-travel time.

To see how the decrease in Earth’s rotation rate and the increase in the Earth–Moon
distance are related, we need only consider the torque exerted on Earth by the Moon’s
interaction with Earth’s tidal bulges. In Fig. , bulge A leads the Moon and is closer to it
than is bulge B. As a result, the force exerted on bulge A by the Moon is greater, resulting in
a net torque that is slowing Earth’s rotation. At the same time, bulge A is pulling the Moon
forward, causing the satellite to move farther out. This complementary behavior is just a
consequence of the conservation of angular momentum. Neglecting the dynamical influence
of the Sun and the other planets on the Earth–Moon system, no external torques exist to
alter its total angular momentum. If Earth’s rotational angular momentum is decreasing, the
orbital angular momentum of the Moon must necessarily increase.

Because of tidal effects, given sufficient time Earth will slow its rotation enough that
the same side of the planet will always face the Moon, just as the Moon now keeps the
same face toward Earth. In the distant future, if inhabitants on Earth’s far side want to
take romantic moonlight walks, they will need to take vacations halfway around the world.
Calculations indicate that this will happen when the length of the day is about 47 current
days long.

Synchronous Rotation

In the past the Moon was much closer to Earth than it is today, perhaps taking as little as one
week to orbit the planet. It is also probable that the Moon’s rotation period was once shorter
than its orbital period. The Moon’s present 1-to-1 synchronous rotation is due to the same
tidal dissipation that is occurring on Earth today. Its rotational period became synchroni ed
with its orbital period more rapidly than Earth’s has, simply because it is much smaller and
because Earth produces much larger tidal deformations on the Moon than does the Moon
on Earth.

Synchronous rotation is common throughout the Solar System. The two moons of Mars,
the four Galilean moons of Jupiter (along with Amalthea, a small moon inside Io’s orbit),

Some binary star systems are also known to be in synchronous rotation.

4
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and most of the moons of Saturn are in synchronous rotation, as are many of the other
moons associated with the outer planets. In addition, Pluto and its largest moon, Charon,
have reached the final stage of tidal evolution they are in mutual synchronous rotation,
with the same side of Pluto constantly turned toward the same face of Charon.

An interesting and unusual case of tidal evolution is that of Triton, the giant moon of
Neptune. Triton is in synchronous rotation and orbits the planet in a retrograde fashion. In
this instance, the tidal bulges in Neptune actually work to cause that moon to spiral toward
the planet rather than away from it. Apparently it will take billions of years before any
catastrophic interaction occurs. On the other hand, Phobos (one of the Martian moons) is
in a prograde orbit, but with an orbital period of 7h39m that is shorter than the rotation
period of Mars (24h37m). This means that Phobos is inside the planet’s synchronous orbit,
defined to be where the planet’s rotation period and the satellite’s orbital period are equal.
Consequently, it is outrunning the tidal bulge axis, and the resulting forces are causing
the moon to spiral inward. Phobos’s orbit is decaying rapidly enough that if it were to stay
intact, it would hit the planet in about 0 million years. The other Martian moon, eimos,
is outside the synchronous orbital radius and is spiraling outward, just as our Moon is.

Additional Tidal Effects from the Sun

Of course, the Earth–Moon system is not in strict isolation. For instance, the Sun also
produces tidal forces that act on Earth. When the Sun, Earth, and the Moon are all aligned
(at full Moon or new Moon), the differential forces due to the Sun and the Moon add to
create unusually large tidal bulges on Earth, called spring tides. At first quarter or third
quarter, the Sun, Earth, and Moon form a right angle. In this configuration the tides produced
by the Sun and the Moon tend to cancel, and unusually low neap tides result.

The Roche Limit

It is unlikely that Phobos will actually remain intact long enough to strike the planet.
Recall that the differential tidal force is proportional to r−3 as a moon gets closer to its
parent planet, tidal effects become more severe. This means that the shape of a moon in
synchronous rotation becomes increasingly elongated. Neglecting any internal cohesion
forces (i.e., assuming an ideali ed fluid object), when the orbital distance has decreased
sufficiently, it becomes no longer possible to define a shape for the moon such that the
force of gravity is perpendicular to the surface at every point. As a result, the surface will
continually flow in the direction of the net gravitational force vector. Oscillations will then
develop in the extended structure, and the moon will come apart. The maximum orbital
radius for which tidal disruption occurs is known as the Roche limit, named for Edouard
Roche (1820–1883), who first carried out the analysis in 18 0. In his study Roche took into
consideration orbital and rotational motion, and he assumed a fluid, prolate spheroid (i.e.,
a football-shaped moon).

To make an order-of-magnitude estimate of the orbital radius at which a moon will
break apart, assume (incorrectly) that this happens when the differential force exceeds the

Earth’s synchronous orbit is sometimes referred to as geosynchronous orbit. Artificial satellites placed in geosyn-
chronous equatorial orbits remain fixed over the same geographic point on the surface. Communications satellites
are generally placed in such orbits.
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self-gravitational force holding the moon together. Furthermore, assume for simplicity that
the moon and the planet are spherical, and neglect any centrifugal effects. In this case, if
the moon is to be tidally disrupted, the inward gravitational acceleration produced by the
moon at a point located on its surface closest to the planet must be smaller than the outward
differential gravitational acceleration produced by the planet, or

GMm

R2
m

<
2GMpRm

r3 ,

where Mp and Mm are the masses of the planet and moon, respectively, Rm is the radius
of the moon, and r is the distance between the centers of the two worlds. Substituting
Mp = 4πR3

pρp/3 and Mm = 4πR3
mρm/3, where ρp and ρm are the average densities of

the planet and moon, respectively, and solving for r , we find that a moon will be tidally
disrupted if its orbit is less than

r < fR

(

ρp

ρm

)1/3

Rp, (4)

where, in our case, fR = 21/3 = 1.3. In his more careful analysis, Roche found a larger
value for the leading constant of fR = 2.4 6. The fact that our result gave too small a value
for the radius reflects the incorrect assumption that it is the differential force exceeding self-
gravity that is ultimately responsible for the disintegration of the satellite. Since oscillations
in the body will develop at greater radii, self-gravity is still significantly greater than the
differential term at the true Roche limit. (Although not considered in this analysis, self-
cohesion of an object that is provided by the electromagnetic force, such as molecular
bonds or the formation of a crystal lattice, can also decrease the point at which an object
will be disrupted.)

Example 2.1. The average density of Saturn is 687 kg m−3 and its planetary radius is
6.03 × 107 m. sing a value of fR = 2.4 6, the Roche limit for a moon having an average
density of 1200 kg m−3 is 1.23 × 108 m. Much of the ring system of Saturn lies within this
orbital radius given by the Roche limit, and all of Saturn’s large moons are farther out. The
material within ring systems may be the result of disintegrating or tidally disrupted moons
that wandered within the Roche limit.

3 THE PHYSICS OF ATMOSPHERES

Our Solar System today is the result of billions of years of ongoing evolution caused by a
host of physical processes. Subtle differences in initial conditions of neighboring planets
have led to the very different worlds we see today. We will discuss some of the more
frequently encountered atmospheric processes in this section and then, in later chapters,
describe the unique characteristics of each planet.
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The Temperatures of the Planets

As has already been mentioned, the temperatures of the planets played a key role in their
formation and evolution. uring the formation stage, the temperature structure of the
solar nebula influenced whether a planet would become a terrestrial or a giant.
Temperature also helped to determine the current composition of each planet’s atmosphere.

absorbed by the planet must be re-emitted if this were not so, the planet’s temperature
would change with time.

To estimate a planet’s equilibrium temperature, assume that the planet is a spherical
blackbody of radius Rp and temperature Tp in a circular orbit a distance D away from the
Sun. For simplicity, we will assume that the planet’s temperature is uniform over its surface
and that the planet reflects a fraction a of the incoming sunlight (a is known as the planet’s
albedo). From the condition of thermal equilibrium, the sunlight that is not reflected must
be absorbed by the planet and subsequently re-emitted as blackbody radiation. Of course,
we will also treat the Sun as a spherical blackbody having an effective temperature T⊙ = Te

and radius R⊙. It is left as an exercise to show that the temperature of the planet is given by

Tp = T⊙(1 − a)1/4

√

R⊙
2D

. ( )

Note that the temperature of the planet is proportional to the effective temperature of the
Sun and does not depend on the si e of the planet.

Example 3.1. sing Earth’s average value of a = 0.3 in Eq. ( ), the temperature
of a blackbody Earth is

T⊕ = 2 = −19◦C = −1◦F.

This value is substantially below the free ing point of water and (fortunately ) is not the
correct temperature at the surface of the planet. This analysis neglected the greenhouse
effect, a significant warming due largely to the water vapor in Earth’s atmosphere. Ac-

wavelengths. This infrared radiation is absorbed and then re-emitted by the atmospheric
greenhouse gases, which act as a thermal blanket to warm Earth’s surface by about 34◦C.
Greenhouse warming on Venus has been much more dramatic.

This assumption is a reasonable approximation if the planet is rapidly rotating or has a circulating atmosphere.
Carbon dioxide, methane, and chlorofluorocarbons also contribute to the greenhouse effect.
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The Stefan–Bolt mann equation is the most significant factor in determining the 
present-day temperatures of the planets in the Solar System. nder equilibrium condi-
tions, a planet’s total energy content must remain constant. Therefore, all of the energy

cording to Wien’s law, Earth’s blackbody radiation is emitted primarily at infrared



The Chemical Evolution of Planetary Atmospheres

The evolution of a planetary atmosphere is a complex process that depends on the local
temperature of the solar nebula during the time of the planet’s formation, together with the
planet’s temperature, gravity, and local chemistry following the formation process. In the
case of the terrestrial planets, outgassing from rocks and volcanos also played a role after
the development of the initial, primordial atmosphere. On Earth, the development of life
has also contributed significantly to the evolution of its atmosphere. Impacting comets and
meteorites affect planetary atmospheres as well.

among gas particles become negligible, particles moving upward will travel only under the
influence of gravity, following trajectories described by simple projectile motion. Those
atoms or molecules that are not moving rapidly enough to escape, or that do not have the
correct trajectories, will fall back down into the denser layers and undergo collisions with
the gas. On the other hand, particles that are moving upward and have velocities that are
sufficiently great will be able to escape the gravitational pull of the planet altogether and
move out into interplanetary space. It is this process that can allow the atmospheres of some
planets (or at least specific chemical components of those atmospheres) to leak off. The
region in an atmosphere where the mean free path of the particles becomes long enough for
them to travel without appreciable collisions is referred to as the exosphere.

Because of the high-velocity tail of the Maxwell–Bolt mann distribution, and because of
the amount of time that has elapsed since the Solar System formed, if a particular component
of the atmosphere is going to escape, it is not necessary that the root-mean-square average
velocity of those particles be greater than the escape speed. It is only necessary that a
sufficiently large number of particles have speeds greater than vesc. As a rough estimate, a
planet will have lost a particular component of its atmosphere by now if, for that component
(either molecular or atomic),

vrms >
1
6
vesc.

m to escape a planet of mass Mp and
radius Rp is approximately

Tesc >
1
4

GMpm

kRp

. (6)

Example 3.2. Earth has an atmosphere composed of approximately 78 N2 and 21
O2 by number, while the Moon, which is on average the same distance from the Sun, has
no significant atmosphere. From Example 3.1, the blackbody equilibrium temperature
of an airless Earth should be 2 . Since the Moon’s albedo is only 0.07, its blackbody

The temperature required for a gas of particles of mass
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A critical component in the development of an atmosphere is the abil-
ity of the planet to retain specific atoms or molecules. For a gas in thermal equi-
librium, the number of particles having velocities between v and v  dv is 
 given by the Maxwell–Bolt mann velocity distribution. At some critical height 
in an atmosphere, when the number density is low enough that collisions



temperature is somewhat higher (274 ). In reality, the vertical temperature structure of
Earth’s atmosphere is very complex and depends on its hydrodynamic motions together
with the ability of various atoms and molecules to absorb radiation. Near the top of the
atmosphere, the temperature is also strongly dependent on the amount of solar activity.
Within the exosphere the characteristic temperature is about 1000 .

Consider Earth’s ability and the Moon’s inability to retain molecular nitrogen. The mass
of an N2 molecule is approximately 28 u = 4.7 × 10−26 kg, the mass and radius of Earth
are .9736 × 1024 kg and 6.378136 × 106 m, respectively, and the mass and radius of

from Eq. ( 6), giving Tesc,⊕ > 3900 and Tesc,Moon > 180 . Since Earth’s exospheric
temperature is cooler and the Moon is warmer than these values, Earth has been able to
retain its molecular nitrogen, whereas the Moon could not.

Since O2 is more massive (32 u), even higher temperatures are required for that molecule
to escape.

The Loss of Atmospheric Constituents

therefore have the best chance of escaping. The number of particles with velocities betweenv

and v + dv passing through a hori ontal slab of cross-sectional area A and vertical thickness
dz during a time interval dt is given by

dNv dv = (nv dV ) dv = A dz nv dv = Avz dt nv dv = CgAv dt nv dv,

where Cg is a geometrical factor that takes into consideration the requirement that, of all the
velocity components of the randomly moving particles, only positive vertical components
will be considered. ividing through by the time interval, we obtain the rate at which
particles with velocities between v and v + dv are crossing the surface. Furthermore, if we
assume that the atmosphere is spherical at the location of the exosphere, so that A = 4πR2,
then the number of particles per second with speeds between v and v + dv moving vertically
upward through the entire exosphere is given by

Ṅv dv ≡ dNv

dt
dv = 4πR2Cgvnv dv.

Finally, to determine the number of particles per second leaving the atmosphere, it is nec-
essary only to consider those particles with sufficiently high velocities, namely v > vesc.

e have

Ṅ = nπR2

4

( m

2πkT

)3/2
∫ ∞

vesc

4πv3e−mv2/2kT dv, (7)

W
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the Moon are 7.349  1022 kg and 1.7371  10 6 m, respectively. The tempera-
tures required for the nitrogen to escape from each world can now be estimated

The loss of specific components of an atmosphere can be understood in more detail by ap-
pealing directly to the Maxwell–Bolt mann distribution, nv dv. As particles move about 
randomly in the gas, some of them are traveling approximately vertically upward and

where Cg has been set equal to 1 16, based on a careful analy-
sis of the geometry of the problem. At some height z in the atmosphere,



where the particle number density is n(z), Eq. ( 7) reduces to

Ṅ(z) = 4πR2νn(z), (8)

where

ν ≡ 1
8

( m

2πkT

)1/2
(

v2
esc + 2kT

m

)

e−mv2
esc/2kT (9)

is an atmospheric escape parameter that has units of velocity.
ν describes the rate at which gas particles of mass m escape across a unit area for a

specified number density n(z) in the exosphere. The atmospheric escape parameter can also
be thought of as the effective thickness of the atmosphere of a certain species that evaporates
away (or leaks off ) per second. In Fig. 6, log10 ν is plotted as a function of the mass
of specific components in Earth’s atmosphere, where a temperature of 1000 has been
used, characteristic of a mean value in the exosphere. For comparison, log10 ν has also been
plotted for the same species using the Moon’s escape velocity and a typical temperature
of 274 . Note that of the components listed, only molecular hydrogen and helium have
essentially completely escaped Earth’s atmosphere, whereas the Moon has lost all of its
atmosphere, including the heavier molecules listed.
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FIGURE 6 The logarithm of the atmospheric escape parameter, ν, as a function of atomic weight
for various chemical species in Earth’s atmosphere and on the surface of the Moon. Note that Earth
has lost most of its atomic and molecular hydrogen and its helium, while retaining the other molecules
listed. The Moon has lost all of its atmosphere.
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Example 3.3. Equations ( 8) and ( 9) can be used to estimate the amount of time
required for molecular nitrogen to escape from Earth’s atmosphere. A rough calculation
of the total number of N2 molecules in the atmosphere can be made by assuming that the
number density decreases approximately exponentially with height, just as the pressure
does if the atmosphere is nearly isothermal. Then

n(z) = n0e
−z/HP

where n0 is the number density at the surface and HP is the pressure scale height .
sing the ideal gas law (Eq. 10.11) with the mass of the nitrogen molecule (MN2 ) being

used for µmH , the pressure scale height may be written as

HP = P

ρg
= kT

gMN2

. (10)

Notice that the pressure scale height is different for particles of different masses. sing
characteristic values at Earth’s surface (T = 288 and g = 9.80 m s−2), HP = 8.7 km for
molecular nitrogen.

Making the rough assumption that the pressure scale height remains constant with alti-
tude, and neglecting the slight change in r relative to Earth’s surface, the number density
can now be integrated over the volume of the atmosphere, giving

N = 4πR2
⊕n0HP .

Taking the number density of nitrogen molecules near the surface to be n0 = 2 × 102 m−3,
the total number of nitrogen molecules in the atmosphere is N = 9 × 1043.

From Eq. ( 9) and Fig. 6, the atmospheric escape parameter for nitrogen molecules
from Earth’s exosphere is ν = 4 × 10−88 m s−1. Also, at the height of the exosphere (ap-
proximately 00 km), the mean number density of N2 is 2 × 1011 m−3. sing Eq. ( 8),
we find that the rate at which nitrogen molecules are escaping Earth’s atmosphere is ap-
proximately Ṅ = 4 × 10−62 s−1. ividing the total number of available molecules by the
rate of loss, the time required to dissipate the nitrogen in Earth’s atmosphere is estimated
to be

tN2 = N

Ṅ
= 2 × 1010 s = 6 × 1097 yr.

It is safe to say that Earth’s atmospheric nitrogen is not going to escape any time soon
The situation is very different for atomic hydrogen in Earth’s atmosphere, however.

Earth’s atmosphere actually differs appreciably from an isothermal approximation. As a result, the estimate of
n(z) used here would need to be modified significantly in a more careful analysis. Nevertheless, this back-of-
the-envelope calculation illustrates many of the basic physical principles involved and yields the correct general
conclusion.

8

8
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Besides the loss of high-velocity particles from the exponential tail of the Maxwell–
Bolt mann distribution, other factors also contribute to the dissipation of an atmosphere.
Molecular photodissociation, caused by the absorption of V photons in the upper atmo-
sphere, breaks down some molecules into atoms or lighter molecules, with the result that

H2 + γ → H + H.

Gravitational Separation of Atmospheric Constituents

Another feature of atmospheric physics that can affect the loss of certain components is
the gravitational separation (also known as chemical differentiation) of constituents of
an atmosphere by weight. In the absence of the continual mixing caused by convection at
lower altitudes, composition differences develop with height in the upper atmosphere. This
effect can be understood by referring to the expression for the pressure scale height in the
form of Eq. ( 10). For a given temperature, the pressure scale height increases as the
mass decreases, meaning that the number densities of lighter particles do not diminish as
rapidly with z. As a result, lighter particles become relatively more abundant in the upper
atmosphere, enhancing the likelihood of their escape.

Circulation Patterns

regions at high latitudes, where it sinks back down again. The cycle closes when the gas
returns to the warmer regions near the equator. If the warm air were able to migrate all the
way from the equator to the poles before sinking, the global pattern illustrated in Fig. 7(a)
would occur. This hypothetical circulation pattern is known as Hadley circulation.

In reality, the warmer air at higher altitudes is undergoing radiative cooling as it migrates
toward the poles. At about 30◦ N and S latitude, the air has given up enough heat that it
sinks and returns to the equator, where it is reheated again. Similarly, the colder air that
is migrating from the poles toward the equator at lower altitudes heats and rises at about

◦ N and S latitude, returning to the poles where it sinks again. This breaks up the global
Hadley circulation pattern into three onal components, as shown in Fig. 7(b).

These general onal weather patterns are further complicated by the planet’s rotation.
Since a rotating body does not constitute an inertial reference frame, pseudo-forces, such
as the Coriolis force, are present.

Assume for simplicity that Earth is perfectly spherical. At a latitude L, a point on the
surface is located a distance rL from the rotation axis, given by

rL = R⊕ cos L.

Letting the angular rotation speed of Earth be ω, the eastward speed of the surface at the

Physical Processes in the Solar System

As is the case with stars, convection in planetary atmospheres is driven largely by steep 
temperature gradients. Near the equator, where the intensity of the sunlight is great-
est, the atmosphere heats up and the warm gas rises. The gas then migrates to cooler

the individual particles have greater speeds. For instance,   The solar wind 
can also contribute to the loss of particles through collisions in the upper atmosphere, 
causing direct ejection, or molecular dissociation and subsequent escape. Even heating 
caused by impacting meteorites and comets can accelerate the loss of atmospheric con-
stituents.
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FIGURE 7 (a) The pattern of hypothetical Hadley circulation, caused by warm air rising near
the equator and cool air sinking near the poles. (b) General weather circulation on Earth caused by
the Hadley cells being broken up by radiative cooling of the warm air migrating toward the poles.

latitude L is just

vL = ωr = ωR⊕ cos L.

At the equator (L = 0◦), this speed is approximately 46 m s−1 = 1670 km h−1. However,
at a latitude of L = 40◦, the speed is reduced to 1300 km s−1. As a result, according to an
observer in an inertial reference frame, a person standing still on the surface of Earth at
the equator is moving approximately 370 km h−1 faster than someone standing still on the
surface at a latitude of 40◦. This velocity difference with latitude affects weather circulation
patterns.

As an illustration of the effect of the Coriolis force, consider the apparent motion of a
projectile fired nearly hori ontally from the equator northward, as shown in Fig. 8(a).
Also assume that the elevation of the projectile above the surface of Earth is essentially
constant during its flight. From the point of view of an observer on Earth’s surface located at
the origin of the projectile’s motion, the projectile initially appears to be traveling straight
north since the observer has the same easterly speed as the easterly component of the
projectile’s velocity vector at the time of launch. However, from the point of view of an
observer in an inertial reference frame far above the planet, the direction of the projectile’s
motion will be northeast precisely because it has an eastward component to its velocity
vector.

As the projectile travels north, it will appear to an observer on the ground that the path will
deflect toward the east due to some undetected force Fig. 8(b) . However, the observer
in an inertial frame understands this observation as being due to the velocity difference of
Earth’s surface with latitude the easterly component of the projectile’s velocity vector will
cause it to outrun observers at progressively more northerly latitudes on Earth.

It can be shown that the value of the Coriolis force as measured in a noninertial reference
frame fixed to the surface of Earth is given by

FC = −2mω × v, (11)

Physical Processes in the Solar System
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FIGURE 8 A projectile launched from the equator northward will curve toward the east as seen
by an observer on Earth. (a) The view from an observer in an inertial frame above Earth. (b) The
apparent trajectory as seen from an observer at rest on the surface of Earth.

where ω is the angular velocity vector of the planet and v is the velocity of the projectile
with respect to the noninertial reference frame. Clearly, as the velocity of the particle
or the angular velocity of the planet increases, the effect of the force increases. On
Earth, the presence of the Coriolis force causes the large-scale north–south circulation
patterns to develop global east–west onal flows recall Fig. 7(b) . Nearest the equator,
the circulation patterns are generally easterly and are known as the trade winds. In the onal
regions between about 30◦ and ◦, the prevailing winds are the westerlies, and near the
poles, the flow is again generally easterly. The Coriolis force is also responsible for the
motions of clouds around high- and low-pressure systems.

The Complexities of Weather Systems

As anyone who has watched weather forecasts knows, weather circulation patterns on
Earth are much more complex than has been described above. Effects such as moisture
in the atmosphere, the diversity of land forms, the transport of heat by ocean currents,
temperature differences between oceans and land, and even frictional effects between the
atmosphere and the surface of the planet all contribute to the complexity of Earth’s weather
systems.
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PROBLEM SET

1 (a) Based on the data given in Appendix: Solar System Data, express the masses
Ganymede, Callisto, Titan, Triton, and Pluto in units

(b) Express the radii of these moons and Pluto in units of the radius of Mercury.

2 A second version of Bode’s rule (the Blagg–Richardson formulation) is given by

rn = r0A
n,

where n is the number of the planet in order from the Sun outward (e.g., n = 1 for Mercury)
and r0 and A are constants.

Physical Processes
in the Solar System

(a) Plot the position of each planet and that of Ceres on a semilog graph of log10 rn vs. n.
(b) Draw the best-fit straight line through the data on your graph and determine the constants

r0 and A.
(c) Compare the “predictions” of your fit with the actual values for each planet by calculating

the relative error,

rn − ractual

ractual
.

3 Repeat Problem 2 for the Galilean moons of Jupiter (Io, Europa, Ganymede, and Callisto).
Express their orbital distances in units of the radius of Jupiter. The data for Jupiter and its
moons are found in Appendix: Solar System Data.

4 Starting from Eq. (2) and using the geometry in Fig. 3, derive Eq. (3).

"F ≃ GMm

r2

[

cosφ
(

1 + 2R

r
cos θ

)

− 1
]

î

−GMm

r2

[

1 + 2R

r
cos θ

]

sin φ ĵ.

"F ≃ GMmR

r3

(

2 cos θ î − sin θ ĵ
)

.

of the mass of Mercury.
of the Moon, Io, Europa,

 

(2)

(3)
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6 (a) Make a rough estimate of how long it will take for Earth’s rotation period to reach 47 days,
at which time it will be synchronized with the Moon’s orbital period.

(b) Based on what you know about the evolution of our Sun, will future inhabitants of Earth
ever get the opportunity to see the Earth–Moon system completely synchronized (Earth
always keeping the same “face” toward the Moon)? Why or why not?

7 (a) Using Kepler’s laws, estimate the distance of the Moon from Earth at some time in the
distant future when the Earth–Moon system is completely synchronized at 47 days.

(b) As seen from Earth, what will the angular diameter of the Moon be at that time?
(c) Assuming that the Sun’s diameter is the same as the present-day value, would a total eclipse

of the Sun be possible? Why or why not?

8 (a) Calculate the ratio of the tidal forces on Earth due to the Moon and the Sun.
(b) With the aid of vector diagrams, explain the cause of the strong spring tides and the

relatively weak neap tides.

9 Explain the almost complete lack of any tides in the Arctic Ocean at the latitude of Barrow,
Alaska (71.3◦ N).

10 Using the data in Appendix: Sol r System Data, estimate the Roche limit for the Mars–Phobos
Phobos’s mean density is 2000 kg m−3 and it orbits at a distance of 9.4 × 106 m. Explain

that Mars may develop a small ring system in the future.

11 Why aren’t spacecraft tidally disrupted when they pass near the giant planets?

system.
the suggestion

5 (a) Assuming for simplicity that Earth is a sphere of constant density, compute the rate of
change in rotational angular momentum of Earth due to the tidal influence of the Moon.
Is the change positive or negative?

(b) Treating the Moon as a point mass, estimate the rate of change in orbital angular momentum
of the Moon. Is this change positive or negative?

(c) Comparing your crude answers to parts (a) and (b), what can you say about the total angular
momentum of the Earth–Moon system over time?

Earth

Moon
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FIGURE 3 The geometry of the tidal force acting on Earth due to the Moon.

12 Including rotation, rederive Eq. ( 4) for the case of a spherical moon in synchronous rotation
about a planet. What is your new value for fR? Hint: You may find Kepler’s third law helpful.

r < fR

(

ρp

ρm

)1/3

Rp,
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(c) Based on your answer in part (b), what would you expect the dominant component of the
atmosphere to be? Why?

Tesc >
1

54
GMpm

kRp

.

(b) Imagine the greenhouse gases in Earth’s atmosphere to be a single layer that is completely
transparent to the visible wavelengths of light received from the Sun, but completely
opaque to the infrared radiation emitted by the surface of Earth. Assume that the top and
bottom surface areas of the layer are each equal to the surface area of the planet and that
the temperature at the top of this atmospheric layer, T⊕, is just the blackbody temperature
found in Example 3.1 in Physical Process in the Solar System. Show that the black
body layer results in a warming of Earth’s surface to
a this result with Earth’s average surface
temperature

14 Using Eq. ( 6), estimate the temperature that would be required for all of the atomic hydrogen
to escape Earth’s atmosphere. Is this consistent with the lack of significant amounts of atomic
or molecular hydrogen in the atmosphere? Why or why not?

15 (a) Estimate the equilibrium blackbody temperature of Jupiter. Use the data found in
Ap

-

pendix: Solar System Data.

radiation emitted by this atmospheric
temperature of Tsurf = 21/4T⊕. Compare

of 15◦C = 59◦F.

Tesc >
1

54
GMpm

kRp

.

(b) Using Eq. ( 6), estimate the temperature that would be required for all of the hydrogen
molecules to escape Jupiter’s atmosphere since the planet’s formation.

13 (a) Use the equation below and simple geometry to derive Eq. ( 5) for the temperature Tp

D from the Sun.of a planet at a distance

Tp = T⊙(1 − a)1/4

√

R⊙
2D

.

L = 4πR2σT 4
e .

“ ”

16 Using integration by parts, show that Eqs. (8) and (9) follow directly from Eq. (7).

Ṅ = nπR2

4
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2πkT
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4πv3e−mv2/2kT dv,

Ṅ(z) = 4πR2νn(z),

ν ≡ 1
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(b) Using a procedure identical to that of Problem 18, estimate the number density of
hydrogen atoms in the primordial exosphere.

(c) What would have been the rate of loss of hydrogen atoms from the exosphere?
(d) Assume that the number of atomic hydrogen atoms in the atmosphere was essentially the

same as the number of nitrogen molecules today. Approximately how long would it take
for the hydrogen to escape from the planet’s atmosphere? Express your answer in years
and compare it to the age of Earth. ( Note: unlikely that Earth ever had a
substantial hydrogen atmosphere.)

20 Calculate the atmospheric escape parameter ν for atomic hydrogen in Jupiter’s exosphere (use
T ∼ 1200 K). Compare your result with the value obtained for Earth (see Fig. 6 or the
result of Problem 19a). Hint: Because of numerical limitations on most calculators, you
may find it necessary to first determine log10 ν rather than determining ν directly.

ν ≡ 1
8

( m

2πkT

)1/2
(

v2
esc + 2kT

m

)

e−mv2
esc/2kT

It appears

17 Taking the density of air to be 1.3 kg m−3 near the surface of Earth, show that the number
density of nitrogen molecules is approximately 2 × 1025 m−3, as given in Example 3.3 in

18 Assuming that the mean free path of molecules in Earth’s exosphere is sufficiently long (∼
500 km) to allow them to escape into interplanetary space, use the below equation to estimate the

estimate of their collision cross sections. Compare your result with the number
density of nitrogen molecules quoted in Example 3.3 in 

Explain any significant differences between the two values.

19 (a) Suppose that Earth once had an atmosphere composed entirely of hydrogen atoms, rather
than the molecular nitrogen and oxygen of today. Using Eq. ( 9), calculate the atmo-
spheric escape parameter ν in this case if the temperature of the exosphere was 1000 K.

Physical Process in the Solar System.

number density of molecules in the exosphere. Note that you will need to make an order-of-
magnitude

ℓ = vt

nσvt
= 1

nσ
.

“ ”
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22 Suppose that a ball of mass m is thrown with a velocity

v = vx î + vy ĵ + vzk̂,

where î, ĵ, and k̂ are unit vectors pointing directly east, north, and upward, respectively, at the
point where the ball is thrown. The latitude of the ball is L when it is thrown.
(a) Show that the components of the Coriolis force on the ball are given by

FC = −2mω[(vz cos L − vy sin L)î + vx sin L ĵ − vx cos L k̂].

Hint: Be sure to represent the components of the vector ω in terms of the coordinate system
on the surface of Earth defined by î, ĵ, and k̂, with the origin of the system at the position
where the ball was thrown.

(b) What is the value of ω for Earth?
(c) If the ball is thrown eastward with an initial velocity vector v = 30 m s−1 î on the surface

of Earth at a latitude of 40◦, what are the components of the acceleration vector that are
due to the Coriolis force?

(d) If the ball is thrown northward with v = 30 m s−1 ĵ, what are the components of the
acceleration vector?

(e) If the ball is thrown straight up with v = 30 m s−1k̂, what are the components of the
acceleration vector? Give a simple physical explanation for the result.

(b) Recalling that a projectile launched from the equator toward the North Pole is also deflected
toward the right (eastward), show that the circulation around low-pressure systems is
counterclockwise in the Northern Hemisphere.

(c) Which way do low-pressure systems circulate in the Southern Hemisphere?
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FIGURE 6 The logarithm of the atmospheric escape parameter, ν, as a function of atomic weight
for various chemical species in Earth’s atmosphere and on the surface of the Moon. Note that Earth
has lost most of its atomic and molecular hydrogen and its helium, while retaining the other molecules
listed. The Moon has lost all of its atmosphere.

21 (a) Consider the case of a projectile launched from the North Pole toward the equator. With
the aid of a diagram, show that the projectile is deflected westward (to the right as viewed
from the launch point).
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The Terrestrial Planets

1 Mercury
2 Venus
3 Earth
4 The Moon
5 Mars

1 MERCURY

The four terrestrial planets have a number of characteristics in common, such as being

The 3-to-2 Spin–Orbit Coupling of Mercury

The first hint that Mercury’s orbit also exhibits another curious feature came in 1965 when
Rolf B. Dyce and Gordon H. Pettengill successfully bounced radar signals off the planet
using the Arecibo radio telescope. The reflected signals had a spread of wavelengths that
revealed Mercury’s rotation speed; because of the Doppler effect, radio waves that hit the
approaching limb were blueshifted and those that struck the receding limb were redshifted.
These observations indicated that Mercury’s rotation period was approximately 59 days.
More precise measurements made by the Mariner 10 spacecraft during its repeated flybys
of the planet in 1974 and 1975 showed that the rotation period was actually 58.6462 days,
exactly two-thirds the length of its sidereal orbital period of 87.95 days.

How this peculiar 3-to-2 relationship between rotation and orbital periods developed

From Chapter  of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 
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small, rocky, and slowly rotating. Our own Moon and several of the moons of the giant 
planets also share many of those same characteristics. In this chapter we shall focus 
our attention on the terrestrial planets and their moons.

The innermost planet, Mercury (Fig.  1), orbits so close to the Sun (0.39 AU) that 
 Kepler’s laws begin to break down. The reason is that spacetime in the vicinity of 
massive objects is affected in such a way that Newton’s familiar inversesquare law is 
no longer a completely adequate description of gravity. It was the slow advance of the 
perihelion point of Mercury’s rather eccentric orbit (e = 0.2056) that presented one of 
the first tests of Einstein’s general theory of relativity.

can be understood in light of the process of tidal evolution. At perihelion, Mercury 
experiences the strongest tidal force, causing the planet to try to align its bulge axis 
along the line connecting the planet’s center of mass to the center of mass of the



(a) (b)

FIGURE 1 (a) Mercury, as seen by Mariner 10 when it was 200,000 km from the planet on
March 29, 1974. (b) A portion of Caloris Basin can be seen near the terminator (the line separating
day and night). Notice the semicircular rings of mountains centered on the impact point at the left-hand
edge. (Courtesy NASA/JPL.)

Sun. As a result, due to the tremendous energy dissipation from friction that accompanies
tidal distortions, Mercury’s spin slowed to the point where the alignment ultimately did
occur at perihelion during each orbit; see Fig. 2.

The Surface of the Planet

Pictures returned by Mariner 10 revealed a planet that bears a strong superficial resemblance
to the Moon (compare Figs. 1 and 6). Mercury is a world that is heavily cratered,
indicating that it underwent extensive bombardment during its nearly 4.6-billion-year his-
tory. Such evidence of violent collisions is commonplace on many worlds, giving us a hint
of the Solar System’s history. One impact (at what is now known as Caloris Basin) was so
large that it created ripples that traveled across the planet and converged on the opposite
side to produce a jumbled collection of hills.

A careful comparison of images of the Moon and Mercury shows that Mercury’s craters
are often separated by regions that are largely devoid of significant cratering. Assuming that
the rate of impact was roughly the same on both worlds throughout their histories, and that
they formed at approximately the same time, Mercury’s surface must have been refreshed

The Terrestrial Planets
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FIGURE 2 The 3-to-2 spin–orbit coupling of Mercury.

more recently (meaning it must be somewhat younger) than most of the Moon’s surface.
This is consistent with the conclusion that since Mercury is larger and closer to the Sun, it
would have cooled off more slowly after formation, and hot, molten material would have
been more likely to reach the surface to cover older impact sites.

Given the planet’s size and its proximity to the Sun, it is not surprising that Mercury has

atmosphere it does possess (number densities are less than 1011 m−3) is due to charged
nuclei of hydrogen and helium from the strong solar wind that become trapped in its weak
magnetic field, together with atoms of oxygen, sodium, potassium, and calcium that have
escaped the surface regolith (or soil) of the planet. The atoms that leave the regolith may
have been liberated by impacting solar wind particles or the vaporization of regolith material
by micrometeorites.

Ironically, radar data suggest that this closest planet to the Sun possesses highly reflec-
tive volatile material, probably water ice, in permanently shadowed craters near the polar
caps.1 Because tidal interactions have forced the planet’s rotation axis to be almost exactly
perpendicular to its orbital plane, the polar regions never get more than a very small amount
of sunlight. Moreover, with virtually no atmosphere to speak of, Mercury cannot efficiently
transport heat away from the equatorial regions. As a result, temperatures near the poles
probably never exceed 167 K, and in shadows within craters near the poles, temperatures

1The NASA 70-m tracking station at Goldstone, California, was used to send the nearly 500-kW signal at a
wavelength of 3.5 cm, and the VLA received the reflected beam.

The Terrestrial Planets

only a very tenuous atmosphere. Because of Mercury’s high tempera-
ture on the subsolar side (reaching 825 K) and its relatively low  escape 
 velocity (4.3 km s−1), atmospheric gases quickly evaporate into space. 
In fact, its exosphere reaches down to the surface of the planet. What



may be as low as 60 K. These temperatures are low enough that any water ice that may
have been deposited there by a process such as cometary collisions would sublimate only
over very long time scales.

The Interior

Mercury’s relatively high average density (5427 kg m−3), when compared to that of the
Moon (3350 kg m−3), indicates that it must have lost most of its lighter elements and
undergone enough gravitational separation to create a fairly dense core. Based on computer
simulations first performed in 1987 by Willy Benz, Wayne Slattery, and Alastair G. W.
Cameron (1925–2005), it appears that Mercury may have experienced a major collision with
a large planetesimal early in its history. The collision was sufficiently energetic that much
of the outer, lighter silicate material was removed, leaving behind the iron and nickel that
had previously settled to the center of the planet. As a result, after the collision the planet’s
average density was substantially increased. Estimates place the mass of the impactor at
about one-fifth Mercury’s current mass, and the speed of the impact at perhaps 20 km s−1.
Prior to the collision, Mercury’s mass may have been twice its present value. Although this
may seem to be an ad hoc explanation for Mercury’s unusual density, we will soon learn
that the early Solar System was a violent place and that massive collisions were simply a
part of its evolution.

Mercury’s Weak Magnetic Field

Mercury’s rotation, together with its large conducting metallic core, may be responsible for
its magnetic field. The maximum strength measured by Mariner 10 was about 4 × 10−7 T
at an altitude of 330 km, about 100 times weaker than the magnetic field measured near

is that a liquid metallic conducting core replaces the ionized gas in stars as the source of the
field. To date, the details of planetary dynamos are not well understood. In Mercury’s case,
the fact that the rotation is so slow seems to contradict the idea that a magnetic dynamo
is currently in operation. Furthermore, the relatively small size of the planet suggests that
its core should have cooled to the point that any molten core would be too insignificant to
generate a measurable field. As a result, opponents of a present-day dynamo mechanism
suggest that Mercury’s magnetic field may be a “frozen-in” remnant of its past, when the
planet may have been rotating faster and when it was warmer.

2 VENUS

Venus, the second planet from the Sun, is sometimes referred to as Earth’s sister planet
because its mass (0.815 M⊕) and radius (0.9488 R⊕) are comparable to Earth’s. Despite
these basic similarities, the two planets are markedly different in many of their fundamental
features.

The Terrestrial Planets

Earth’s surface. The mechanism for generating this and other planetary magnetic fields 
is believed to be the magnetic dynamo, essentially the same process responsible for 
the Sun’s magnetic field. The difference between the planetary and stellar mechanisms



Retrograde Rotation

In the 1960s, one of the many unusual features of Venus was discovered. Astronomers
learned that the atmospheric circulation was retrograde (the direction opposite its orbital
motion), with speeds near 100 m s−1 at the cloud tops close to the equator; see Fig. 3(a).
This inference was based initially on observations of the clouds in its atmosphere; it was
confirmed later by measurements of the Doppler shift of spectral lines from sunlight reflected
off the clouds. Later, Earth-based radar Doppler measurements of the surface (like those
made of Mercury) revealed that the planet itself also rotates retrograde, but 60 times more
slowly than its upper atmosphere. The sidereal rotation period of Venus is a very sluggish
243 days; this compares to its orbital period of 224.7 days.

The retrograde rotation of the planet is an interesting puzzle. All of the planets in the
Solar System orbit prograde, as do most of their moons. This means that these worlds orbit
in a counterclockwise direction as seen from a vantage point above Earth’s north pole.
Furthermore, with the exceptions of Venus, Uranus, and Pluto, all of the other planets and
most of their moons also rotate prograde, just as the Sun does. This agrees with what one
would expect from the development of the Solar System out of a spinning disk of material
that formed when the Sun did.

Based on detailed analytical and numerical studies of the interactions among Venus, the
Sun, and the other planets in the Solar System, Alexandre Correia and Jacques Laskar were
able to show that Venus’s retrograde rotation can be explained in terms of gravitational
perturbations. The many perturbations acting on Venus from the other bodies in the Solar

(a) (b)

FIGURE 3 (a) An ultraviolet image of Venus obtained in 1995 by WF/PC 2 onboard the Hubble
Space Telescope. Note the “Y”-shaped cloud features at the top of the planet’s thick atmosphere. No
surface features can be seen in visible or ultraviolet light. (Courtesy of L. Esposito, University of
Colorado, Boulder, and NASA.) (b) A composite radar image of the surface of Venus obtained by the
Magellan spacecraft that orbited the planet from 1990 to 1994. (Courtesy of NASA/JPL.)
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System lead to a chaotic zone in the tilt of the axis between 0◦ and 90◦. As gravitational
perturbations cause Venus to pass through that zone, the tilt of its rotation axis can vary
dramatically. Within the first several million years following the planet’s formation, its very
thick atmosphere develops and also starts to influence the outcome of the planet’s rotation.
This occurs because the thick atmosphere can be significantly affected by tidal forces, and
the thick atmosphere can also produce a damping effect. Numerical simulations based on
various initial conditions for the rotation period and tilt of Venus’s axis most often led to the
very slow, retrograde rotation of Venus that is observed today. However, the path to this final
state could be through either the flipping of the rotation axis to near 180◦ or the slowing of
the spin rate to zero at an axis tilt of 0◦, and then tides producing a slow retrograde rotation.

the cloud cover circles the planet in just four days, producing the “Y”-shaped cloud patterns
evident in Fig. 3(a). Such high-speed motions are common in high-altitude jet streams
(narrow rivers of air) but are unusual for the bulk of the atmosphere, particularly with such
slow underlying rotation.

The Lack of a Magnetic Field

One consequence of the planet’s slow rotation that does agree with expectation is the lack of
any measurable magnetic field. The currents within a molten, conducting core are generated
by planetary rotation; therefore, one crucial component of the magnetic dynamo mechanism
is absent in Venus. Because there is no magnetic field to protect the planet via the Lorentz
force, supersonic ions in the solar wind directly strike the upper atmosphere,
causing collisional ionization and a standing shock wave at the location where the solar
wind particles are abruptly slowed to subsonic speeds.

The Hot, Thick Atmosphere of Venus

Analysis of the composition of the dense atmosphere, made first by ground-based telescopes
and later by Soviet andAmerican probes, revealed that its chief constituent is carbon dioxide
(CO2), which makes up about 96.5% of the total number of atoms or molecules, with
molecular nitrogen (N2) making up most of the remainder (3.5%). Traces of other molecules
are also present, most notably argon (70 ppm),2 sulfur dioxide (SO2, 60 ppm) carbon
monoxide (CO, 50 ppm), and water (H2O, 50 ppm). The probes even detected thick clouds
of concentrated sulfuric acid. At the base of the atmosphere the temperature is 740 K,
sufficient to melt lead, and the pressure is 90 atm, equal to the pressure at a depth of over
800 m below the surface of Earth’s oceans.3

The very high surface temperature far exceeds what is expected from a simple blackbody
analysis, such as the one performed in Example 3.1. It is the large amount of carbon

2ppm represents parts per million.
31 atm = 1.013 × 105 N m−2.
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The dynamical behavior of Venus’s atmosphere is also a puzzle. Probes that 
entered the atmosphere measured the presence of two large Hadley cells, one 
in each hemisphere, consistent with the planet’s slow rotation rate and the cor-
responding lack of any significant Coriolis force. However, near the equator



dioxide (a greenhouse gas) in the atmosphere that is responsible for the extreme conditions
at the surface. The atmosphere is so thick that the optical depth at infrared wavelengths
is approximately τ = 70, meaning that the temperature is increased over the blackbody
temperature that would be predicted for an airless planet at the location of Venus by a factor
of nearly (1 + τ )(1/4) = 2.9.

How could Earth’s sister planet have developed an atmosphere so different from our
own? The formation of terrestrial atmospheres is still not well understood and is an area of
active research. However, based on the direct evidence we have of outgassing from Earth’s
volcanoes and the discovery of volcanoes on both Venus and Mars, it seems likely that at
least a portion of a terrestrial planet’s atmosphere may arise from volcanic activity. It has
also been suggested that significant fractions of the atmospheres of these planets may have
been delivered by comets and meteorites. If the later suggestion is true, then understanding
the atmospheric evolution of the terrestrial worlds requires a greater understanding of the
composition of comets and meteorites, as well as the frequency with which they collide
with the worlds of the inner Solar System.

Whatever the source of Venus’s primordial atmosphere, carbon dioxide is the dominant
constituent today, and very little water is present. Conversely, water is abundant in Earth’s
oceans, but there is very little atmospheric carbon dioxide. What happened to change the
relative abundances of those molecules on the two planets? If the two worlds began with
similar compositions, as seems likely, given that they formed near one another in the solar
nebula and have comparable sizes, then water was probably much more abundant on Venus
in the past. In fact, since the luminosity of the zero-age main sequence Sun was only about
0.677 L⊙, much less than it is today, Venus may have even had hot water
oceans on its surface early in its history.As the Sun’s luminosity increased and the planet was
bombarded by planetesimals, the surface temperature began to rise and the oceans started to
evaporate. The addition of more infrared-absorbing water vapor in the atmosphere triggered
a runaway greenhouse effect, causing the surface temperature to climb to near 1800 K, hot
enough to vaporize the remainder of the water and even melt rock. At the same time, the
atmospheric pressure at the surface reached 300 atm. Since H2O is lighter than CO2, the
water migrated to the top of the atmosphere where it was dissociated by solar ultraviolet
radiation through the reaction H2O + γ → H + OH. This UV photodissociation process
liberated the lighter hydrogen atoms, allowing most of them to escape from the planet. Since
the carbon dioxide remained, it became the dominant species in the atmosphere of Venus.

As is true of any viable scientific theory, it is important that the theory make testable
predictions. In the evolutionary scenario for the atmosphere of Venus just described, the
photodissociation of water should have left behind altered isotope ratios of hydrogen. Hy-
drogen has two stable isotopes, 1

1H (or simply hydrogen, H) and 2
1H (deuterium, D), which

are chemically identical but differ in mass by a factor of two. On Earth the ratio of the
numbers of deuterium atoms to hydrogen atoms is D/H = 1.57 × 10−4. However, within
the atmosphere of Venus the ratio is closer to D/H = 0.016. The factor-of-100 increase
in the atmospheric D/H ratio for Venus relative to Earth is due to the more massive iso-
tope’s slower rate of escape. Apparently our understanding of
the runaway greenhouse effect on Venus is essentially correct.
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Studying the Surface

Because of the thick cloud cover and inhospitable climate, it has been a difficult job gathering
information about the surface of Venus. The Soviet Venera missions in the late 1960s
through early 1980s were able to descend into the atmosphere of the planet and in some
cases land on the surface, operating for short periods of time before succumbing to the
environment found there. While on the surface, they returned pictures of their immediate
vicinity. The landers also sampled the composition of the atmosphere and surrounding
rock, confirming the presence of sulfur in the atmosphere and finding rock of volcanic
origin on the surface. Variations in sulfur dioxide content over timescales of decades and the
detection of radio bursts characteristic of lightning in the atmosphere support the suggestion
of recent volcanic activity. In particular, observations by various spacecraft and ground-
based telescopes indicate that the sulfur dioxide content in the atmosphere of Venus has
decreased by more than an order of magnitude, with some intermittent fluctuations since the
late 1970s. Since ultraviolet radiation converts SO2 to sulfuric acid in the upper atmosphere,
the observed decrease in the sulfur dioxide concentration has led some scientists to suggest
that a major eruption may have occurred sometime during the 1970s, with a smaller event
occuring around 1992.

By far the greatest amount of information about the surface of Venus has come from
radar imaging, because radio signals can easily penetrate the atmosphere even though vis-
ible and ultraviolet light cannot. Radar studies have been carried out using Earth-based
telescopes such as Arecibo, and from orbiters, including the Venera and Pioneer series,
and most recently from the Magellan spacecraft. Launched from the Space Shuttle Atlantis
in 1989, Magellan’s very successful mission lasted until 1994, when it was intentionally
sent diving into the atmosphere to gather information about the density structure of the
planet’s atmosphere. During Magellan’s operational lifetime, it mapped 98% of the surface
at resolutions of between 75 m and 120 m. A Magellan mosaic of one hemisphere of Venus
is shown in Fig. 3(b).

During roughly one-half of its mission, Magellan sent back a continuous radio signal
to Earth so that scientists could monitor the variation in the signal’s wavelength caused by
the Doppler effect. As Magellan passed over regions of higher average density, the local
gravitational pull would speed up the spacecraft slightly and the wavelength of the signal
received at Earth would change. In this way, Magellan was used to generate a detailed
gravity map of the planet, covering approximately 95% of its surface.4

By combining images of a given region made from two different locations, together with
gravity information, scientists have been able to produce detailed three-dimensional images
of much of the planet’s surface. Figure 4 shows Maat Mons, a volcano 8 km high located
0.9 degrees north of the equator. In this image the vertical relief has been exaggerated by
a factor of 22.5 to bring out important features. Based on changes in surface reflectivity,
variations in rock characteristics become evident. Apparent in the image of Maat Mons are
lava flows that extend for hundreds of kilometers from the volcano. Estimates place the age
of the surface rock around Maat Mons at less than 10 million years, and it may be much
younger.

4To increase the resolution of the gravity data, flight controllers lowered Magellan’s orbit using the previously
untried technique of aerobraking; Magellan dipped down into the atmosphere slightly, causing the spacecraft to
lose orbital energy via atmospheric drag.
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FIGURE 4 Maat Mons is believed to be the tallest volcano on Venus, measuring 8 km in height.
The vertical scale has been increased over the horizontal scale by a factor of 22.5. (Courtesy of
NASA/JPL.)

It appears that the entire surface of the planet may have been refreshed relatively recently
compared to the age of the Solar System. This estimate comes from the number of impact
craters found on the surface (e.g., see Fig. 5). If we assume that Venus has been struck by
impacts at about the same rate as other worlds in the inner Solar System (such as Mercury or
our Moon), then from the relatively low number of craters found on the surface of Venus we
can conclude that large-scale lava flows must have occurred about 500 million years ago.5

In support of this conclusion, nearly one thousand volcanic features have been identified
on the surface of the planet.

3 EARTH

The planet for which we have the greatest amount of information by far is of course our
Earth (see Fig. 6). We have studied its atmosphere, its oceans, and its active geology with
a great deal of specificity. We have been able to carefully investigate its extensive biology,
from the smallest microbes to the largest plants and animals, and to study the evolutionary
processes that have led to our planet’s great biodiversity. We have also been able to extend
our knowledge by developing follow-up experiments based on information gained from
previous studies. This makes investigating our own planet significantly more robust and
interactive than investigating other bodies in our Solar System to date.6

5Absolute age estimates of the Moon will be discussed in detail in Section 4.
6However, as we will see when we discuss Mars in Section 5, humans have begun to conduct extensive robotic
studies of that planet based directly on information returned from previous and ongoing missions.
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FIGURE 5 The impact crater Cunitz is visible in this image, with the volcano Gula Mons in
the background. The vertical scale has been increased over the horizontal scale by a factor of 22.5.
(Courtesy of NASA/JPL.)

(a) (b)

FIGURE 6 (a) Earthrise over the limb of the Moon on December 22, 1968. This picture was
taken by the astronauts of Apollo 8. (b) Earth as seen by the Apollo 17 astronauts while traveling to
the Moon on December 7, 1972. Visible are most of Africa, Saudi Arabia, and the south polar ice cap.
(Courtesy of NASA.)

Our Atmosphere

Beginning early in its history, the bulk of Earth’s water condensed to form its oceans.
Unlike Venus, however, given Earth’s slightly greater distance from the Sun, our
planet never got hot enough to turn much of the liquid to vapor. Therefore, the
ensuing runaway greenhouse effect described in Section 2 never developed. Instead, the
carbon dioxide in the atmosphere was dissolved into water, where it became chemically
bound up in carbonate rocks such as limestone. If all of the carbon dioxide trapped within

The Terrestrial Planets



The present-day atmosphere of Earth is made up of (by number) 78% N2, 21% O2,
1% H2O, and traces of Ar, CO2, and other constituents. The atmosphere owes its current
composition in part to the development of life on the planet. For instance, plants process
carbon dioxide into oxygen as a by-product of photosynthesis.

The Greenhouse Effect and Global Warming

Serious concern now exists over the effects of artificially introducing carbon dioxide and
other greenhouse gases into Earth’s atmosphere by industrial means. To complicate matters,
we are simultaneously destroying vast regions of vegetation, such as theAmazon rain forests,
that could recycle CO2. The commonly used technique of slash-and-burn clearing of the
rain forests also releases tremendous quantities of carbon dioxide into the atmosphere.

To illustrate the problem, recent changes in the abundance of carbon dioxide over Mauna
Loa, Hawaii, are shown in Fig. 7; the oscillations are due to the annual growing season.
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FIGURE 7 The amount of carbon dioxide in parts per million by volume (ppm) over Mauna
Loa, Hawaii, as a function of time. (Data from C. D. Keeling, T. P. Whorf, and the Carbon Dioxide
Research Group, Scripps Institution of Oceanography, University of California.)
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rock today were released into Earth’s atmosphere, the amount would be comparable to 
that currently contained in the atmosphere of Venus. However, it is also important to know 
that the Sun was significantly less luminous in the early Solar System than it is today. 
This implies that Earth’s surface would have been cooler in the past and its water should 
have been in the form of ice, even as recently as 2 billion years ago. However, geologic 
evidence, including fossil records, suggests that Earth’s oceans were liquid as early as 3.8 
billion years ago. This puzzle has become known as the faint ancient Sun paradox. The 
resolution of this paradox probably lies in details of the greenhouse effect and a different 
atmospheric composition than exists at the present time.
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FIGURE 8 Monthly average temperature deviations in the Northern Hemisphere of Earth from
1881 to 2003. The deviations are measured from a 25-year average between 1951 and 1975. (Data
from K.M. Lugina, P.Ya. Groisman, K.Ya. Vinnikov, V.V. Koknaeva, and N.A. Speranskaya, 2004.
In Trends Online: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis
Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.)

Because of the nonlinear behavior of the greenhouse effect and the very complicated physics,
chemistry, and meteorology that are involved, accurate computer models are only slowly
becoming available. However, despite current limitations in the predictive power of these
models, the basic effects of greenhouse gases are understood. As we have learned from
Venus, increasing the content of greenhouse gases in an atmosphere will raise its average
temperature. The questions are by how much the temperature will increase, and how rapidly
it will occur.

Figure 8 shows the average temperature deviations in the Northern Hemisphere of
Earth between 1881 and 2003 with respect to a 25-yr average of temperatures computed
from 1951 through 1975. Evident is a consistently upward trend in the average temperature
since about 1970. Whether this upward trend is the start of a long-term steady increase or
a fairly short-term fluctuation has been a matter of some debate. However, it is clear that
a significant upward trend is currently under way; in fact, seven of the ten hottest years in
the twentieth century occurred in the 1990s.

Associated with the effects of global warming is evidence that Earth’s glaciers are
receding world wide. In addition, the Arctic ice cap has thinned significantly since 1970
and Earth’s ocean levels have risen. Also supporting the conclusion that human-driven
global warming is occurring is the increase in the average ocean surface temperature by
approximately 0.5◦C since the late 1960s, with warming extending down to depths of
several hundred meters. Since the oceans eventually absorb some 84% of the excess heat
in the atmosphere, the observation of this temperature increase is significant. The ocean
temperature increase also agrees with computer modeling of global climate changes that
include the influence of increased greenhouse gas emissions.
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Another environmental concern about human activity is the release of chlorofluorocar-
bons into the atmosphere. These molecules migrate into the upper atmosphere above the
North and South Poles, where they are destroying the ozone (O3). Ozone is known to be a
major absorber of ultraviolet radiation, and as such, it plays an important role in protecting
life on Earth’s surface.

Much more research is necessary before we can hope to understand the magnitude of the
environmental consequences of human behavior. Unfortunately, by the time more detailed
predictions are available, it may not be possible to reverse the trend.

In recognition of the importance of global warming to the inhabitants of our planet, the
first-ever “Earth Summit” was held in 1992, involving most of the nations of the world.
Officially known as the United Nations Conference on Environment and Development,
its purpose was to discuss global environmental concerns. The treaty that came from that
summit is the Framework Convention on Climate Change. Then, in December 1997, more
than 160 nations met in Kyoto, Japan, to negotiate binding limitations on greenhouse gases
for the developed nations. After much debate and compromise, resolutions regarding such
things as the emissions of greenhouse gases were finally agreed on. The Kyoto Protocol
came into force on February 16, 2005, after being ratified by 157 countries. However,
the United States, the world’s largest producer of greenhouse gases at the time the Kyoto
Protocol went into effect, did not ratify the agreement, citing concerns over its impact on
the nation’s economy.

Seismology and Earth’s Interior

The structure of Earth’s interior can be derived by analyzing the seismic waves generated by
earthquakes. Two principal types of waves are produced by earthquakes: P waves (pressure
or primary) are longitudinal waves capable of traveling through both liquids and solids, and
S waves (shear or secondary) are transverse waves that are restricted to traveling through
solids only (see Fig. 9). Since the velocities and paths of both P and S waves depend
on the medium through which they are moving, their detection around the world enables
geologists to deduce the structure of our planet.7 For instance, in regions where only P waves
are measured, the absence of S waves implies that there must have been intervening liquid
in the path of the wave (see Fig. 10). Furthermore, because of the refraction that occurs
at boundary interfaces (much like the refraction of light rays at the boundaries between
media of differing indices of refraction), shadow zones exist where neither type of wave
can be detected. Thus, using the data from P and S waves, geologists can map the interior
of the planet. Such maps yield information about the depth of the surface crust and reveal
the existence of a solid inner core, a molten outer core, and a thick mantle.

The behavior of P waves in the outer core implies that its composition is predomi-
nantly iron and nickel. This also agrees with the fact that the average density of Earth is
5515 kg m−3, greater than the density of surface rocks (typically 3000 kg m−3) and water
(1000 kg m−3).8 It is the combination of high temperature (> 4000 K) and composition
that results in a liquid outer core. The transition back to a solid inner core occurs because
of the extreme pressures found there.

7An analogous procedure is used to study the interiors of many stars.
8Gravitational compression also contributes to the higher value for the average density, relative to surface material.
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FIGURE 9 P waves are longitudinal pressure waves capable of traveling through both liquids
and solids. S waves are transverse shear waves that can travel only through solids.
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FIGURE 10 Generated by earthquakes, P and S waves travel through Earth’s interior. S waves
are unable to traverse the molten outer core. Furthermore, the refraction of P waves at the interface
between the outer core and the mantle produces shadow zones.

Plate Tectonics

Although the presence of volcanos is a feature that Earth shares with Venus and Mars,
Earth’s present-day tectonic activity appears to be unique among the terrestrial planets.
This activity has its origin in the dynamic interior of Earth, depicted in Fig. 11. Earth’s
surface layer, known as the lithosphere, encompasses both the oceanic and continental crust
as well as the outer portion of the mantle. The lithosphere is fractured into crustal plates
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FIGURE 11 The interior structure of Earth is composed of an inner solid core, an outer liquid
core, a mantle, and surface crust. The crust and the outer portion of the mantle make up the lithosphere
(containing the surface plates) and the underlying convective asthenosphere. The diagram is not to
scale.

(see Fig. 12) and rides on the convective, somewhat plastic asthenosphere, which is
also part of the mantle. As the plates move across the surface of the planet, they crash into
or grind against one another, carrying the continents with them.9 Because of these motions,
the Atlantic Ocean is widening at the rate of approximately 3 cm yr−1, spreading away from
an underwater mountain range that runs the length of the ocean floor. This mid-Atlantic
ridge is the location where material from the interior rises to the surface, generating new
sea floor as the continents separate (see Fig. 13).

Extrapolating the motions of the plates backward in time, geologists believe that there
was once one giant supercontinent, known as Pangaea, that broke apart some 200 million
years ago into two smaller supercontinents, Laurasia and Gondwanaland. Gondwanaland in
turn separated into South America and Africa, and Laurasia divided into Eurasia and North
America.

Earth’s plate boundaries are generally the sites of active volcanism, mountain building,
and frequent earthquakes. For example, when two plates collide, the lighter continental
crust overrides the heavier oceanic crust and a subduction zone develops, as illustrated in
Fig. 13. One such location is along the coast of Japan, where its volcanic islands were
created as a result of the heat generated by friction as the oceanic crust descended into the
interior of Earth. It is at the location of these subduction zones that deep oceanic trenches
also develop. If two plates collide that contain continental crust, neither plate will overrun
the other; instead, buckling occurs and a mountain range such as the Himalayas is generated.

9For example, the Pacific and North American plates are currently sliding past one another. The famous San
Andreas fault is located on the boundary between these two plates.
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FIGURE 12 The lithosphere is divided into crustal plates that travel across Earth’s surface.
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FIGURE 13 The motions of the plates are driven by convection zones in the asthenosphere. A
mid-ocean ridge (a rift) occurs where material from below is pushed up to the surface. A subduction
zone develops when the lighter continental crust overrides the heavier oceanic crust of two colliding
plates.

Sources of Internal Heat

All of this activity requires one or more sources of energy to sustain itself. Heat is known
to be escaping into space through the surface of Earth at a rate of 4 × 1013 W, implying
an average flux of 0.078 W m−2. If the only source of energy in the interior were the
heat left over from the formation of the planet almost 4.6 billion years ago, plate tectonic
activity would have long since ceased. Other sources of heat augment theenergy budget
of Earth, including the tidal dissipation of its rotational kinetic energy, possible
ongoing gravitational separation (releasing gravitational potential energy as heavier
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constituents sink toward the center of the planet), and the continual radioactive decay of
unstable isotopes (believed to be the primary source of the heat).10 This allows much of
the interior to remain somewhat plastic, supporting the large, sluggish convection cells that
drive the motions of the crustal plates.

Earth’s Variable Magnetic Field

The presence of a molten iron–nickel outer core together with Earth’s relatively rapid
rotation rate is consistent with the observation that the planet possesses a global magnetic
field, assuming that a dynamo is in operation in the planet’s interior. The existence of Earth’s
magnetic field serves to protect the planet from incoming charged particles in the solar wind,
as well as other ionized cosmic rays. Instead of striking the surface, these particles become
trapped in the dipole field and bounce back and forth between the North and South poles
(Fig. 14). Three regions of trapped particles have been identified and are known as the
Van Allen radiation belts. The innermost belt is composed of protons and is at a height of
roughly 4000 km above Earth’s surface. Overlapping a portion of the inner belt is a second
belt composed of atomic nuclei that were once part of the interstellar medium. The outermost
belt is composed of electrons at an altitude of approximately 16,000 km. Particles in the
belts that are energetic enough to enter Earth’s upper atmosphere near the poles strike atoms
and molecules there, causing collisional excitation, ionization, and dissociation. When the
atoms or molecules recombine, or when the electrons drop back down to lower energy
levels, the subsequent emission of light is observed as the aurora borealis (northern lights)
and aurora australis (southern lights); see Fig. 15.

Interestingly, geologic evidence indicates that Earth’s magnetic field weakens, reverses
polarity, and reestablishes itself on an irregular time scale of some 105 years. This can be
seen in the orientation of magnetic minerals trapped in molten rock that later solidified,
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FIGURE 14 The Van Allen radiation belts arise from charged particles becoming trapped in the
magnetic field of Earth.

10In the mid-1800s, Lord Kelvin argued that Earth could not be more than about 80 million years old. His argument
was based on the amount of gravitational potential energy the planet could release and the rate at which heat escaped
over time. However, his calculation was made before the discovery of radioactivity.
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FIGURE 15 The aurora are due to the collision of high-speed particles with atoms and molecules
in Earth’s upper atmosphere. (Courtesy of the Geophysical Institute, University of Alaska, Fairbanks.)

such as those sampled on either side of the spreading mid-Atlantic ridge (Figs. 12 and
13). In this way, a “fossil record” of the direction of the local magnetic field is created.
The behavior of Earth’s field is not unlike the solar cycle, the flipping of the Sun’s magnetic
field roughly every 11 years. Earth’s magnetic field is known to be weakening today.

4 THE MOON

Despite the proximity of the Moon to Earth, the two worlds are very different (see Fig. 16).
Because of its low surface gravity, the Moon has been unable to retain a significant atmo-
sphere. Without a protective atmosphere, the Moon has suffered impacts by meteorites
throughout its history. Along with a large number of smaller impacts, a significant number
of very large collisions occurred approximately 700 million years after the Moon formed.
These impacts were powerful enough to penetrate its thin crust, allowing molten rock in
the interior to flow across the surface. The result was the formation of the many smooth,
roughly circular maria (or “seas”) that can be seen on the surface of the Moon facing Earth.
It is the distribution of these maria that has led humans to imagine seeing the face of the
“man in the Moon.”

The Moon’s Internal Structure

Major advances in our understanding of the Moon’s internal structure and evolutionary
history have occurred as a result of intense exploration from 1959 through the early 1970s.
When the Apollo astronauts landed on the Moon, they left seismic detectors designed to
measure any moonquakes that may be occurring. Many of the very weak quakes that were
detected (about magnitude 1 on the Richter scale) were triggered by the tidal strain generated
by Earth’s gravitational pull. Another class of vibrations has been attributed to the Moon’s
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(a) (b)

FIGURE 16 (a) The surface of the Moon contains heavily cratered highland regions and nearly
circular maria that are much less heavily cratered. The portion of the Moon facing Earth is on the
left side of the image. (b) A portion of the far side of the Moon showing the extensive cratering
found there. The diameter of the large crater is approximately 80 km. This view was obtained by the
Apollo 11 astronauts in 1969. (Courtesy of NASA.)
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FIGURE 17 The interior structure of the Moon.

“ringing” after being struck by meteorites. Just as with the analysis of seismic activity
on Earth, moonquakes have allowed scientists to develop an understanding of the Moon’s
interior.

Many of the moonquakes appear to have originated, not at tectonic plate boundaries,
but at the interface between the solid, brittle lithosphere and the plastic asthenosphere (see
Fig. 17). It also appears likely that below the asthenosphere, a small iron-rich core exists
as well. This structure is consistent with measurements of the small amount of heat still
flowing outward from the Moon’s interior, which is responsible for maintaining the plastic
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nature of the asthenosphere. However, based on the data provided by this seismic activity,
Earth-like tectonic activity appears to be absent on the Moon today.

Interestingly, only one mare was seen on the side of the Moon farthest from Earth.11

This is not because collisions were preferentially occurring on the side of the Moon facing
Earth; rather, the crust is actually thinner on the near side. Consequently, impacts on the
thin-crust side were more likely to penetrate the crust, allowing interior molten rock to flow
over the surface. Because the crust is less dense than material in the Moon’s interior, tidal
forces have caused the heavier near side to permanently “hang down” toward Earth.

The Absence of a Global Magnetic Field

Unlike Earth, our Moon has no measurable global magnetic field, apparently because the
Moon is small enough to have cooled off much more rapidly than Earth. This evolution
has left the Moon as a geologically inactive world today. Furthermore, the Moon’s rotation
period is more than 27 times longer than Earth’s. As a result, there is no evidence of any
significant magnetic dynamo in operation, suggesting that if a molten core is present, it is
likely to be quite small.12

are comparable in mass and radius (the Moon’s mass and radius are 23% and 71% of the
values for Mercury, respectively), while Mercury’s rotation rate is slower by a factor of
two. Clearly, much work remains to be done in understanding the details of magnetic field
production.

Moon Rocks

During the 1960s and 1970s, six manned United States Apollo missions returned 382 kg
of surface rocks and regolith from the Moon’s surface. In addition, three unmanned Soviet
Union Luna missions returned an addition 0.3 kg of material. The samples were collected
from both the maria and the highland (or mountainous) regions between the maria. These
samples represent the most detailed information we have about the nature of our closest
neighbor.

Composition analysis of samples returned from the maria confirm that they are in fact
volcanic in origin. The rocks are basalts, similar to the kind of volcanic rock found on Earth.
The lunar basalts are rich in iron and magnesium, and they also contain glassy structures that
are characteristic of rapid cooling. However, unlike Earth basalts, the lunar samples contain
no water and a lower percentage of volatiles (elements or compounds with low melting and
boiling temperatures) relative to refractories (higher melting and boiling temperatures).

Radioactive Dating

Perhaps the most eagerly awaited results of the analysis of the lunar samples were the
determinations of their ages. The process is based on measuring the abundances of certain

11The first observations of the far side of the Moon were made by the Soviet Luna 3 mission in 1959.
12Based on the natural remnant magnetization of returned lunar samples and the patchy magnetization detected
by satellites, it appears that the Moon once had a global magnetic field. However, there is no evidence of a global
field today.
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FIGURE 18 The 235
92U decay sequence.

radioactive isotopes and comparing them with the abundances of stable end products of
the decay sequence. In this technique of radioactive dating, we assume that the “clock”
started ticking when the rock solidified, trapping the isotopes inside.

If the half-life of one step in the decay sequence is significantly longer than any of the
others, it can be assumed that the original isotope decays directly into the final product
with a half-life approximately equal to that of the longest one. For instance, in the decay
sequence depicted in Fig. 18, which begins with 235

92U and ends with 207
82Pb, the first step,

the alpha particle13 decay 235
92U → 231

90Th + 4
2He, has a half-life of 7.04 × 108 years, while

the next slowest step, 231
91Pa → 227

89Ac + 4
2He, has a half-life of only 3.276 × 104 years. As

a result, to a good approximation, the half-life of the entire sequence can be taken to be
7.04 × 108 years. This means that by measuring the relative abundances of the uranium and
lead isotopes, we can determine the time required for the transformation.

Some radioactive isotopes that are useful for dating Moon rocks, as well as Earth rocks
and meteorites, are given in Table 1. Note that the stable products are not necessarily the
direct result of a single decay but may be produced after a succession of decays, the longest
of which has the quoted half-life.

To understand the method of radioactive dating more fully, suppose that isotope A decays
into isotope B (which is stable), either directly or indirectly through a series of steps.

A in the sample was initiallyNA,i , then
after some time t , the number remaining is

NA,f = NA,ie
−λt ,

13 4
2He) are often referred to as alpha particles (α).

We know that if the number of atoms of

Helium nuclei (
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TABLE 1 Radioactive Isotopes with a Half-Life Useful for Determining Geologic Ages.

Radioactive Stable Half-Life
Parent Product (109 yr)

129
53I 129

54Xe 0.016
235
92U 207

82Pb 0.704
40
19K 40

18Ar 1.280
238
92U 206

82Pb 4.468
232
90Th 208

82Pb 14.01
176
71Lu 176

72Hf 37.8
87
37Rb 87

38Sr 47.5
147
62Sm 143

60Nd 106.0

where

λ = ln 2
τ1/2

is the decay constant and τ1/2 is the half-life. Because the total number of atoms of A and
B must remain constant over time (even though A is ultimately being converted into B), it
is necessary that

NA,f + NB,f = NA,i + NB,i .

Solving for NA,i , substituting into the decay equation, and rearranging, we have an expres-
sion for the change in the number of atoms of B within the sample since it formed:

NB − NB,i =
(

eλt − 1
)

NA,

where NA ≡ NA,f and NB ≡ NB,f are the numbers of atoms of species A and B respec-
tively, remaining today. When comparing one sample with another, it is more accurate to
evaluate the compositions by using ratios of isotopes: the isotopes of interest relative to a
stable third isotope. Representing this third (constant) abundance as NC , we arrive at the
relation

NB

NC

=
(

eλt − 1
) NA

NC

+ NB,i

NC

. (1)

Equation ( 1) is used to determine the age of a sample by plotting relative abundances
of the stable product versus the relative abundances of the radioactive isotope in the sequence
at various locations in the rock. The slope m = eλt − 1 of the best-fit line is directly related
to the age of the sample.
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Example 4.1. Data for one sample obtained in the lunar highlands, based on the beta
decay14 of rubidium-87 to strontium-87, 87

37Rb → 87
38Sr + e− + ν, are shown in Fig. 19.

From Eq. ( 1) and Fig. 19,

m = eλt − 1 = 0.0662,

where λ = 0.0146 × 10−9 yr−1 for 87
37Rb. Solving for t , we find that the age of the sample

is 4.39 × 109 yr.
It is important to point out that this procedure assumes that the initial ratio 87

38Sr/86
38Sr is

a constant throughout the sample, whereas the initial ratio 87
37Rb/86

38Sr may vary somewhat
(i.e., the sample is not perfectly homogeneous). This is because 86

38Sr and 87
38Sr are chemically

identical, allowing them to be bound up in minerals in the same proportions, whereas the
proportion of 87

37Rb/86
38Sr need not be constant throughout.

from the Sea of Tranquility by the Apollo 11 astronauts in 1969, the ages of the maria
(typically 3.1 to 3.8 × 109 years) are significantly less than those of the highlands. This is
consistent with the observation, noted earlier, that relatively few craters can be found in the
maria compared to the highland regions.

In sharp contrast, the oldest rocks ever found on Earth date to 3.8 billion years, whereas
90% of the planet’s crust is younger than 600 million years. Plate tectonic activity is con-
stantly recycling the surface, carrying old crust down into the mantle and forming new crust
to replace it.
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FIGURE 19 Relative abundance determinations for a sample obtained in the lunar highlands.
(Data from D. A. Papanastassiou and G. J. Wasserburg, Proc. Seventh Lunar Sci. Conf., Pergamon
Press, New York, 1976.)

14 β).An electron is also referred to as a beta particle (
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Late Heavy Bombardment

It is the dating of lunar samples that implies that a spike of late heavy bombardment
(LHB) occurred roughly 700 million years after the Moon formed. It was during that time
that the majority of the cratering occurred in the lunar highlands. During the LHB phase,
a small number of very large collisions produced the maria. Over the last 3.8 billion years
meteorite impacts have continued, but at a significantly reduced rate. In this way the fairly
smooth, relatively uncratered surfaces of the maria have been maintained.

The “time stamp” provided by Moon rocks not only plays an important role in our
understanding of the evolution of the Moon but is also crucial in developing a picture of
evolution for other planets, as well as an overall formation theory for the Solar System.

For instance, the recognition of an LHB episode followed by meteorite
impacts at roughly a constant rate has helped scientists to conclude that the surface of Venus
was refreshed within approximately the last 500 million years. This scenario also suggests
that the surface of Mercury is, in general, quite ancient.

The Formation of the Moon

The question of the Moon’s formation has been widely debated. Prior to theApollo and Luna
missions, several models had been proposed. The fission model (also sometimes called the
daughter model), first suggested in 1880 by George Darwin15 (1845–1912), contended
that the Moon was “torn off” from Earth at a time when Earth was spinning more rapidly
than it is today. However, the orientation of the Moon’s orbital plane is close to the ecliptic
(tilted 5.1◦), rather than along the plane of Earth’s equator as would be expected if the
Moon broke away. Furthermore, the lack of any water in the lunar samples, together with
the underabundance of other volatiles relative to surface rock on Earth, also contradicts this
proposal.

The co-creation model (also known as the sister model) suggested that the Moon and
Earth formed simultaneously, with the Moon coalescing from a small disk of material that
developed around the proto-Earth. This idea also fails to explain the composition differences
found in the lunar samples.

Athird model, the capture model, proposed that the Moon was actually formed elsewhere
in the solar nebula and was caught in Earth’s gravitational field as it drifted by. However,
in this scenario the composition differences are not great enough; the Moon and Earth are
too similar. For instance, the ratios of stable isotopes of oxygen are nearly identical within
lunar and terrestrial samples despite significant differences found in meteorites. Also, the
dynamics of such a capture seem unlikely. Since the Moon is fairly large compared to Earth,
a third, similarly sized body would need to have been present to take up much of the system’s
surplus energy, as required for a capture. Having three large objects in close proximity at
just the right time seems highly improbable. On the other hand, capture seems to be a
likely mechanism for some of the many small moons found throughout the Solar System.
In these cases, energy may have been lost through a many-body interaction with other
moons already present. Alternatively, orbital energy may have been lost by aerobraking
if the captured moon passed through a portion of the planet’s atmosphere, much like the

15George Darwin was the son of Charles Darwin (1809–1882), the author of the theory of Darwinian biological
evolution.
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maneuver performed with the Magellan spacecraft around Venus. However, our Moon is
much too large for any of these mechanisms to work.

In 1975 a fourth model, now known as the collision model, was proposed by William
K. Hartmann and Don R. Davis. Since that time numerous computer simulations have
verified its plausibility (e.g., Fig. 20). This model seems to explain many of the problems
encountered by the three previous scenarios. The model suggests that a giant object, perhaps
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FIGURE 20 A computer simulation of the formation of the Moon according to the collision
model. The Earth–Moon system is shown at different times during the simulation. (Figure courtesy
of A. G. W. Cameron and W. Benz, Smithsonian Astrophysical Observatory.)
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twice the mass of the present-day Mars, collided with Earth almost 4.6 billion years ago,
vaporizing much of the impactor and causing a portion of Earth’s surface to be ripped away.
The pulverized material then formed a disk around Earth that coalesced over a relatively
short period of time (estimates range from months to about 100 years). Due to the high
temperatures generated during the collision, many of the volatiles present in Earth’s crust
would have been absent in the condensing debris. Assuming that there had been sufficient
time prior to the collision for some gravitational separation to occur within Earth and the
impactor, the crusts of the two objects would also have been somewhat deficient in iron,
leaving less iron available to form the Moon. The simulations suggest that most of the
present-day Moon was produced by silicate-rich material from the mantle of the impactor,
and that the impactor’s iron-rich core became a part of Earth. This model effectively explains
why the Moon’s average density is comparable to the density of Earth’s uncompressed
mantle (i.e., the density that would be measured if the compressional effect of gravity were
removed). In this model the collision would have also preserved the similar oxygen-isotope
ratios seen on the two worlds.

The collision model is considered by most researchers as the preferred model for the
formation of our Moon. Although it appears on first inspection to be a highly unique and
perhaps ad hoc way to explain the characteristics of our Moon, recall that a similar scenario
also appears to explain the highly dense structure of Mercury. The existence of Pluto’s
moon Charon may require a large-scale collision as well.

From our investigation of the Moon, it appears that its formation was a violent pro-
cess. However, numerous questions about the Moon’s structure and evolution remain unan-
swered. It is also apparent that careful studies of our nearest neighbor can shed light on
important questions regarding the formation and evolution of Earth and the rest of the Solar
System. Perhaps future missions to the Moon would further clarify our understanding of
the Solar System.

5 MARS

Only one-tenth the mass of Earth, the planet Mars has touched our imagination. In 1877
the astronomer Giovanni Virginio Schiaparelli (1835–1910) reported seeing a series of dark
lines on the surface of the planet and referred to them as canali (naturally occurring channels
of water). The term was later misinterpreted to imply that the markings were actually an
immense network of artificial canals built by an intelligent civilization to irrigate a dying
world. In support of this argument is the existence of the seasonally varying polar ice caps,
visible in the Hubble Space Telescope image shown in Fig. 21(a). It is not difficult to
imagine that using smaller telescopes, which were peering at the red planet through Earth’s
obscuring atmosphere, would have led to the conclusion that canali were present. In an effort
to verify these features, Percival Lowell (1855–1916) built an observatory near Flagstaff,
Arizona, to carry out a series of careful observations of this nearby world. Other astronomers
were somewhat more skeptical of the existence of intelligent life on Mars, and even of the
canali. However, the general public seized on the possibility that Martians do (or at least
did) live there, leading to a wealth of science fiction literature and films.
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(a) (b)

FIGURE 21 (a)An image of Mars obtained using WF/PC 2 onboard the Hubble Space Telescope.
The north polar ice cap is clearly visible. (Courtesy of Philip James, University of Toledo; Steven Lee,
University of Colorado; and NASA.) (b) A mosaic of 102 Viking Orbiter images obtained in 1976.
This perspective places the viewer 2500 km above the surface of the red planet. Valles Marineris
(a 3000-km-long canyon system) can be seen near the equator. On the left side of the image, three
giant shield volcanos are evident as dark, circular regions. Each volcano is approximately 25 km tall.
(Courtesy of U.S. Geological Survey and NASA/JPL.)

Exploration of the Red Planet

There have been many attempts to study Mars by robotic missions. Early efforts included
the Mariner flyby missions in the 1960s. In 1975 the Viking missions included two orbiters
and partnered landers that contained cameras and internal laboratories for the study of Mars
surface chemistry. Since the landers did not have any ability to move across the surface,
their studies were restricted to the locations where they set down on the planet. The Mars
Global Surveyor, with its very high-resolution camera entered Mars orbit in 1997 and
continues to operate successfully at the time of this writing, as does the Mars Odyssey,
which arrived in 2001, and the Mars Express Orbiter, an ESA mission that reached the
red planet in 2003. Another spacecraft, the Mars Reconnaissance Orbiter, also began its
work around the planet in 2006.

The Sojourner Rover of the Mars Pathfinder mission (1997) was the first truly mobile
lander, able to move short distances across the surface in the vicinity of its lander, the Carl
Sagan Memorial Station.16 Then in January 2004, two golf-cart-sized rovers successfully
landed on the surface and began extensive exploration of the regions around their landing
areas. The Mars Exploration Rovers, Spirit and Opportunity, were originally expected
to operate for several months, but they continued to move across the surface of the planet as
late as May 2006. The Mars Orbiter has been able to image both rovers from its vantage point
in orbit around the planet. Other missions are also planned, including additional orbiters
and landers and possible human-crewed missions to Mars.

16The stationary lander base was renamed the Carl Sagan Memorial Station after landing in honor of Carl Sagan
(1934–1996), Solar System researcher, Pulitzer-prize-winning author, and popularizer of astronomy.
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Evidence of Water on Mars

Despite the many studies of Mars from Earth, from Mars orbit, and from its surface, no
sign of life has been found on the planet. At first inspection, the images returned by Spirit
and Opportunity (see Fig. 22), along with images obtained from the Viking landers, give
the impression of a dry, dusty world. However, on closer inspection of data returned by
Spirit and Opportunity, along with information from the orbiters, research has revealed a
fascinating world that, although dry today, once clearly had water flowing across its surface.
Apparent in images of the surface from the Mars Orbiter (see Fig. 23) are channels that
are characteristic of water erosion found on Earth. There is also evidence that huge flash
floods may have occurred on the surface of the planet. It appears that lakes of water may
have been present on Mars in the distant past as well (Fig. 24).

With present-day surface temperatures varying between −140◦C (−220◦F) and 20◦C
(70◦F), combined with the very low atmospheric pressure found near the surface (typically
0.006 atm), it appears that the liquid water that was present on Mars is now either trapped
in a layer of permafrost or frozen in its polar ice caps [Fig. 21(a)]. In fact, it is the low
atmospheric pressure that makes the existence of persistent water in liquid form impossible
on the surface today.

ALH84001, A Martian Meteorite

Ironically, even though the intense investigations of Mars by robotic spacecraft and landers
have thus far failed to identify any evidence that life exists on Mars today or existed there
in the past, a meteorite discovered in Allan Hills, Antarctica, in 1984 led to speculation that

(a)

(b)

FIGURE 22 (a) A panoramic view of the Bonneville crater obtained by Mars Exploration Rover
Spirit. (Courtesy of NASA/JPL.) (b) A panoramic view of interesting rock features at Meridiani
Planum, near the landing site of Mars Exploration Rover Opportunity. (Courtesy of NASA/JPL.)
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FIGURE 23 (a) A portion of Valles Marineris [recall Fig. 21(b)] showing evidence of water-
caused erosion. (Courtesy of NASA/JPL/Malin Space Science Systems.) (b) Erosion channels seen
in an impact crater in Newton Basin in Sirenum Terra, located in the southern hemisphere of Mars.
(Courtesy of NASA/JPL/Malin Space Science Systems.)

FIGURE 24 An impact crater in the southern hemisphere of Mars. The dark material at the
bottom is believed to be sediment deposits from an ancient Martian lake. Seepage into the crater is
also evident near the rim of the crater. Dunes are visible in the dark regions as well. (Courtesy of
NASA/JPL/Malin Space Science Systems.)
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FIGURE 25 (a) ALH84001 is a Martian meteorite found in Allan Hills, Antarctica, in 1984.
(Courtesy of NASA.) (b) An electron microscopy view of a portion of ALH84001 showing tube-like
structures less than 1/100 the size of a human hair. Some scientists have argued that these structures
represent nanofossils of ancient microbial life on Mars. (Courtesy of NASA.)

evidence existed in that rock from space [Fig. 25(a)]. ALH84001 is the oldest meteorite
ever found that originated from the surface of Mars. After forming on Mars 4.5 billion
years ago, it was ejected from the surface of the planet 16 million years ago by an energetic
collision. After traveling through the inner Solar System, it struck Earth 13,000 years ago
and became trapped in the Antarctic ice sheet.17 Confirmation that the meteorite did indeed
originate on Mars comes from comparing its chemical composition with the results of
compositional studies conducted by robotic landers.

It was the examination of small amounts of carbonate grains in the meteorite that has led
some researchers to suggest that ancient, fossilized Martian microbes may be contained in
the rock [Fig. 25(b)]. The grains themselves measure less than 200 µm in size, and what
appear to be fossilized microbes are smaller than 1/100 the size of a human hair. In support
of the hypothesis that the “nanofossils” are due to ancient microbial life is the presence of
organic PAHs in the carbonate, along with oxide and sulfide biominerals. The carbonate
grains also appear to have formed in fractures in the rock, possibly in the presence of liquid
water.

Most researchers now believe that, although ALH84001 is a fascinating rock that clearly
originated on Mars, the evidence is weak that it contains samples of primitive fossilized
life. Rather, it could be that the features formed by some inorganic mechanism(s) or that
the rock became contaminated as a result of the 13,000 yr it spent on Earth before it was
discovered.

The Polar Caps

Although water ice is certainly present today in the polar caps, the caps are composed
primarily of dry ice (frozen carbon dioxide). Mars’s axis tilt of 25◦ and its orbital period
of 1.88 yr means that the planet’s seasonal variations are similar to Earth’s but are roughly
twice as long. Consequently, Mars experiences winter and summer seasons corresponding
to observed variations in the sizes of the ice caps. It is the dry ice that sublimates during the

17The ejection and landing ages were determined through cosmic ray exposure that the meteoroid received prior
to hitting Earth.
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Martian summer and freezes back out again during the winter. The small residual cap that
remains during the summer is composed of water ice.

Chaotic Fluctuations in Mars’s Rotation Axis

From numerical simulations designed to investigate the long-term stability of planetary
motions, it appears that the orientation of Mars’s spin axis fluctuates wildly (chaotically)
between about 0◦ and 60◦ over time scales as short as a few million years; the variations are
due to gravitational interactions with the Sun and the other planets. If Mars has experienced
such large fluctuations in its axis tilt in the past, this would imply that at various times the
polar ice caps could completely melt (high tilt angle), whereas at other times the planet’s
atmosphere might actually freeze out (low tilt angle).The time-variability of the tilt of Mars’s
spin axis also implies that its current tilt, which is similar to Earth’s, is only coincidental.

Interestingly, these simulations of the fluctuations imply that the chaotic behavior does
not develop if the effects of general relativity are neglected. It seems that the effects of
spacetime curvature play an important role in the long-term behavior of planetary orbits
and their rotations, even at the distance of Mars’s orbit.

Even though it is closer to the Sun, Earth has not experienced the same dramatic oscil-
lations in its axis tilt that Mars seems to have gone through. Apparently Earth’s rotation
axis is stabilized by our planet’s strong tidal interaction with its relatively large moon. Con-
sequently, our planet’s climatic variations have been much less pronounced than those on
Mars. Amazingly, this seems to imply that the presence of Earth’s moon (apparently the
result of an accidental collision) is in part responsible for the stable environment that led to
the evolution of life on the third planet from the Sun.

The Thin Atmosphere of Mars

Mars’s very thin atmosphere is composed of 95% carbon dioxide and 2.7% molecular
nitrogen, by number—percentages very similar to those in the atmosphere of Venus. Unlike
the case of Venus, however, the greenhouse effect has very little influence on the current
equilibrium temperature of Mars; there simply are not enough molecules present to absorb
a significant amount of infrared radiation (the atmospheric pressure at the surface of Venus
is 90 atm, 13,000 times greater than the atmospheric pressure at the surface of Mars). In
the past, the atmosphere of Mars may have been much more dense, causing the greenhouse
effect to be more efficient than it is today. The water that is currently trapped in the ice caps
and permafrost would then have been flowing freely, maybe even resulting in rainfall. The
water that was present in the atmosphere and on the surface would have absorbed much
of the atmospheric carbon dioxide, subsequently locking the CO2 in carbonate rocks. As
a result, the greenhouse effect diminished, the global temperature dropped, and the water
froze, leaving the dry world we find today.

Shortly after the two Viking landers arrived at Mars in 1975, they began to measure
an appreciable drop in atmospheric pressure. This was because winter was coming to the
Southern Hemisphere, and carbon dioxide was freezing out of the atmosphere. When spring
returned to the south, the atmospheric pressure went back up again. The same behavior was
repeated when winter arrived in the Northern Hemisphere.

The Terrestrial Planets



Dust Storms

Even though the atmospheric density is quite low near the surface, it is sufficient to produce
huge dust storms that sometimes cover the entire surface of Mars. The seasonal storms are
driven by high winds and are responsible for the variations in surface hues that can be seen
from Earth.18

It was during the Viking missions in 1976 that two such major dust storms occurred.
Since that time, much of the dust has settled out of the planet’s atmosphere, resulting in
noticeable changes in its climate. (The absorption of light by dust is the primary source of
atmospheric heating.) In fact, the Hubble Space Telescope recorded a decline in the average
global temperature of the planet. With the decrease in average temperature, ice-crystal
clouds have become more prominent in the planet’s lower atmosphere than they were at the
time of the Viking missions.

The Abundance of Iron

The dust on the surface (recall Fig. 22) appears reddish in color and contains a rela-
tively high abundance of iron, which oxidizes (rusts) when exposed to the atmosphere.
Apparently Mars did not undergo the same degree of gravitational separation that Earth
did, possibly because the smaller, more distant planet cooled more rapidly following its
formation. However, averaging over the volume of the entire planet reveals that iron is
actually underabundant on Mars relative to the other terrestrial planets, as evidenced by its
lower average density of 3933 kg m−3. The reason for this is not yet understood.

The lack of significant gravitational separation is also consistent with the absence of an
appreciable global magnetic field. If an iron core is present, presumably it is quite small
and probably not molten.

Evidence of Past Geological Activity

Even if Mars may not be geologically active today, it certainly has been in the past. Fig-
ure 21(b) shows Valles Marineris, a 3000-km-long network of canyons near the planet’s
equator. It appears that Valles Marineris, which is up to 600 km wide in some places and
can reach a depth of 8 km, was formed from faulting (or fracturing of the crust) in order to
relieve stresses that built up in the interior.

Olympus Mons, shown in Fig. 26, is a shield volcano that covers an area roughly
the size of Utah. The volcano rises 24 km above the surrounding surface and has a huge
caldera (a volcanic crater). Geologists believe that Olympus Mons owes its enormous size
to a process known as hot-spot volcanism, where a weak spot in the crust has allowed
molten material to rise to the surface. It is hot-spot volcanism on Earth that is responsible
for the creation of the Hawaiian islands.19 However, in the case of the Hawaiian island
chain, motion of the tectonic plate on which the chain rides carries each newly formed
volcano away from the hot spot, allowing another one to be created. Today the chain of

18These seasonal variations were once thought by some astronomers to be evidence of vegetation growing cycles.
19The tallest mountain on Earth, measured from its base to its summit, is the Hawaiian Island of Mauna Loa, with
a vertical rise above the sea floor of 9.1 km.
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FIGURE 26 Olympus Mons is a shield volcano rising 24 km above the surrounding surface.
Measured at its base, the diameter of the volcano is more than 500 km. The cliff that rings the volcano
in this perspective image is 6 km high. (Courtesy of NASA/JPL.)

mountains that contains the Hawaiian islands actually stretches nearly all the way to Japan,
although over time the oldest mountains have undergone significant erosion.20

The situation was somewhat different for Olympus Mons. Since Mars has apparently
not developed a system of moving tectonic plates, the volcano was not carried off the hot
spot where it formed. As a result, it has grown larger and larger as more molten material
has made its way to the surface.21

Two Tiny Moons

ogy. Knowing that there were no moons in orbit about Venus, that Earth had one satellite,
and that Galileo had recently discovered four moons orbiting Jupiter, Kepler decided it
seemed reasonable that Mars ought to have two!

In 1726, 150 years before Hall’s actual discovery, Jonathan Swift (1667–1745) wrote in
his book Gulliver’s Travels that astronomers had discovered two satellites orbiting the red
planet. His fictitious scientists found that the orbital periods of these moons were 10 hours
and 21 1

2 hours, “so that the squares of their periodical times are very near in the same
proportion with the cubes of their distance from the centre of Mars, which evidently shows
them to be governed by the same law of gravitation that influences the other heavenly
bodies.” Apparently Swift, who was not a scientist, was aware of scientific discoveries

20The Yellowstone region, with its geysers, hot springs, and mud volcanoes, is another example of hot-spot
volcanism on Earth.
21The large volcanos discovered on Venus may have been formed in much the same way as Olympus Mons.
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Although they the two moons of Mars, Phobos and Deimos (Fig. 27), were dis-
covered by Asaph Hall (1829–1907) in 1877, Kepler had postulated their 
 existence centuries earlier. His “prediction” was based solely on numerol-
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FIGURE 27 The two moons of Mars, (a) Phobos and (b) Deimos, are very similar to asteroids
and were probably captured by the planet. (Courtesy of NASA/JPL.)

such as Kepler’s third law. The actual orbital periods of Phobos and Deimos are 7h39m and
30h17m, respectively, remarkably close to the values determined by Swift’s astronomers.

Both Phobos and Deimos are small, heavily cratered, elongated rocks. Phobos’s longest
dimension is a mere 28 km, and Deimos’s is even smaller (16 km). It appears likely that
the moons are captured asteroids.
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PROBLEM SET

1 Assume that radar signals of 10 GHz are used to measure the rotation rates of Mercury and
Venus. Using the Doppler effect, determine the relative shifts in frequency for signals returning
from the approaching and receding limbs of each planet.

2 What is the ratio of the Sun’s tidal force per unit mass on Mercury at perihelion to the Sun’s tidal
force per unit mass on Earth? How has this difference in tidal effects contributed to differences
in the orbital and/or rotational characteristics of the two planets?

3 For Mercury, a slowly rotating planet with no appreciable atmosphere, the below equation  for

(a) Assuming (incorrectly) that Mercury is in synchronous rotation about the Sun, show that
the temperature at a latitude θ north or south of the subsolar point (the point on the equator
closest to the Sun) is given by

T = (cos θ)1/4(1 − a)1/4T⊙

√

R⊙
D

.

Since the planet is actually in a 3-to-2 resonance, this expression is only an approximate
description for the temperature at Mercury’s surface.

(b) Make a graph of T vs. θ . Mercury’s albedo is 0.06.
(c) What is the approximate temperature of the planet at the subsolar point?
(d) At what latitude does the temperature drop to 273 K? This is the freezing point of water

at the surface of Earth.
(e) Would you expect to find ice on Mercury at a temperature of 273 K? Why or why not?

4 (a) Estimate the angular resolution of the 70-m radio dish of the NASA Goldstone tracking
station mentioned in footnote 1 on page 739. Assume that it is operating at a wavelength
of 3.5 cm.

(b) What is the angular size of Mercury at inferior conjunction? Assume (incorrectly) for this
problem that the planet’s orbit is circular.

(c) If the power in the radar signal was approximately uniformly distributed across the cone-
shaped beam, how much power actually arrived at the surface of Mercury?

The Terrestrial Planets

Tp = T⊙(1 − a)1/4

√

R⊙
2D

.

a planet s surface temperature must be modified. In particular, the assumption that the tem-
perature is approximately constant over the entire surface of the planet is no longer valid.

(d) Suppose that all of the radar energy striking the surface of Mercury were reflected isotrop-
ically back into a hemisphere. What would be the signal flux received at the VLA?

5 (a) From the data presented in the text, estimate the kinetic energy of the impact that may
have been responsible for stripping off the outer layers of Mercury early in the history of
the Solar System.

(b) If, prior to the collision, Mercury had twice as much mass as it does today, how much energy
would have been required to lift that additional mass off the present planet? Assume that

From Chapter  of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 by
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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the extra mass had the density of Earth’s present-day Moon and that the material was
uniformly distributed in a spherical shell around the present-day Mercury. Don’t forget to
include the energy required to eject the mass of the impactor as well.

(c) Solely on the basis of energy considerations comment on the feasibility of this scenario
for the origin of Mercury as we observe it today.

6 Assuming that the atmosphere of Venus is composed of pure carbon dioxide, estimate the
number density of molecules at the planet’s surface. How many times larger is this value than
the number density of nitrogen molecules at the surface of Earth?

7 (a) Modeling the greenhouse effect using one atmospheric layer
is equivalent to assuming that the optical depth is about one. If the optical depth is τ , and
if we can neglect circulation in the atmosphere, show that the surface temperature should
be approximately

Tsurf = (1 + τ )1/4 Tbb,

where Tbb is the blackbody temperature of an airless planet.
(b) The optical depth of Venus’s atmosphere is approximately τ = 70. Make an estimate of

its surface temperature using this crude greenhouse model. Take the average albedo to
be 0.77.

8 Based on the observed rate at which North America and Eurasia are separating from each other,
when were the two continents joined together as Laurasia? Assume that the Atlantic Ocean is
roughly 4800 km (3000 miles) wide.

9 Using the equation of hydrostatic equilibrium the below equation , estimate the pressure at the
.7×10 6atm.

10 (a) rate at which rotational energy is being
dissipated by tidal friction for the case of Earth. Hint: This terrestrial problem is similar
to the loss of rotational kinetic energy in pulsars; see the equation below.

center of Earth. Detailed computer simulations suggest that the central pressure is 3

Estimate the

11 Referring to the equation below for the Lorentz force and Fig. 14, explain why most charged particles
bounce back and forth between the North and South Poles of Earth, rather than striking the
surface. Use a diagram if necessary. Hint: The converging magnetic field lines form magnetic
mirrors near the North and South Poles. (Magnetic “bottles,” which are based on the same
principle, are used to confine high-temperature plasmas in laboratories.)

dK

dt
= −4π2I Ṗ

P 3
.
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(b) What fraction of the total energy being lost from Earth’s interior can be accounted for by
tidal dissipation of its rotational kinetic energy?

F = q (E + v × B) ,

dP

dr
= −G

Mrρ

r2
= −ρg,



(a) Using the average density of the entire Earth, determine the radius of the core. Express
your answer in units of Earth’s radius.

(b) Calculate the moment-of-inertia ratio (I/MR2) for the “two-zone” Earth (the actual value is
0.3315). The moment of inertia for a spherically symmetric mass shell of constant density
ρ, having inner and outer radii R1 and R2, respectively, is given by

I ≡
∫

vol
a2 dm = 8πρ

15

(

R5
2 − R5

1

)

.

a is the distance of the mass element dm from the axis of rotation.
(c) Compare your answer in part (b) with the value expected for a solid sphere of constant

density. Why are the two values different? Explain.

13 The moment-of-inertia ratio of the Moon is 0.390 (see Problem 12).
(a) What does this say about the interior of the Moon?
(b) Is this consistent with the lack of any detectable magnetic field? Why or why not?

14 (a) The Apollo 11 astronauts, after landing on the Moon on July 20, 1969, returned rocks from
the Sea of Tranquility, one of the maria on the near side. Upon their return, the analysis of
one rock (basalt 10072) yielded the relative abundances at various locations in the sample;
see Table 2. Graph the abundance data as 143

60Nd/144
60Nd vs. 147

62Sm/144
60Nd. (Note that the

uncertainties listed correspond to the last two significant figures.)

TABLE 2 Results from the Analysis of Basalt 10072, Returned from the Sea of Tranquility by
the Apollo 11 Astronauts in 1969. (Data from D. A. Papanastassiou, D. J. DePaolo, and G. J.
Wasserburg, “Rb-Sr and Sm-Nd Chronology and Genealogy of Mare Basalts from the Sea of
Tranquility,” Proceedings of the Eighth Lunar Science Conference, Pergamon Press, New York,
1977.)

147
62Sm/144

60Nd 143
60Nd/144

60Nd

0.1847 0.511721 ± 18
0.1963 0.511998 ± 16
0.1980 0.512035 ± 21
0.2061 0.512238 ± 17
0.2715 0.513788 ± 15
0.2879 0.514154 ± 17

12 The moment of inertia of a planet is used to evaluate its interior structure. In this problem you
will construct a simple “two-zone” model of the interior of Earth, assuming spherical symmetry.
Take the average densities of the core and mantle to be 10,900 kg m−3 and 4500 kg m−3,
respectively (neglect the thin surface crust).

Belt of
interstellar

nuclei

Outer belt
of electrons

Inner belt
of protons

FIGURE 14 The Van Allen radiation belts arise from charged particles becoming trapped in the
magnetic field of Earth.

The Terrestrial Planets: Problem Set



(b) Considering the tilt of the planet’s rotation axis, describe the seasonal behavior of the two
polar ice caps.

18 Assuming that the two moons are in circular orbits, determine the orbital radii of Phobos and
Deimos. Express your answers in units of the radius of Mars.

19 Suppose you lived on Mars and watched its moons. If Phobos and Deimos were next to each
other one night, what would you see the next night (one Martian day later)? Describe the
apparent motions of the two moons. (Both Phobos and Deimos orbit prograde, approximately
above the planet’s equator.)

15 Estimate the initial rotation period of Earth if the Moon were torn from it, as suggested by the
fission model.

16 Estimate the Roche limit for the Earth–Moon system. Express your answer in units of the
radius of Earth. Is the Moon in any danger of becoming tidally disrupted?

17 Mars is at its closest approach to the Sun during the summer months in its southern hemisphere.
(a) Using the equation below, estimate the ratio of the average temperatures on Mars when

it is at perihelion and aphelion.

(b) Determine the slope of the best-fit straight line drawn through the data and estimate the
age of the lunar sample. Compare your answer with the age of the lunar highland sample,
determined in Example 4.1 in  from the data in Fig. 19.
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FIGURE 19 Relative abundance determinations for a sample obtained in the lunar highlands.
(Data from D. A. Papanastassiou and G. J. Wasserburg, Proc. Seventh Lunar Sci. Conf., Pergamon
Press, New York, 1976.)



The Realms of the Giant Planets

1 The Giant Worlds
2 The Moons of the Giants
3 Planetary Ring Systems

1 THE GIANT WORLDS

Excluding the Sun, by far the largest member of the Solar System is Jupiter, 317.83
times more massive than Earth. Jupiter and the other three giants, Saturn, Uranus, and
Neptune, together contain 99.5% of the entire mass of the planetary system (see Fig. 1).
Consequently, if we hope to understand the development and evolution of our Solar System,
it is vital that we understand these distant worlds.

The Discovery of the Galilean Moons

Naked-eye observations of Jupiter and Saturn began when human beings first started gazing
up at the heavens. But it was in 1610 that Galileo became the first person to look at these
planets through a telescope. In so doing, he detected the four large moons of Jupiter, now
collectively known as the Galilean moons.1 Galileo also saw Saturn’s rings, but because
of his telescope’s low resolution, he thought that the rings were two large satellites situated
on either side of the planet.

The Discoveries of Uranus and Neptune

It wasn’t until 1781 that William Herschel (1738–1822), a German-born musician living in
England, made the chance discovery of Uranus. By considering gravitational perturbations
affecting the orbit of Uranus, John Couch Adams (1819–1892), a graduate student at Cam-
bridge University, proposed in October 1845 that another planet must exist even farther from
the Sun. Using Bode’s rule to guess at the distance of this unknown planet from the Sun,
Adams predicted its position in the heavens. Unfortunately, when he submitted his work to
Sir George Airy, the Astronomer Royal of England, Airy did not believe the conclusions. In
June 1846, Urbain Leverrier (1811–1877), a very well-respected French scientist, indepen-
dently made the same prediction, agreeing with Adams’s position to within 1◦. Learning of
the agreement between the two predictions, Airy began to search for the object. However,

1The four Galilean moons were also discovered independently by Simon Marius (1570–1624) in 1610.

From Chapter 2  of An Introduction to Modern Astrophysic Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 
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FIGURE 1 The four giant planets. (a) Jupiter and its largest moon, Ganymede. (b) Saturn,
with two of its moons, Rhea and Dione, seen near the bottom and right-hand side of the image,
respectively. (c) Uranus. (d) Neptune. The images were taken by the Voyager 1 and 2 spacecraft.
Notice the oblateness caused by rapid rotation. The image sizes do not correspond to the actual
relative sizes of the planets. (Courtesy of NASA/JPL.)

Johann Gottfried Galle (1812–1910) of the Berlin Observatory found Neptune on Septem-
ber 23, 1846, the night after receiving a letter from Leverrier suggesting that he too should
look for this new planet. In a very real sense, Neptune was discovered in the mathematical
calculations of Adams and Leverrier; Galle merely confirmed their work.

Missions to the Giant Planets

Since the first observations of these worlds, the efforts of Earth-based astronomers have
provided important information about the giant planets and their many satellites. However,
many of the data now available have come from spacecraft missions. The first such missions
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were the Pioneer 10 and Pioneer 11 flybys of Jupiter (1973, 1974) and the Pioneer 11
flyby of Saturn (1979). Later, Voyager 1 and Voyager 2 embarked on their spectacularly
successful “Grand Tour” missions. Both Voyagers, launched from Earth in 1977, visited
Jupiter (1979) and Saturn (1980, 1981), and Voyager 2 continued on to Uranus (1986) and
Neptune (1989). In each case the encounters with the planets were brief flybys. Today the
Pioneer2 and Voyager spacecraft are on their way out of the Solar System. The Voyager
spacecraft (renamed the Voyager Interstellar Missions) continue to send back information
over immense distances with ever-weakening signals, providing data about the outer reaches
of the Solar System, including the interaction between the solar wind and the winds from
other stars. In early 2006, Voyager 1 was 8.7 billion miles (14 billion kilometers) from Earth,
traveling at a speed of 3.6 AU per year, and Voyager 2 was 6.5 billion miles (10.4 billion
kilometers) away, traveling at a speed of 3.3 AU per year. It is believed that Voyager 1
passed the solar wind’s termination shock in December 2004, as evidenced by an increase
in the strength of the magnetic field in the vicinity of the spacecraft by a factor of 2.5.

The Hubble Space Telescope has also been used to observe the outer planets from Earth
orbit. HST has documented significant changes in the planets since the flyby missions of
the 1970s and 1980s.

An extended and detailed investigation of the Jovian system began in 1995 when the Gal-
ileo spacecraft (launched in 1989) entered into orbit around Jupiter. In addition to observing
the planet carefully, Galileo completed numerous flybys of the Galilean moons during the
eight years it spent in the Jovian system. As a part of the mission, a probe descended into
the planet’s atmosphere by parachute, sampling the atmosphere’s composition and physical
conditions.

The Cassini–Huygens mission, launched in 1997, entered the Saturnian system July 1,
2004. This dual mission is composed of the Cassini orbiter, which was built by NASA
with the high-gain antenna system provided by the Italian Space Agency (ASI), and the
Huygens probe, which was built by the European Space Agency (ESA). At the time of this
writing in 2006, Cassini is exploring the Saturnian system at length during its four-year
mission, including the planet, its moons, and its rings. Huygens descended into the thick
atmosphere of Titan, the largest of Saturn’s moons on January 14, 2005. Like the Galileo
probe, Huygens used a parachute during part of its descent while it made measurements
of composition, wind speed, atmospheric structure, and surface features. At an altitude of
40 km, the parachute was be released and the probe fell to the surface. The descent took two
hours and 27 minutes, and the probe remained operational on the surface for an additional
one hour and 10 minutes, while further observations were made.

Composition and Structure

However, the group can be further subdivided. The gas giants of Jupiter (317.83 M⊕)
and Saturn (95.159 M⊕) have average compositions that are quite similar to the Sun’s,

2The last signal received from Pioneer 10 occurred on January 23, 2003, almost 31 years after the spacecraft’s
launch. Pioneer 10 is now more than 8 billion miles from Earth, headed in the general direction of Aldebaran, in
the constellation of Taurus, and will be in that star’s vicinity in about 2 million years. Pioneer 11 was last heard
from in 1995 and is headed in the direction of Aquila.

As a class, the giant planets differ markedly from the terres
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while the much smaller and more distant ice giants, Uranus (14.536 M⊕) and Neptune
(17.147 M⊕), have higher proportions of heavier elements. Because each of the giant plan-
ets is capable of retaining all of the lighter elements in its atmosphere, this composition
difference suggests important differences in their formation.

This conclusion is supported by direct observations of the composition of each giant
planet near the cloud tops. Table 1 gives the relative number densities of constituents in
the giant planet atmospheres; the Sun’s photospheric composition is given for comparison.
(Note that it is the percentage of atoms or molecules by number that is being quoted, not the

Uranus and Neptune are overabundant in methane relative to solar by a factor of 10 or
more. Although these studies hint that differences may exist in the interiors of these planets,
other observational data and theoretical investigations give us even more information about
what is going on inside.

Figure 2 shows each planet’s radius as a function of its mass. Also plotted are a
series of theoretical curves for various mixtures: “H” for pure hydrogen; “H–He” for a
hydrogen–helium mixture appropriate for Jupiter and Saturn; “Ice” for a composition of
H2O (water), CH4 (methane), and NH3 (ammonia) ice; and “Rock” for a composition of
magnesium, silicon, and iron. The dashed lines correspond to models that follow adiabatic
temperature gradients. In particular, the gas models (H, H–He) incorporate the polytropic
relationship, P ∝ ρ2, appropriate for Coulomb-force pair interactions (recall the discus-

Notice in Fig. 2 that even though Jupiter is more than three times as massive as Saturn,
it is only slightly larger than its more distant neighbor. This is because the increased mass

TABLE 1 Composition of the Atmospheres of the Giant Planets. All values are given as a
fractional number density of particles. Jupiter data are from the Galileo probe. Solar photospheric
data are provided for comparison. (Data from Table 4.5 of de Pater and Lissauer, Planetary
Sciences, Cambridge University Press, Cambridge, 2001.)

Gas Sun Jupiter Saturn Uranus Neptune

H2 H: 0.835 0.864 ± 0.006 0.963 ± 0.03 0.85 ± 0.05 0.85 ± 0.05
He He: 0.195 0.157 ± 0.004 0.034 ± 0.03 0.18 ± 0.05 0.18 ± 0.05
H2O O: 1.70 × 10−3 2.6 × 10−3 > 1.70 × 10−3? > 1.70 × 10−3? > 1.70 × 10−3?
CH4 C: 7.94 × 10−4 (2.1 ± 0.2) × 10−3 (4.5 ± 2.2) × 10−3 0.024 ± 0.01 0.035 ± 0.010
NH3 N: 2.24 × 10−4 (2.60 ± 0.3) × 10−4 (5 ± 1) × 10−4 < 2.2 × 10−4 < 2.2 × 10−4

H2S S: 3.70 × 10−5 (2.22 ± 0.4) × 10−4? (4 ± 1) × 10−4? 3.7 × 10−4? 1 × 10−3
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mass fraction that.) Jupiter’s hydrogen content is somewhat greater than the Sun’s, 
while its helium content is slightly less than solar. Saturn’s upper atmosphere is 
 noticeably deficient in helium (96% H2, 3% He), while the other percentages are simi-
lar to those of Jupiter. Observations also indicate that whereas their hydrogen and 
 helium contents are intermediate between the Sun and Jupiter, the atmospheres of both

sion of polytropes).  is a reasonable approximation when electron–ion pair inter-
actions are important, because F  q2 and the number of charges is proportional to the 
density of the gas. The solid lines in Fig.  2 represent zero-temperature models, corre-
sponding to complete degeneracy.

P ∝ρ2

∝

It seems that hydrogen and helium dominate in Jupiter and Saturn, while ices are 
likely to play key roles in determining the interior structures of Uranus and Neptune.
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FIGURE 2 Composition and mass are principal elements in determining the radius of a planet.
Plotted are the radii of Jupiter (J), Saturn (S), Uranus (U), and Neptune (N) as functions of their masses.
Also shown are theoretical curves for various mixtures. The solid lines represent zero-temperature
models, and the dashed lines are models that follow adiabatic temperature gradients. (Figure adapted
from Stevenson, Annu. Rev. Earth Planet. Sci., 10, 257, 1982. Reproduced with permission from the
Annual Review of Earth and Planetary Sciences, Volume 10, ©1982 by Annual Reviews Inc.)

mass actually results in decreasing radius, an effect that begins to appear in the solid H–He
curve in Fig. 2. This is due to the growing contribution of degenerate electron pressure
in these cold, massive bodies.

The Distribution of Mass Inside the Planets

Other information concerning the distribution of mass in the interior is obtained by observing
the motions of moons, rings, and spacecraft. For a spherically symmetric planet, all of the
mass acts gravitationally as if it is located at a point in the center, but a rapidly rotating planet
produces a more complex gravitational interaction with passing objects. By comparing the
actual motion of a spacecraft with what would be expected if the planet were spherically
symmetric, it becomes possible to map the mass distribution in the interior in terms of
mathematical corrections to a spherical shape. This is just what was done using the Magellan
spacecraft around Venus.

One such correction is the oblateness of the planet, which describes how flattened it is.
Such rotational flattening is readily apparent in Fig. 1. For instance, Jupiter’s equatorial
radius (Re) is 71,493 km and its polar radius (Rp) is only 66,855 km at an atmospheric
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results in increased interior pressure, which in turn leads to changes in the state of the at-
oms and molecules. [Recall the equation of hydrostatic equilibrium, developed for stellar 
interiors; it applies to spherically symmetric planets as well.] For models of objects just 
over three times more massive than Jupiter and having similar compositions, increasing



pressure of 1 bar,3 giving an oblateness of

b ≡ Re − Rp

Re

= 0.064874.

The amount of oblateness is a function of the speed of rotation and the rigidity of the interior.
Note, however, that since the giant planets are fluid throughout much of their interiors, it is
not possible to define a single, unique rotation period; their upper atmospheres tend to rotate
differentially, just as the Sun does, while their interiors may rotate at different rates than
their surfaces.

The oblateness is related to the first-order correction term in the gravitational potential
(the potential energy per unit mass), defined to be

" ≡ U

m
.

For a spherically symmetric mass distribution," = −GM/r , where r is the distance from
the center of the planet. However, for a planet that is not exactly spherically symmetric, the
gravitational potential can be expanded as an infinite series of the form

"(θ) = −GM

r

[

1 −
(

Re

r

)2

J2 P2(cos θ) −
(

Re

r

)4

J4 P4(cos θ) − · · ·
]

, (1)

where each succeeding correction term represents a progressively higher-order component
of the planet’s shape and mass distribution, much like higher-order terms in the familiar
Taylor series. Notice that as r increases, each successive higher-order term becomes less
significant; as r → ∞, " approaches the form of the spherical potential.

The functions P2, P4, . . . are known as Legendre polynomials and are encountered
frequently in many areas of physics. Each polynomial has cos θ as its argument, where θ
is the angle between the rotation axis and the position vector of a point in space (the origin
of the coordinate system is centered in the middle of the planet); see Fig. 3. Examples
of some low-order, even-powered Legendre polynomials are

P0(cos θ) = 1

P2(cos θ) = 1
2

(

3 cos2 θ − 1
)

P4(cos θ) = 1
8

(

35 cos4 θ − 30 cos2 θ + 3
)

P6(cos θ) = 1
16

(

231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5
)

.

The Legendre polynomials are multiplied by weighting factors, known as gravitational
moments (J2, J4, J6, . . .), that describe the importance of each polynomial to the overall

31 bar = 105 N m−2
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FIGURE 3 The angle θ is defined from the rotation axis for the Legendre polynomial expansion
of the gravitational potential.

TABLE 2 Gravitational Moments and Moment-of-Inertia Ratios of the Giant Planets. Re is the
equatorial radius of the giant planet. (Data from Table 1 of Guillot, Annu. Rev. Earth Planet. Sci.,
33, 493, 2005.)

Moments Jupiter Saturn
J2 (1.4697 ± 0.0001) × 10−2 (1.6332 ± 0.0010) × 10−2

J4 −(5.84 ± 0.05) × 10−4 −(9.19 ± 0.40) × 10−4

J6 (0.31 ± 0.20) × 10−4 (1.04 ± 0.50) × 10−4

I/MR2
e 0.258 0.220

Moments Uranus Neptune
J2 (0.35160 ± 0.00032) × 10−2 (0.3539 ± 0.0010) × 10−2

J4 −(0.354 ± 0.041) × 10−4 −(0.28 ± 0.22) × 10−4

I/MR2
e 0.230 0.241

shape. For example, J2 is related to the planet’s oblateness and to its moment of inertia.4

The J4 and J6 terms are more sensitive to the mass distribution in the outer regions of the
planet, particularly the equatorial bulge, because the terms have stronger dependence on Re.
Because density is more dependent on temperature near the surface of the planet than it is in
the deep interior where the gas tends to be degenerate, J4 and J6 also measure the planet’s
thermal structure. Gravitational moments for the giant planets are given in Table 2.

Example 1.1. The first three higher-order gravitational moments for Jupiter are given
in Table 2.As a result, the associated expansion terms in Eq. ( 1) have the values shown
in Fig. 4. The contribution of oblateness to the gravitational potential near the equator

continued

4The moment of inertia has already been discussed for the cases of Earth and the Moon and will be explored
again for Jupiter.
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FIGURE 4 The first three higher-order terms in the gravitational potential expansion for Jupiter
when r = 2Re.

(θ = 90◦) is apparent in the diagram. You should also note that these higher-order correction
terms to a spherically symmetric potential are quite small; the first-order correction (J2P2)
is only on the order of a few tenths of a percent, the second-order term (J4P4) is two orders
of magnitude smaller than the first-order term, and the third-order term (J6P6) is two orders
of magnitude smaller than the second-order term.

Related to the gravitational moments is the moment of inertia of the planet.

I ≡
∫

vol
a2 dm, (2)

where a is the distance of the mass element dm from the rotation axis (see Fig. 5). For
an axially symmetric mass distribution, such as a giant planet rotating about a well-defined
axis, it can be shown that I can be expressed in cylindrical coordinates as

I = 4π
∫ Rp

z=0

∫ amax(z)

a=0
ρ(a, z) a da dz, (3)

where z is the distance from the center of the planet along the rotation axis to the point
where a is measured out to dm, and Rp is the polar radius. If we assume that a cross section
of the planet along the rotation axis can be approximated by an ellipsoid at the surface, then
amax is related to z by

(

amax

Re

)2

+
(

z

Rp

)2

= 1.

The moment of inertia is given by
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FIGURE 5 A model of an oblate planet with an elliptical cross section that has a spherical core.
ρenv is the density of the envelope and ρcore is the density of the core. The transition between the two
densities occurs at a fraction f of the equatorial radius of the planet.

For a two-component model of an oblate planet having an envelope density of ρenv and a
spherical core with a density of ρcore, and where the transition between the two densities
occurs at a fraction of the surface equatorial radius f , it can be shown that the moment of
inertia is given by

I = 8π
15

R4
e

[

Rpρenv + f 5Re (ρcore − ρenv)
]

. (4)

Writing Rp in terms of the oblateness b of the planet, we have

Rp = Re(1 − b),

Eq. ( 4) becomes

I = 8π
15

R5
e

[

(1 − b) ρenv + f 5 (ρcore − ρenv)
]

. (5)

Clearly, the moment of inertia depends on the planet’s oblateness and the mass distribution
throughout the planet. Note that f cannot exceed fmax = Rp/Re = 1 − b ≤ 1.

The Cores of the Planets

All of these data suggest that Jupiter and Saturn have dense cores composed of a thick soup
of “rock” (Mg, Si, Fe) and ices. However, although the data suggest dense cores, the masses
of the cores are relatively poorly constrained. For example, note that Eq. ( 5) is strongly
dependent on f ≤ 1, and recall that the higher gravitational moments selectively sample the
outer envelope of the planet. Based on the available data and numerical models, it appears
that Jupiter probably has a rock/ice core of less than about 10 M⊕, while Saturn’s core may
be about 15 M⊕ with an uncertainty of perhaps 50%. (It is possible that the smaller core in
Jupiter could be due to some portion of the core having eroded over the age of the planet.)
Despite the core masses of Jupiter and Saturn being much greater than the mass of Earth,
they constitute only a small fraction of the total mass of each planet. If we assume core
masses of 10 M⊕ and 15 M⊕ for Jupiter and Saturn, respectively, their cores represent just
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3% and 16% of the masses of the two gas giants. Hydrogen and helium make up most of
the rest of the mass in each case.

Similar studies of Uranus and Neptune result in core masses comparable to those of
Jupiter and Saturn: roughly 13 M⊕ or so. However, in the cases of Uranus and Neptune,
these cores constitute most of the mass of the planets. In particular, both Uranus and Neptune
probably have 25% of their mass in the form of rock, 60% to 70% as “ices,” and only 5%
to 15% in the form of hydrogen or helium gas. Clearly, Uranus and Neptune are not simply
smallish versions of their larger siblings, and they are appropriately considered as ice giants
rather than gas giants.5

Internal Heat and the Cooling Timescale

be seen in Table 3, Jupiter absorbs (and re-emits) 5.014 × 1017 W of solar radiation,
while 3.35 × 1017 W of additional power is produced in the interior of the planet. This
significantly alters the energy balance and the thermal equilibrium temperature that would
result from solar blackbody radiation alone. In Neptune’s case, more than one-half of the
heat being radiated originates from the interior, explaining why it’s effective temperature
is very close to that of Uranus, even though Neptune is much farther from the Sun.

One source of internal heat for the giant planets is the gravitational potential energy that
was released by gases collapsing onto them during formation. This is just a consequence
of the virial theorem and is the same Kelvin–Helmholtz mechanism.

Neglecting any slight differences due to composition and density, for a given specific heat
capacity the total thermal energy content of a planet is proportional to its volume (i.e., ∝ R3).
However, the rate at which heat leaves a planet by blackbody radiation is proportional to
surface area (∝ R2). Thus, without an additional source of energy, the timescale for cooling
depends on radius as

τcool = total energy content
energy loss/time

∝ R3/R2 ∝ R.

TABLE 3 Energy Budgets and Effective Temperatures of the Giant Planets. (Data from Table 2
of Guillot, Annu. Rev. Earth Planet. Sci., 33, 493, 2005.)

Power or Temperature Jupiter Saturn Uranus Neptune

Absorbed power (1016 W) 50.14 ± 2.48 11.14 ± 0.50 0.526 ± 0.037 0.204 ± 0.019
Total emitted power (1016 W) 83.65 ± 0.84 19.77 ± 0.32 0.560 ± 0.011 0.534 ± 0.029
Intrinsic power emitted (1016 W) 33.5 ± 2.6 8.63 ± 0.60 0.034 ± 0.038 0.330 ± 0.035
Effective temperature (K) 124.4 ± 0.3 95.0 ± 0.4 59.1 ± 0.3 59.3 ± 0.8

5The term ices in this context is somewhat misleading since the H2O, CH4, NH3, and other constituents are actually
in a somewhat fluid state under the high pressures found in the interiors of the giant planets.
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Another group of observations that provides hints about the formation and structure of 
the planets and their subsequent evolution is the detection of heat leaking out from the 
interior. In the terrestrial planets, the heat generated in the interior is due in large part to 
the slow decay of radioactive isotopes. However, this is not sufficient to account for the 
large quantities of heat coming from the interiors of the giant worlds. For example, as can



The characteristic time required for a planet to cool is roughly proportional to the planet’s
radius. Extrapolating back in time, the giant planets must have been much more luminous
when the Solar System was in its infancy; Jupiter may have even glowed visibly.

Since Jupiter is larger than Saturn (as well as being closer to the Sun), it should have
remained hotter for a longer period of time and should still be radiating energy into space at
a greater rate. In Saturn’s case, however, the energy available from the primordial collapse
is not sufficient to account for all of the heat now observed to be coming from the planet.
The solution to the puzzle of Saturn’s additional heat source lies in the observation that its
helium is significantly depleted in the upper atmosphere. Referring to Table 1, note that
helium only accounts for about 3% of the particles in Saturn’s upper atmosphere, while
the value is closer to 16% for Jupiter and nearly 20% for the Sun. The slow sinking of the
heavier helium atoms relative to hydrogen through the atmosphere causes a change in the
gravitational potential energy of the planet and the accompanying generation of heat via
the virial theorem. This effect has been more pronounced in Saturn because the planet is
somewhat cooler.

Modeling the Interiors of the Giant Planets

Modeling the interiors of the giant planets is done in much the same way it is done for
stars; the major difference is the kind of material used in their construction. For example, at
the relatively cool temperatures and high pressures of the giant planet interiors, hydrogen
takes on a very strange form by terrestrial standards. As we move deeper into the planet,
the familiar form of molecular hydrogen becomes so compressed that the molecular bonds
are broken and the orbital electrons become shared among the atoms. This is very similar
to the behavior of a metal; the hydrogen inside the planet takes on the characteristics of
a molten metal, much like mercury at room temperature. This exotic equation of state
of hydrogen has been verified in terrestrial laboratories by creating shock waves in the
gas that produce temperatures of several thousand kelvins and pressures of millions of
atmospheres. It appears that liquid metallic hydrogen actually dominates the interiors of
Jupiter and Saturn. For Uranus and Neptune, the pressures probably do not get large enough
to convert hydrogen into its liquid metallic form, but the ices present in their atmospheres
(such as methane and ammonia) become ionized by the pressure.

The interior structures of the giant planets are depicted in Fig. 6. The regions labeled
“inhomogeneous” for the gas giants are where helium becomes insoluble in hydrogen,
and helium-rich droplets form. These droplets then sink deeper into the planet, releasing
gravitational potential energy. In the case of Saturn the helium may have settled into the
core or formed a shell around the core. Uranus and Neptune have very little hydrogen and
helium and are dominated by ices and rock.

The Upper Atmospheres

In their upper atmospheres, the very colorful and dynamic cloud tops of Jupiter, the more
muted hues of Saturn, and the deep blue-greens of Uranus and Neptune owe their beauty
to the temperature, composition, rotation, and internal structures of the planets. Observa-
tional data, combined with theoretical modeling, suggest that Jupiter’s clouds exist in three
layers. Clouds in the top layer are composed of ammonia, the next layer is probably com-
posed of ammonium hydrosulfide, and the clouds in the deepest layer are made of water.
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FIGURE 6 Computer models of the interiors of the giant planets. The relative sizes of the planets
are depicted correctly. (Adapted from Guillot, Annu. Rev. Earth Planet. Sci., 33, 493, 2005.)

The coloration in the clouds of both Jupiter and Saturn is caused by their atmospheres’
compositions, although which colors are associated with which molecules remains unclear;
suggestions include sulfur, phosphorus, or various organic (carbon-rich) compounds. In
Jupiter and Saturn, the bluish regions apparently have higher temperatures, indicating that
they lie deeper in the atmosphere. At progressively higher altitudes are brown, white, and
red clouds.

Overall, the clouds are located deeper in the atmosphere of Saturn when compared with
Jupiter, and hence are not as dramatic. In Uranus and Neptune, reflective clouds of ammonia
and sulfur are located deep in the atmosphere.As sunlight passes through the atmosphere, the
blue wavelengths are scattered most efficiently by the molecules. In addition, the presence
of methane in the atmosphere tends to absorb the red light.

The Comet P/Shoemaker–Levy 9 Impacts on Jupiter

During July 16–22, 1994, Jupiter took center stage as it got pummeled by the fragments of
Comet P/Shoemaker–Levy 9 (SL9). The comet was discovered in March 1993, although
it had apparently been orbiting Jupiter for decades. Extrapolating the comet’s orbit back in
time, it appears that SL9 broke apart on July 8, 1992, as it passed within 1.6 RJ of Jupiter,
well within the planet’s Roche limit. [A Hubble Space Telescope view of 21 fragments is
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FIGURE 7 (a) 21 fragments of SL9 seen on May 17, 1994. The line of cometary nuclei stretches
for 1.1 × 106 km. [Courtesy of H. A. Weaver, T. E. Smith (Space Telescope Science Institute), and
NASA.] (b) Hubble Space Telescope images, taken several minutes apart, showing the plume from
fragment G on July 18, 1994. (c) Close-up of the fragment G impact site. (Courtesy of Dr. Heidi
Hammel, Massachusetts Institute of Technology, and NASA HST.) (d) From left to right, the impact
sites in the southern hemisphere of fragments C, A, and E. One of Jupiter’s moons (Io) can be seen
crossing the planet’s disk. (Courtesy of the Hubble Space Telescope Jupiter Imaging Team.)

shown in Fig. 7(a).] Astronomers soon realized that the comet fragments would crash
into Jupiter in July 1994, possibly providing important clues to the nature of comets and
the structure of Jupiter’s atmosphere.

Over the week when the collisions occurred, virtually all of the telescopes on Earth
(including amateur telescopes) that were in position to view the event, as well as space-based
observatories such as the Hubble Space Telescope, Galileo, and Voyager 2, were focused on
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Jupiter. Various predictions had indicated that some direct evidence of the impacts might be
observable from Earth, but the spectacular display that ensued far exceeded expectations.
Figure 7(b) shows several images of the enormous plume that rose 3500 km above the
cloud tops when fragment G (believed to be the largest) entered the atmosphere of the
planet. Even though each of the collisions occurred just beyond our view, on the side of
Jupiter away from Earth, the plumes were high enough to make them visible above the
limb. The fireballs reached temperatures of 7500 K, greater than the effective temperature
of the Sun. Data for the G impact indicate that the temperature cooled to 4000 K after five
seconds. Analysis of the data indicated that the largest fragments were no more than 700 m
across.

Immediately after each of the larger collisions, scars appeared in the atmosphere greater
in diameter than Earth [see Figs. 7(c) and (d)]. The dark nature of the marks was probably
due to organic molecules rich in sulfur and nitrogen that were present in the atmosphere
before the collision. It is also possible that some of the coloration was due to carbon-based
compounds, like graphite, that contained silicates delivered by the comet fragments. By
December 1994, the marks had been torn apart by the motions in Jupiter’s atmosphere,
forming a ring around the planet that eventually dissipated completely.

Atmospheric Dynamics

The most famous atmospheric feature on Jupiter is its Great Red Spot, apparent in
Figs. 1(a) and 8(a). This huge anticyclonic storm, which measures roughly one Earth
diameter wide by two Earth diameters long, has been observed for more than three centuries.
Smaller but similar features can be seen in the atmospheres of each of the giant worlds.
Another characteristic shared by these planets is the banded cloud structure following lines
of constant latitude. In the case of Uranus the banded cloud features are very difficult to

(a) (b)

FIGURE 8 (a) The Great Red Spot of Jupiter. (b) The Great Dark Spot of Neptune. (Courtesy
of NASA/JPL.)

Only the Galileo and Voyager 2 spacecraft had direct views of the impacts.

6
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FIGURE 9 Circulation around Jupiter’s Great Red Spot is counterclockwise. The anticyclonic
storm (which is in the southern hemisphere) is located between two atmospheric bands that are moving
in opposite directions. Wind speeds within the Great Red Spot reach 100 m s−1, and eddies at the
edge of the system circle it in about 7 days.

detect, but they do exist. The circulation within Jupiter’s Great Red Spot is attributable to
its location between two rivers of atmosphere moving in opposite directions (see Fig. 9).

Despite these apparently long-lived features, the atmospheres are very dynamic, with
rapid changes occurring on small scales, including rotation around the more stable cyclonic
structures. It is worth noting, however, that large features are not necessarily permanent
either. For instance, when Voyager 2 visited Neptune in 1989, it discovered the Great Dark
Spot in the southern hemisphere, shown in Figs. 1(d) and 8(b). Later, when the planet
was observed again by the Hubble Space Telescope in 1994, the Great Dark Spot was gone.
Then, in 1995, another dark spot appeared in the northern hemisphere.

is similarly redirected. However, the atmospheric circulation of Uranus has an interesting
aspect not shared with the other giant planets. Unlike any other planet in the Solar System
except Pluto, Uranus is almost lying on its side; its rotation axis is tilted 97.9◦ to the ecliptic.
This implies that each pole has the Sun overhead for a portion of its 84-year orbit. During
those periods one would expect heat to be transported from the subsolar pole to the one that
is in darkness. Yet, when Voyager 2 passed Uranus in 1986, at about the time when one of
the poles was pointed toward the Sun, the visible flow patterns were still largely parallel to
the planet’s equator, due to the planet’s rapid rotation and the effects of the Coriolis force.
How Uranus was able to transport heat away from the subsolar pole without detectable
pole-to-pole flow patterns remains an open question.

Another noticeable difference between Uranus and the rest of the giant worlds is its lack
of prominent vortexes. This may correspond to the lack of any detectable heat flow outward
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from the deep interior. Although it must certainly exist, the rate of heat flow is clearly much
less pronounced than in the other three giants.

Magnetic Fields

The molten iron–nickel core of Earth is the source of its magnetic field. In the giant planets,
it is liquid metallic hydrogen that appears to fill that role, at least in Jupiter and Saturn. Rapid
rotation generates electric currents in the conducting interiors of the planets. Because the
magnetic fields are almost certainly anchored deep in their interiors, measuring the rotation
periods of the fields provides a method of determining the rotation periods of their interiors.

In the 1950s, measurements of the radio-wavelength radiation being emitted from Jupiter
revealed both thermal and nonthermal components. The thermal radiation is just part of the
energy being given off by the planet itself (blackbody radiation). However, the strong

trapped in it. The measured strength of the field is some 19,000 times greater than Earth’s
field.

Another interesting consequence of the SL9 collisions in Jupiter’s southern hemisphere
[which all occurred at nearly the same latitude; see Fig. 7(d)] was the appearance of
an auroral display in the northern hemisphere, not unlike the aurorae seen on Earth.

Apparently, charged particles near the collision sites acquired sufficient kinetic
energy that they traveled along Jupiter’s magnetic field lines, colliding with the atmosphere
in the north within 45 minutes following the impacts.

The physical extent of Jupiter’s magnetic field is enormous.The planet’s magnetosphere,
defined to be the space enveloped by its magnetic field, has a diameter of 3 × 1010 m, 210
times the size of the planet and 22 times larger than the Sun. Because of Jupiter’s rapid
rotation, the charged particles trapped in its field are spread out into a current sheet that
is situated along the field’s equator (the field axis is inclined 9.5◦ to the rotation axis of
the planet). Given the large numbers of particles present in Jupiter’s current sheet, another
source of charged particles beyond those supplied by the solar wind must exist. The solution
to this mystery came when the Voyager spacecraft first observed Jupiter’s moon Io.

2 THE MOONS OF THE GIANTS

Many of the most spectacular and fascinating images returned by the Voyager, Galileo,
and Cassini–Huygens missions were of the moons of the giant planets, beginning with the
Galilean moons of Jupiter (Fig. 10). The relative sizes of the Galilean moons are depicted
in Fig. 11. Io (shown in more detail in Fig. 12) is the closest of the four large Galilean
moons to Jupiter. It is a bizarre-looking yellowish-orange world with as many as nine active
volcanoes observed to be erupting simultaneously. Europa (Fig. 13) is covered with a
thin layer of water-ice that is criss-crossed by cracks and nearly devoid of any cratering.
Ganymede (Fig. 14) has a thick ice surface that shows evidence of significant cratering.
And finally, Callisto (Fig. 15) appears to be covered with a layer of dust and has an old and
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FIGURE 10 A “family portrait” of Jupiter and its four largest moons. From nearest Jupiter to
farthest are Io, Europa, Ganymede, and Callisto. The portrait is actually a mosaic of a number of
Voyager images. (Courtesy of NASA/JPL.)

FIGURE 11 A mosaic of images obtained by the Galileo spacecraft showing the four Galilean
moons of Jupiter. From left to right, and from nearest to Jupiter to farthest away: Io, Europa, Ganymede,
Callisto. Here, the moons are depicted in such a way as to show their relative sizes. (Courtesy of
NASA/JPL.)

very thick ice crust that has been subjected to extensive bombardment. The characteristics
of these worlds are consistent with a decreasing average density with increasing distance
from Jupiter, implying that the relative amount of water-ice crust increases with respect to
the rock core.

The Evolution of the Galilean Moons

The increasing percentage of volatiles (principally water-ice) in these worlds at increasing
distances from Jupiter suggests that their formation was closely linked to the formation and
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FIGURE 12 (a) The disk of Io shows a large number of volcanic features. (b) A volcano
(Prometheus) erupting on the limb of Io. Prometheus was observed to be erupting in every image
obtained by the Voyagers (1979) and Galileo (1995–2003). Other volcanic eruptions are not as long-
lived. (c) Mountains on Io seen at sunset. The low scarp in the upper left is approximately 250 m high.
It is believed that these mountains are produced by uplifted thrust faults. The black lines along the
bottom of the image are due to missing data. (Courtesy of NASA/JPL/University of Arizona/Arizona
State University.)

subsequent evolution of the planet itself. Given the regular nature of the Galilean satellites,
it has been proposed the they may have formed out of the Jupiter subnebula while Jupiter
was accreting its massive atmosphere. Within this context, recalling that Jupiter must have
been hotter in the past than it is today, Io would have been close enough to have had most
of its volatiles evaporate away. Moving progressively farther out, Europa would have been
able to hold on to some water, Ganymede even more, and Callisto (being the coldest of the
Galilean moons at the time of its formation) would have retained the largest percentage of
volatiles.
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FIGURE 13 (a) The full disk of Europa. (b) Europa has numerous cracks running across the
surface. (c) A close-up of broken ice. (d) Ridged plains. (e) Wedge terrain. (Courtesy of NASA/JPL.)

The Effects of Tidal Forces on Io

The consequences of this evolution can be seen in each of the Galilean moons. Consider
them in sequence beginning with the one closest to Jupiter. Because of its proximity to
Jupiter, Io experiences the most severe tidal forces. Even though the moon’s rotation period
is the same as its orbital period, small deviations from a perfectly circular orbit mean that its
orbital velocity is not constant. Consequently, the moon tends to wobble, not quite keeping
one side “locked in place” toward Jupiter. This effect is due to the curious resonance that
exists among the orbits of Io, Europa, and Ganymede. Their orbital periods form ratios
that are approximately 1:2:4, meaning that both Europa and Ganymede perturb Io’s orbit
at about the same location each time Io orbits the planet. This forces Io’s orbit to remain
slightly elliptical.
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FIGURE 14 (a) The surface of Ganymede shows significant cratering, indicating that it has not
been refreshed as recently as Europa. (b) A close-up view of ridges and grooves prevalent on the
surface, indicative of past tectonic activity. The diagonal band is 15 km wide. The circular feature in
the lower right portion of the image is probably an impact crater. (Courtesy of NASA/JPL.)

(a) (b)

FIGURE 15 (a) Callisto’s surface exhibits extensive cratering. (b) A close-up of a large impact
crater known as Valhalla. (Courtesy of NASA/JPL.)

Based on gravitational data from Galileo’s close flybys of Io, it appears that Io has an iron-
rich core, a molten silicate mantle, and a thin silicate crust (the moon’s average density is
3530 kg m−3). This structure suggests that Io was entirely molten at least once, and perhaps
numerous times, allowing the moon to become chemically differentiated. Lava flows and
lakes of lava, such as Loki Patera (which is larger than the island of Hawaii) are clearly
evident on the surface of Io. It is important to note, however, that Io’s volcanoes do not
operate in quite the same way that Earth-based volcanoes do. Instead, the eruptions may be
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somewhat more analogous to the geysers seen in such places as Yellowstone National Park.
In terrestrial geysers, rapid phase transitions from water to steam force the steam upward at
high velocity through cracks in the surface. On Io, sulfur and sulfur dioxide (SO2) probably
play the same role. In fact, SO2 has been detected over volcanic vents and in Io’s very thin
atmosphere. The yellowish-orange surface is due to sulfur raining back down on the moon
from its continually erupting volcanoes. The constant eruptions are always regenerating the
moon’s surface; Io is literally turning itself inside out.

Io’s Interaction with Jupiter’s Magnetic Field

All of the Galilean moons are located deep inside Jupiter’s magnetosphere, but Io interacts
with the magnetic field most strongly. Since Jupiter rotates in just under 10 hours, whereas
Io orbits the planet in 1.77 days, Jupiter’s magnetic field sweeps past Io at a speed of about
57 km s−1. This motion through the magnetic field sets up an electric potential difference
across the moon, estimated to be 600 kV. The potential difference acts much like a battery,
causing a current of nearly 106 amps to flow back and forth along magnetic field lines
between Io and Jupiter. This current flow of charged particles in the magnetic field also
generates Joule heating within the moon, analogous to a resistor in a circuit. Roughly
P = IV ∼ 6 × 1011 W is generated in this way. However, this contribution to the total
internal heating of the moon is only a small fraction of the total energy liberated from the
surface per second, which is approximately 1014 W.

That Io must have some interaction with Jupiter’s magnetic field has been known for
some time. When Jupiter, Io, and Earth are in certain alignments, bursts of decameter-
wavelength radiation are detected. Not all the details of the process are yet understood, but
the bursts appear to be associated with the electrical current flowing between Jupiter and
its volcanic moon.

Io must also be responsible for the excessive number of charged particles trapped in
Jupiter’s magnetic field, although it is unlikely that they escaped directly from the moon’s
volcanoes since the ejection speeds are much less than Io’s escape velocity. Instead, a
process referred to as sputtering has been proposed; oxygen and sulfur ions from Jupiter’s
magnetosphere impacting on the moon’s surface or in its atmosphere may provide sufficient
energy for other sulfur, oxygen, sodium, and potassium atoms to escape. In fact, clouds of
sulfur and sodium (known as the Io torus) have been detected around Jupiter at the location
of Io’s orbit. On the order of 1027 to 1029 ions leave Io and enter Jupiter’s magnetospheric
plasma every second.

Europa

Europa’s surface seems to be continually refreshed. Based on the near absence of cratering,
it appears that most of the surface is less than 100 million years old, supporting the idea that
a layer of liquid water may exist below the surface. In fact, observations from the Galileo
mission indicate an iron-rich core, a silicate mantle, a possible subsurface ocean, and a thin
ice crust; the average density of Europa is 3010 kg m−1, less than the density of Io. The
water ocean/ice crust is collectively about 150 km thick. The source of the heat required to

This is just Faraday’s law of induction.
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keep the subsurface water at least partially melted is probably the weak tidal interactions
with Jupiter and the other Galilean moons. The cracks running across the moon’s surface
appear to be stress fractures induced by those tidal forces combined with tectonic activity.

In 1994 the Hubble Space Telescope detected a thin molecular oxygen atmosphere around
Europa. That observation was confirmed by both Galileo and the flyby of the Cassini
spacecraft on its way to a rendezvous with Saturn. Cassini also found the presence of
atomic hydrogen in Europa’s atmosphere. It has been suggested that the atmosphere is due
to sputtering of the surface water-ice resulting from the interaction of Europa with Jupiter’s
magnetosphere.

Given the presence of subsurface heating, a likely source of liquid water, and the prob-
ability of organic materials being either intrinsic to the moon or delivered by comets and
meteorites, it has been widely speculated that Europa may be a site for the evolution of life.
Even though no evidence exists for the presence of life today or in the past on Europa, at
the end of its operational lifetime scientists intentionally sent the Galileo spacecraft into
the crushing atmosphere of Jupiter on September 21, 2003, in order to avoid any future
inadvertent collision with Europa and its possible subsurface ocean.

Ganymede

Ganymede’s surface also shows a complex series of ridges and grooves that strongly suggest
some history of tectonic activity on this ice world. This is supported by gravitational data
from Galileo indicating a likely partially molten iron core, a silicate lower mantle, an icy
upper mantle, an ice crust, and an average density of only 1940 kg m−1. It has been proposed
that before the ice crust became too rigid, convection in the interior was responsible for
carrying heat to the surface. This convective motion also caused movement of the surface
crust, much like the current action of tectonic plates on Earth. As a result, although the
surface is certainly much older and more heavily cratered than Europa’s, the surface has
been at least partially refreshed during its history.

Callisto

Callisto apparently cooled and solidified quite rapidly after material accreted out of the
local subnebula around Jupiter. As a result, its surface continued to collect dust as the
nebula thinned, blanketing the moon with the dark material. Evidence that Callisto solidified
quickly is also apparent in the structure of its interior. Models suggest that the interior of the
moon is relatively simple, with a partially differentiated interior of ice and rock, an ice-rich
crust, and the lowest density of the Galilean moons (1830 kg m−3). Having solidified in
the early stages of the formation of the Solar System, Callisto was also subject to frequent
impacts of the still-abundant objects that traveled among the newly formed planets and
moons. Evidence of the nebular dust accretion and the impacts remains today. The whitish-
appearing impact craters are the result of ice being exposed during the collisions.

A Unified Formation of the Galilean Moons

As we have seen, the four Galilean satellites of Jupiter exhibit a trend of decreasing density
with distance from their parent planet. Given the evident trends in their properties, including
their internal structure (diminishing iron-rich cores and increasing water-ice content with
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distance from Jupiter), it is apparent that they likely formed systematically with Jupiter,
perhaps out of a subnebula around the planet. This is also supported by the fact that each
of the Galilean moons orbit prograde and in the equatorial plane of the planet.

The Smaller Moons of Jupiter

Other, smaller moons also orbit in a prograde direction in the equatorial plane of Jupiter.
These additional regular satellites may have formed out of the subnebula as well. However,
there are a large number of moons around Jupiter that orbit well out of the equatorial plane
and, in many cases, in retrograde orbits. It seems that these irregular satellites of Jupiter
may be captured objects that happened to wander by at some point in time. Still other very
small satellites may be collisional shards produced by meteoritic collisions with larger
satellites.

Space does not allow us to discuss each of these many moons in detail. Similarly, we are
unable to discuss most of the smaller moons orbiting the other giant planets; rather, we will
focus our attention on the larger moons and a few of the more unusual smaller satellites of
Saturn, Uranus, and Neptune.

Saturn’s Titan with Its Thick Atmosphere

When the two Voyager spacecraft reached Saturn in 1980 and 1981, they were directed to
examine Titan, the second-largest moon in the Solar System (Ganymede being the largest).
Ever since Gerard P. Kuiper (1905–1973) detected methane gas around Titan in the 1940s,
astronomers have wondered about the nature of this distant, atmospheric world. When the
images began arriving, scientists saw a moon with an atmosphere so filled with suspended
particles (aerosols) that no pictures of its obscured surface were possible.

The joint Cassini–Huygens mission arrived in the Saturnian system in July 2004. After
arrival, the Huygens probe detached from the Cassini orbiter and descended to the surface
of Titan on January 14, 2005. During its descent, the Huygens probe was able to measure
wind speeds of up to 210 m s−1, sample the composition of the atmosphere, and, after
passing through the high-altitude smog layer of hydrocarbons, obtain images of the surface
(see Fig. 16).

The dominant constituent in the atmosphere is nitrogen (N2), which constitutes some-
where between 87% and 99% of the gases. Methane (CH4) makes up between 1% and 6%
of the atmosphere, and argon (Ar) constitutes between 0% and 6% of the total. Numerous
other species are present in smaller amounts, including molecular hydrogen (H2), carbon
monoxide (CO), carbon dioxide (CO2), hydrogen cyanide (HCN), and a host of additional
hydrocarbons, such as acetylene (C2H2), ethylene (C2H4), ethane (C2H6), methylacetylene
(C3H4), propane (C3H8), and diacetylene (C4H2). The aerosols in the high-altitude smog
layer are probably just condensed forms of these compounds.

At the base of the atmosphere, the pressure is approximately 1.5 atm and the temperature
is 93 K. With those conditions, methane is able to condense as a liquid and then evaporate
again, and thus it plays a role much like that of water on Earth. At the Huygens landing
site, the ground was moist, with liquid methane occurring a few centimeters below the
surface. It is possible that it had rained methane at that location shortly before the arrival
of Huygens. In fact, Huygens sank 10 to 15 cm into the soft ground at the landing site. The
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FIGURE 16 Counterclockwise from upper left: (a) Titan with its thick atmosphere as seen by
the Cassini orbiter (Courtesy of NASA/JPL). (b) A mosaic image of the surface from an altitude of
8 km imaged by the Huygens probe (Courtesy of ESA/NASA/JPL/University of Arizona). (c) The
surface of Titan with “pebbles” of what is probably water-ice in the foreground. The flat pebble near
the middle of the image has a width of 15 cm, and the one to its right has a width of 4 cm. Both pebbles
are 85 cm from the Huygens probe camera. (Courtesy of ESA/NASA/JPL/University of Arizona.)

surface water-ice pebbles also show evidence of having a liquid flow across them, much like
terrestrial rock pebbles in a dry creek bed. In addition, images obtained during the descent
revealed topography that looks like drainage canals leading to low, dark, flat regions that
may be lakes (or dried lake beds).

Mimas and the Herschel Crater

Another member of the Saturnian system, Mimas, is a small but fascinating moon (shown in
Fig. 17). It exhibits a very large impact crater (referred to as Herschel) that is testimony
to a collision almost energetic enough to fracture it. Of course Saturn also has numerous

More than one researcher has noticed that Mimas bears a strong resemblance to the “Death Star” in the George
Lucas film Star Wars, Lucasfilm Ltd. Production (1977).
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FIGURE 17 The impact that produced the Herschel crater on Mimas was nearly energetic enough
to completely fracture the moon. Mimas is one of the many small moons orbiting Saturn. (Courtesy
of NASA/JPL.)

FIGURE 18 Miranda is one of the moons of Uranus. Its dramatic surface features may be the
result of one or more very energetic collisions that fractured the moon. (Courtesy of NASA/JPL.)

other regular and irregular satellites in its system, a few of which will be mentioned in the
context of its extensive ring system in Section 3.

The Chaotic Surface of Miranda, a Moon of Uranus

When Voyager 2 reached Uranus in 1986, it encountered another moon that may have
suffered a very energetic collision. Miranda, which measures only 470 km across, looks
like a moon “put together by a committee” (Fig. 18). One explanation for its amazing
topography is that one or more collisions actually succeeded in breaking the moon apart.
When gravity pulled all of the pieces back together, they didn’t quite fit. Portions of the rock
core tried to settle back to the center of the moon while ice tried to float back to the surface.
This proposed rearrangement of the structure of Miranda produced a strange surface with
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cliffs as tall as 20 km (twice the height of Mount Everest) and features such as the “chevron”
that can be seen in the figure.

An alternative explanation for Miranda’s topography proposes that tidal forces exerted
by Uranus on the small moon caused parts of the surface to be pulled apart. This allowed
warmer material in the interior (which was heated by tidal effects) to rise to the surface,
producing the ridges and troughs that are observed.

Interestingly, all of the regular moons of Uranus, and, as we will see in the next section, its
ring system as well, orbit near the equatorial plane of the planet rather than its orbital plane.
Recall that the rotation axis of Uranus is highly inclined to the ecliptic (97.9◦), making the
orientation of the Uranusian system a puzzle for Solar System dynamicists.

Neptune’s Triton

The last and one of the most unusual moons visited by Voyager 2 was Neptune’s largest
moon, Triton (Fig. 19). With a surface temperature of 37 K, it is also the coldest world
yet visited. The moon’s southern pole is covered with a pinkish frost that is composed
almost entirely of nitrogen. Along with the nitrogen frost, other surface ices include CH4,
CO, and CO2. Also present are very large “frozen lakes” of water-ice that show very little
cratering, indicative of a relatively young age. The water-ice may have erupted from ice
volcanos.

During the Voyager 2 flyby, geyser-like jets were detected forcing plumes of gas 8 km up
into Triton’s tenuous atmosphere, where the plumes were blown down-wind. These plumes
may simply be gas rising from a warm source inside the planet, but how they are initiated
remains unclear.

The atmosphere of Triton is composed predominantly of nitrogen, like the atmospheres of
Earth, Titan, and Pluto. However, unlike Earth and Titan, Triton’s atmosphere is extremely
thin, with a pressure of only 1.6 × 10−5 atm. Much of the atmosphere may be a consequence
of the jets of nitrogen gas erupting from the interior of the moon.

(a) (b)

FIGURE 19 (a) The southern polar ice cap of Triton, Neptune’s largest moon. The dark streaks
appear to be a mixture of nitrogen frost and hydrocarbons that was ejected from small volcanos. (b) A
water-ice lake that may have been produced by an ice volcano. Given the lack of significant cratering,
the surface appears to have been refreshed relatively recently. (Courtesy of NASA/JPL.)
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widely believed that Triton was captured by Neptune. It is also likely that when the relatively
massive Triton was captured, it significantly disrupted Neptune’s already-existing system
of much smaller satellites. Perhaps the tidal effects that resulted in the moon’s present-day
circularized and synchronous orbit could have produced sufficient internal heating to cause
faulting and its cantaloupe-like terrain.

3 PLANETARY RING SYSTEMS

Each of the giant planets contains a ring system. Although Saturn’s prominent rings were
first seen several hundred years ago, the rings of the other planets weren’t discovered until
the 1970s and 1980s. As we will learn, there are certainly some similarities among the ring
systems, but there are significant differences as well.

The Structure of Saturn’s Rings

Arguably, the most well-known feature of the Saturnian system is its spectacular set of
rings, seen in Fig. 1(b). Based on observations made from Earth, several fairly distinct
rings have long been known to exist, labeled (from the outside in) A, B, and C. Between the
prominent A and B rings, the Cassini division was thought to be virtually devoid of ring
material. Another empty region, called the Encke gap, was observed within the A ring.

After the planet was visited by the Voyager spacecraft, other rings were discovered.
The two spacecraft also revealed previously unexpected complexity in the system. As can
be seen in Fig. 20(b), instead of large, almost continuous rings, thousands of ringlets
were discovered; even the Cassini division has a number of rings lying in it, although the
number density of the particles is much lower than in the neighboring regions. The F ring
proved to be particularly perplexing because it is very narrow and appears to be braided
[Fig. 21(a)].

ripples in the disk gives the rings the appearance of being about 1 km thick. Because of the
thinness of the disk, when it is viewed perpendicular to the plane, the optical depth of the
ring system ranges from about 0.1 to 2. It is actually possible to see through the rings in
many locations.

When Galileo observed Saturn in 1612 (some two years after his initial observations),
he was surprised to discover that the protrusions that he had seen earlier had apparently
vanished! We now know that during his later set of observations, Galileo was viewing the
rings edge-on, making them undetectable from Earth.

The reason the rings are so thin is easily understood by considering what happens to
particles that undergo partially inelastic collisions, as shown in Fig. 22. Imagine two
particles circling Saturn in the same direction but in orbits that are slightly tilted with respect
to each other. If the two particles should collide, the x-components of their velocities would
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Triton’s slowly decaying retrograde orbit. Given its highly unusual orbit, both 
 retrograde and inclined to Neptune’s equator by 20 , its proximity to the Kuiper 
Belt, and physical properties similar to other Kuiper Belt objects (such as Pluto), it is

The positions of the various rings and the Cassini division are given in  Table  4; 
also included is the estimate of Saturn’s Roche limit for a satellite of density 
1200 kg m−3. The rings extend out as far as 8 RS from Saturn, while the disk of the 
rings is very thin, perhaps only a few tens of meters thick. The presence of vertical
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FIGURE 20 (a) Jupiter’s very thin ring. (b) A close-up of Saturn’s rings. Even the dark Cassini
division is not entirely empty. (c) The rings of Uranus. Because the moving spacecraft was focused
on the ring system, the background stars appear as streaks in the image. (d) Neptune was masked to
bring out its faint ring system. (Courtesy of NASA/JPL.)

be largely unaffected, but the collision would decrease their y-components. The process
diminishes the thickness of the disk until other effects start to become important, such as
random collisions with incoming particles and perturbations from moons.

The Composition of Saturn’s Rings

Most of the particles that make up the rings are quite small, with the majority having
diameters that range from a few centimeters to several meters, although it seems likely
that at least some particles with diameters as small as a few micrometers or as large as
one kilometer may exist in the system. Size estimates are derived from several pieces
of evidence, including the rate at which particles cool off in Saturn’s shadow and how
efficiently they reflect radar signals of various wavelengths.
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1986U8

1986U8

FIGURE 21 (a) Saturn’s braided F ring. (b) Two small “shepherd” moons orbiting just inside
and outside of the ϵ ring of Uranus. (Courtesy of NASA/JPL.)

TABLE 4 The Positions of Saturn’s Ring Features.

Feature Position (RS)
D Ring 1.00–1.21
C Ring 1.21–1.53
B Ring 1.53–1.95
Cassini Division 1.95–2.03
A Ring 2.03–2.26
Roche Limit 2.04
F Ring 2.33
G Ring 2.8
E Ring 3–8

x

y

FIGURE 22 The collisions between particles help to keep the rings of Saturn very thin.
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It has been known for some time that the material in the Saturnian rings is highly reflective
(the rings have albedos in the range 0.2–0.6).Albedo measurements, combined with infrared
spectroscopy, provide information about the composition of ring material. It appears that
the particles of most of the rings are primarily water-ice, with some dust embedded in them
or covering their surfaces. However, the very extended and thin E ring may be composed
entirely of dust that is originating from the nearby moon, Enceladus.

Jupiter’s Tenuous Ring System

Jupiter’s very tenuous ring system [see Fig. 20(a)] has a characteristic optical depth of
roughly 10−6. Three components have been seen: the innermost toroidal halo, the main
ring, and the outermost gossamer ring. Taken together they stretch from near Jupiter to
about 3 RJ. It is believed that the ring material is primarily dust that is constantly resupplied
by collisions of micrometeorites with larger objects (tiny moons) in the rings.

The Rings of Uranus

The rings of Uranus and Neptune [Figs. 20(c) and (d)] were first detected indirectly
from Earth and later photographed by Voyager 2. On March 10, 1977, astronomers were
observing the occultation of a background star (Uranus passing in front of the star). They
were trying to measure the diameter of Uranus, as well as to gather some information
about its atmosphere. Knowing the speed of the planet and the amount of time the star was
hidden, they could determine the planet’s diameter. Quite unexpectedly, the starlight faded
and brightened several times before actually being occulted by the planet. When the star
reappeared, the pattern of alternating fading and brightening was repeated, but in reverse
order. The astronomers realized that rings were blocking out the star’s light. The same
procedure was used for Neptune but led to confusing results. In some cases the starlight
was blocked on only one side of the planet, leading to the suggestion that only incomplete
rings (or arcs) exist around Neptune.

A total of thirteen rings have been detected around Uranus, nine from the ground, two
more by Voyager 2 in 1986, and another two by the Hubble Space Telescope in 2004. All
of the rings are remarkably narrow, ranging in width from 10 km to 100 km (not unlike
the F ring of Saturn), with some of the rings also showing signs of being braided. The two
detected using the HST have diameters that are much greater than the other eleven rings,
leading some researchers to refer to them as a second Uranian ring system.

The composition of the Uranian rings appears to be very different from that of either
Jupiter or Saturn. Reflecting only about 1% of the incident sunlight, the ring material is
extremely dark. This is because the rings are composed largely of dust, rather than ice.

Curiously, as mentioned in the previous section, the rings and moons of Uranus lie in
the planet’s equatorial plane and not along the ecliptic. Recalling that the rotation axis of
Uranus is tilted 97.9◦ with respect to the ecliptic, this implies that the orientation of the
orbits of the rings and moons changed after one or more catastrophic impacts dramatically
shifted Uranus’s axis (if indeed impacts were responsible). Apparently Uranus’s rotation-
ally produced equatorial bulge gravitationally affected its satellites and ring material, ulti-
mately reorienting their orbits until the moons and rings were once again aligned with
the planet’s equator. Similarly, Saturn’s rings are also aligned with its equator, despite the
planet’s equatorial plane being tilted almost 27◦ to its orbital plane.
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Neptune’s Rings

When it reached Neptune, Voyager 2 also found rings orbiting that planet. Like the rings
of Uranus, several of the six identified rings are quite narrow, while the others appear to
be diffuse sheets of dust. Oddly, the outermost ring, known as Adams, has five discrete
regions of concentrated material, like sausages on a string. It was these concentrations that
were responsible for the arcs that were deduced from occultations.

Physical Processes Affecting Ring Systems

The spectacular observations of the Voyagers, Galileo, and Cassini have shown us that the
dynamics of ring systems are quite complex. Not all of the features are as yet understood,
but many important components have been identified:

• Collisions have already been mentioned as the process that maintains the thinness of
the rings.

• Keplerian shear (or diffusion) spreads the rings out in the system’s plane. As more
rapidly moving particles in slightly lower orbits overtake more slowly moving parti-
cles farther out, collisions between them cause the inner particles to slow somewhat,
and they drift closer to the planet.At the same time, the outer particles are accelerated,
moving them outward. The process stops when the density of ring particles becomes
so low that collisions effectively cease.

• Shepherd moons are small moons that reside in or near the edge of the rings, con-
trolling the location of ring boundaries via their gravitational interactions. The nar-
rowness of the F ring of Saturn [recall Fig. 21(a)] was understood when the two
moons Pandora and Prometheus were discovered to be orbiting just outside and in-
side the ring, respectively. As the more rapidly moving ring particles pass Pandora,
the moon’s gravitational pull slows them down, causing the particles to drift inward.
When Prometheus overtakes the ring particles, it pulls them forward, speeding them
up and causing them to move outward. As a result, the F ring is confined to a narrow
region just 100 km wide. Another shepherd moon (Atlas) defines the sharp outer edge
of the A ring. Shepherd moons have also been discovered guiding one of the rings of
Uranus; see Fig. 21(b).

• Orbital resonances between moons and ring particles in specific orbits can act to
deplete or enhance particle concentrations. (It is also necessary that the orbital plane
of the moon align with the ring plane.) For instance, there exists a 2:1 orbital res-
onance between Mimas and particles at the inner edge of the Cassini division. In
other words, a particle in that location orbits twice for every orbit of Mimas. Since
an inferior conjunction of such a particle with Mimas always occurs at the same po-
sition, gravitational perturbations of the particle’s orbit produced by Mimas become
cumulative, implying that the moon tends to force the particle into an elliptical orbit.

The Adams ring, along with the Leverrier and Galle rings, were named for the mathematical and observational
discoverers of Neptune.
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As the particle begins to cross the more circular orbits of particles at other radii, col-
lisions become more likely. The outcome is that the particle has been removed from
its original orbit and relocated in another part of the system.

• Spiral density waves, first proposed by Peter Goldreich and Scott Tremaine in the
late 1970s, are set up by moons as a consequence of orbital resonance. Gravitational
perturbations can cause particles at different orbital radii to bunch up, effectively
increasing their gravitational influence on other nearby particles in the disk. Those
neighboring particles in turn are drawn toward the increase in density, extending the
enhancement. If the moon responsible for the resonance is beyond the edge of the
disk, the wave of density enhancement spirals outward. Since the density is larger
in the wave, the probability of collision increases. Keplerian shear then causes the
number density of particles near resonance orbits to decrease. This process helps
explain the width of the Cassini division.10

• The Poynting–Robertson effect (a consequence of the headlight effect can cause
ring particles to spiral in toward the planet. When particles in the rings
absorb sunlight, they must re-radiate that energy again if they are to remain
in thermal equilibrium. The original light was emitted from the Sun isotropically, but
in the Sun’s rest frame the re-radiated light is concentrated in the direction of motion
of the particle. Since the re-radiated light carries away momentum as well as energy,
the particle slows down and its orbit decays.

• Plasma drag is a consequence of the collisions of ring particles with charged particles
trapped in the planet’s magnetic field. Since the magnetic field is anchored inside the
planet, it must revolve with the rotation period of the planet. If the ring particles are
inside the planet’s synchronous orbit (as most rings are), the particles will overtake
the magnetic field plasma, and collisions will slow the particles down. The particles
will then spiral in toward the planet, just as with the Poynting–Robertson effect. If
the ring particles are outside the synchronous orbit, they will spiral outward.

• Atmospheric drag occurs as particles approach the outer reaches of the planet’s
atmosphere. This effect quickly causes the particles to spiral down into the planet.

• Radial spokes have been observed in the rings of Saturn and are attributed to the
interaction of charged dust particles with the planet’s magnetic field. These spokes
move through the ring system with the rotation period of the planet, rather than
with the orbital period of the rings. It appears that some dust particles acquire a net
electrostatic charge as a result of their frequent collisions with other dust particles.
This causes the dust to become trapped in magnetic field lines tens of meters above
the plane of the rings. Sunlight that is scattered from the suspended particles produces
the observed spokes.

10Spiral density waves also play an important role in the structure of spiral galaxies.
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• Warping of the disk is caused by the gravitational influences of the Sun and the
planet’s moons. If the Sun or the moons are not in exactly the same plane as the ring,
particles in the ring are pulled out of the ring plane.

Ring Formation

The formation of planetary rings is still not fully understood. A major problem lies in the
timescales involved in maintaining rings against processes that tend to disperse or destroy
them. Are rings long-lived or transient phenomena? One idea, first suggested by Pierre-
Simon Laplace (1749–1827) and Immanuel Kant (1724–1804) in the late 1700s, argues
that rings are nebular in origin; they were formed at the same time that the planets accreted.
Since most of Saturn’s rings are composed largely of water-ice, while the rings of Jupiter,
Uranus, and Neptune contain primarily nonvolatile substances (silicates and carbon), Saturn
must have cooled more rapidly, before the water could escape. Although this idea could
account for the spectacular Saturnian system, while also explaining the composition and
greater sparsity of the rings of the other giant planets, it is difficult to understand how the
systems could be maintained for more than 4.5 billion years.

It is also possible that ring systems arise due to tidal forces; if moons were drawn inside
the planet’s Roche limit, or if a comet or meteoroid ventured too close, tidal forces would
fracture the objects, producing a new ring system. However, tidal disruption should leave
intact rocky fragments as large as tens of kilometers in diameter. Grinding and meteoritic
impacts would eventually break down the remnants, but such processes are extremely slow.
On the other hand, loosely packed icy objects, such as comets, may be broken into smaller
pieces by tidal disruptions (recall Shoemaker–Levy 9).

The discovery of the giant, outermost ring of Uranus by the HST was accompanied by
the discovery of another moon, Mab, in the same orbit as the ring. It seems that when Mab
is hit by meteorites, material ejected from the moon replenishes the giant ring, suggesting
that the source for this ring, at least, has been identified.

Clearly, much work remains to be done before we can claim to understand the complex-
ities of planetary rings.
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PROBLEM SET

1 Estimate the pressures at the centers of Jupiter and Saturn. Compare your answers to the Sun’s
central gas pressure.

2 Analytic functions can be derived for the pressure and density structure in the interior of Jupiter
if an approximate relationship between pressure and density is assumed. A reasonable choice
for a composition of pure molecular hydrogen is

P(r) = Kρ2(r),

where K is a constant. This type of analytic model is known as a polytrope.
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(a) By substituting the expression for the pressure into the hydrostatic equilibrium equation

can be obtained, namely

(b) Show that the equation is satisfied by

ρ(r) = ρc

(

sin kr

kr

)

,

where ρc is the density at the center of the planet and

k ≡
(

2πG

K

)1/2

.

(c) Taking the average radius of Jupiter to be RJ = 6.99 × 107m and assuming that the density
goes to zero at the surface (i.e., kRJ = π ), determine the values of k and K .

(d) Integrate the equation  below  using the analytical solution for Jupiter’s density as a
find an expression for the planet’s interior mass, Mr , written in

terms of r and ρc. Hint:

dP

dr
= −G

Mrρ

r2
= −ρg

function of radius to
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d2ρ

dr2
+ 2

r

dρ

dr
+
(

2πG

K

)

ρ = 0.

dMr

dr
= 4πr2ρ,

∫

r(sin kr) dr = 1
k2

sin kr − r

k
cos kr.

,

.

(below) and differentiating, show that a second-order differential equation for the density



TABLE 2 Gravitational Moments and Moment-of-Inertia Ratios of the Giant Planets. Re is the
equatorial radius of the giant planet. (Data from Table 1 of Guillot, Annu. Rev. Earth Planet. Sci.,
33, 493, 2005.)

Moments Jupiter Saturn
J2 (1.4697 ± 0.0001) × 10−2 (1.6332 ± 0.0010) × 10−2

J4 −(5.84 ± 0.05) × 10−4 −(9.19 ± 0.40) × 10−4

J6 (0.31 ± 0.20) × 10−4 (1.04 ± 0.50) × 10−4

I/MR2
e 0.258 0.220

Moments Uranus Neptune
J2 (0.35160 ± 0.00032) × 10−2 (0.3539 ± 0.0010) × 10−2

J4 −(0.354 ± 0.041) × 10−4 −(0.28 ± 0.22) × 10−4

I/MR2
e 0.230 0.241

The Realms of the Giant Planets: Problem Set

(e) Using the boundary condition that Mr = MJ at the surface, estimate the planet’s central
density. (The value obtained in this problem is lower than the result found from detailed
numerical calculations, 1500 kg m−3. One major reason for the difference is that Jupiter’s
composition is not purely molecular hydrogen.)

(f) Make separate plots of the density and interior mass as functions of radius.
(g) What is the central pressure of your model of Jupiter? (One detailed model gives a value

of 8 × 1012 N m−2.)

3 (a) Assuming spherical symmetry and the density distribution for the polytropic model of
Jupiter given in Problem 2b, show that the moment of inertia is given by

I = 8ρc

3π

(

1 − 6
π2

)

R5
J .

Hint: Since this analytical model does not assume constant density, you will need to
integrate over concentric rings to find the moment of inertia about Jupiter’s rotation axis.
Recall that I ≡

∫

vol a
2 dm, where a = r sin θ is the distance from the rotation axis to the

ring of mass dm, and

dm = ρ(r) dV = ρ(r) 2πar dθ dr.

(b) Using the estimated value for the central density of Jupiter obtained in Problem 2e,
calculate the planet’s moment-of-inertia ratio.

(c) Compare your answer to part (b) with the measured value given in Table 2. What does
this result say about the true density distribution within the planet relative to the analytical
model?

4 (a) Show that Eq. ( 5) follows directly from Eq. ( 3) in cylindrical coordinates for the
case of a two-component model planet with two constant densities (see Fig. 5). Assume
that the outer component is oblate and the inner component is spherical.

I = 4π
∫ Rp

z=0

∫ amax(z)

a=0
ρ(a, z) a da dz, (3)
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I = 8π
15

R5
e

[

(1 − b) ρenv + f 5 (ρcore − ρenv)
]

. (5)

Rp

Re
fRe

az
dm

#core

#env

FIGURE 5 A model of an oblate planet with an elliptical cross section that has a spherical core.
ρenv is the density of the envelope and ρcore is the density of the core. The transition between the two
densities occurs at a fraction f of the equatorial radius of the planet.

(b) Verify that Eq. ( 5) reduces to the familiar case of

for a spherically symmetric planet of constant density.

5 (a) Derive an equation for the mass of the core of the two-component planetary model shown
in Fig. 5. You should express your answer in terms of the fractional equatorial radius,
f Re, and the constant density of the core.

Isphere = 2
5
MR2

Rp

Re
fRe

az
dm

#core

#env

FIGURE 5 A model of an oblate planet with an elliptical cross section that has a spherical core.
ρenv is the density of the envelope and ρcore is the density of the core. The transition between the two
densities occurs at a fraction f of the equatorial radius of the planet.

I = 8π
15

R5
e

[

(1 − b) ρenv + f 5 (ρcore − ρenv)
]

. (5)
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(b) Assume that Jupiter has a 10 M⊕ core and that the average density of the core is
15,000 kg m−3. Determine f , the ratio of the equatorial radius of the planet’s core to the
equatorial radius of its surface.

(c) What is the average envelope density in this two-component model?
(d) Determine the moment-of-inertia ratio (I/MR2

e ) for this two-component model.
(e) Compare your answer in part (d) to the measured value of the moment-of-inertia ratio

for Jupiter given in Table 2. What can you say about the mass distribution of Jupiter
compared to the analytical model?

TABLE 2 Gravitational Moments and Moment-of-Inertia Ratios of the Giant Planets. Re is the
equatorial radius of the giant planet. (Data from Table 1 of Guillot, Annu. Rev. Earth Planet. Sci.,
33, 493, 2005.)

Moments Jupiter Saturn
J2 (1.4697 ± 0.0001) × 10−2 (1.6332 ± 0.0010) × 10−2

J4 −(5.84 ± 0.05) × 10−4 −(9.19 ± 0.40) × 10−4

J6 (0.31 ± 0.20) × 10−4 (1.04 ± 0.50) × 10−4

I/MR2
e 0.258 0.220

Moments Uranus Neptune
J2 (0.35160 ± 0.00032) × 10−2 (0.3539 ± 0.0010) × 10−2

J4 −(0.354 ± 0.041) × 10−4 −(0.28 ± 0.22) × 10−4

I/MR2
e 0.230 0.241

6 Estimate the angular diameter of Jupiter’s magnetosphere as viewed from Earth at opposition.
Compare your answer with the angular diameter of the full Moon.

7 Suppose that fragment G of comet Shoemaker–Levy 9 measured 700 m in diameter. If this
fragment had an average density of 200 kg m−3, estimate its kinetic energy just before it
entered the planet’s atmosphere. You may assume that it struck the atmosphere with a speed
equal to the planet’s escape speed. Express your answer in joules and megatons of TNT
(1 MTon = 4.2 × 1015 J).

8 (a) On the same scale, plot (1) the first-order correction term to the gravitational potential of
Saturn as a function of θ [i.e., the J2 term in Eq. ( 1)], (2) the second-order correction
term, and (3) the sum of the two terms. (Similar plots for Jupiter are shown in Fig. 4;
note that the plots for Jupiter use different scales.) Assume that the observer is a distance
r = 2Re from the planet.

"(θ) = −GM

r

[

1 −
(

Re

r

)2

J2 P2(cos θ) −
(

Re

r

)4

J4 P4(cos θ) − · · ·
]

, (1)
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FIGURE 4 The first three higher-order terms in the gravitational potential expansion for Jupiter
when r = 2Re.

9 (a) Estimate the amount of energy radiated by Jupiter over the last 4.55 billion years (see
.

(b) For which angle(s) is the gravitational potential largest? smallest? By what percent do
these values for the gravitational potential deviate from the case of spherical symmetry
(the zeroth-order term)?

E ∼ − 3
10

GM2

R
.

the equation below

(b) Estimate the rate of energy output from Jupiter due to gravitational collapse alone, assum-
ing that the rate has been constant over its lifetime.

(c) Compare your answer for part (b) with the value for the flux that was given in the text.
What does this say about the rate of energy output in the past? Discuss the implications
for the evolution of the Galilean moons.

10 Estimate the blackbody temperature of Neptune, taking into consideration that one-half of all
the energy radiated by the planet is due to internal energy sources. Compare your answer with
the measured value of 59.3 ± 1.0 K.

1 Assume that all of the ions escaping Io are sulfur ions. Assuming also that this rate has been
constant over the last 4.55 billion years, estimate the amount of mass lost from the moon since
its formation. Compare your answer with Io’s present mass (8.932 × 1022 kg).

2 (a) Make a rough estimate of the mass contained in Saturn’s rings. Assume that the rings have
a constant mass density and that the disk is 30 m thick with an inner radius of 1.5 RS and
an outer radius of 3 RS (neglect the E ring). Assume also that all of the ring particles are
water-ice spheres of radius 1 cm and that the optical depth of the disk is unity. The density
of the particles is approximately 1000 kg m−3. Hint: Refer to the equation below to
estimate the number density of water-ice spheres.

1

1

ℓ = vt

nσvt
= 1

nσ
.
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(b) If all of the material in Saturn’s rings were contained in a sphere having an average density
of 1000 kg m−3, what would the radius of the sphere be? For comparison, the radius and
mass of Mimas are 196 km and 4.55 × 1019 kg, respectively, and it has an average density
of 1440 kg m−3.

13 Carefully sketch the orbits of Mimas and a characteristic Saturnian ring particle that is locked
in a 2:1 orbital resonance with the moon. Show qualitatively that the resonance produces an
elliptical orbit.

Calculate the position of Saturn’s synchronous orbit. Are any of its rings located outside of
that radius? If so, which ones?

16

A dust grain orbiting the Sun (or in a planetary ring system) absorbs and then re-emits solar
radiation. Since the light is radiated from the Sun isotropically and re-emitted by the grain
preferentially in the direction of motion, the particle is decelerated (it loses angular momentum)
and spirals in toward the object it is orbiting. This process (known as the Poynting–Robertson
effect) is just a consequence of the headlight effect
(a) If a dust grain orbiting the Sun absorbs 100% of the energy that strikes it and all of the

energy is then re-radiated so that thermal equilibrium is maintained, what is the luminosity
of the grain? Assume that the particle’s cross-sectional area is σg and its distance from the
Sun is r .

.

14

(b) Show that the rate at which angular momentum is lost from a grain is given by

dL
dt

= − σg

4πr2

L⊙
mc2

L, (6)

(c) Compare your answer in part (b) to the estimated age of the Solar System. Could the E
ring be a permanent feature of the Saturnian system without a source to replenish the ring?
Note that the small moon Enceladus orbits Saturn in the E ring.

where m and L = mvr are the mass and angular momentum of the grain, respectively, and
L⊙ is the luminosity of the Sun. Hint: Think of radiated photons as carrying an effective
mass away from the grain; the effective mass of a photon is just mγ = Eγ /c

2.

(a) Beginning with Eq. ( 6), show that the time required for a spherical particle of radius R

and density ρ to spiral into Saturn from an initial orbital radius R0 is given by

tSaturn = 8πρc2

3L⊙
Rr2

S ln
(

R0

RS

)

,

where RS is the radius of the planet and rS is its distance from the Sun. Assume that the
orbit of the particle is approximately circular at all times and that it is always a constant
distance from the Sun.

(b) The E ring is known to contain dust particles having average radii of 1 µm. If the density
of the particles is 3000 kg m−3, how long would it take for a typical particle to spiral into
the planet from an initial distance of 5 RS?

17 The mass and radius of Miranda are 8 × 1019 kg and 236 km, respectively.
(a) What is the escape velocity from the surface of Miranda?
(b) What would be the speed of a small object freely falling toward Uranus when it crossed the

orbit of Miranda? Assume that the object started falling toward Uranus from rest, infinitely
far from the planet. Neglect any effects due to the orbital motion of the planet around the
Sun. Miranda’s orbital radius is 1.299 × 108 m.

15
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(c) Using the below equation, estimate the amount of energy needed to pulverize

(d) Suppose that a spherical object with a density of 2000 kg m−3 were to collide with Mi-
randa, completely destroying it. If the object hit Miranda with the speed found in part (b),
what would the object’s radius need to be? Note: For the purposes of this “back-of-the-
envelope” calculation, you need not be concerned with the energy that would be expended
in pulverizing the impacting object.

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
.

that moon.
 





Minor Bodies of the Solar System

1 Pluto and Charon
2 Comets and Kuiper Belt Objects
3 Asteroids
4 Meteorites

1 PLUTO AND CHARON

Clyde W. Tombaugh (1906–1997) discovered a small 15th-magnitude object orbiting the
Sun. The new object was classified as a planet and named Pluto for the Roman god of the
underworld.1 It turns out that even though Pluto was discovered near its predicted position,
the prediction was invalid because it was founded on statistically insignificant apparent
deviations in the orbits of the other planets.

Pluto is unlike any of the terrestrial or giant planets of the Solar System; in fact, it bears
much more resemblance to Neptune’s moon Triton than to any other planets.

Its 248.5-year orbit is very eccentric (e = 0.25). At perihelion it is only
29.7 AU from the Sun (actually closer than Neptune), while it is 49.3 AU away at aphelion.
Its orbit is also inclined significantly from the ecliptic (17◦).

Despite the fact that Pluto is a Neptune-crossing object, it is not in any danger of collid-
ing with the giant world. Pluto is protected from that fate by a 3:2 orbital resonance with
Neptune. Consequently, Pluto is never near perihelion when it is in conjunction with Nep-
tune, and the two planets never get any closer than about 17 AU. Pluto actually approaches
Uranus more closely, coming within 11 AU.

The Discovery of Charon

Many of the most basic characteristics of Pluto, such as its mass and radius, were poorly
determined until its largest moon, Charon, was discovered in 1978.2 Figure 1 shows a

1The name Pluto was suggested by Venetia Burney, who was then an 11-year-old English schoolgirl.
2Prior to the discovery of Charon, Pluto’s radius was uncertain to within a factor of 4, and its mass wasn’t known
to better than a factor of 100.
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The success of the mathematical prediction of Neptune’s position led astronomers to 
consider the possibility that a ninth planet existed even farther from the Sun. Based on 
perceived anomalies in the orbits of Uranus and Neptune, the search began in the late 
nineteenth century. Finally, on February 18, 1930, after a systematic and tedious search,



FIGURE 1 Pluto and its three moons. Charon was discovered in 1978, and the other two moons
were detected by the Hubble Space Telescope’s Advanced Camera for Surveys in 2005. [Courtesy
of NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the Hubble Space Telescope Pluto
Companion Search Team.]

Hubble Space Telescope image of the Pluto system. Pluto and Charon orbit the system’s
center of mass in 6.39 d with a separation of only 1.964 × 107 m (just slightly more than
1/20 of the distance between Earth and the Moon). Using Kepler’s third law, the combined
mass of the system is only 0.00247 M⊕. Of course, to determine each mass individually
requires knowledge of the ratio of their separations from the system’s center of mass, which
yields a mass ratio of MCharon/MPluto = 0.124. From these data, the mass of Pluto has been
estimated to be 1.3 × 1022 kg, and Charon’s mass is roughly 1.6 × 1021 kg; for comparison,
Triton’s mass is 2.14 × 1022 kg.

The Densities and Compositions of Pluto and Charon

Shortly after the discovery of Charon, astronomers realized that a rare eclipse season would
occur between 1985 and 1990. Since the orbital plane of the Pluto–Charon system is inclined
122.5◦ to their orbit around the Sun, observers on Earth see the system edge-on only for
brief intervals once every 124 years. Fortuitously, Pluto was also at perihelion in 1989. The
next eclipse season will not occur until the twenty-second century.

The duration of the occultations provided the information necessary to determine the
radius of Charon. Pluto’s radius has been determined to be 1137 km, making it only about
two-thirds the size of our Moon, but the occultation data indicate that Charon’s radius is
about 600 km. This means that Pluto’s average density is about 2110 kg m−3 and Charon’s
density is roughly 1770 kg m−3. These data seem to indicate that Pluto and Charon are
probably made of frozen ices and rock, with Pluto having a somewhat higher proportion
of rock than the majority of the moons of the giant planets. The best map of the surface of
Pluto obtained to date is shown in Fig. 2.

It is worth noting that Triton’s density is 2050 kg m−3, very similar to that of Pluto.

Minor Bodies of the Solar System



FIGURE 2 The surface of Pluto as seen by the Hubble Space Telescope in 1994. 85% of the
surface is represented; the south polar region was pointed away from Earth when the map was
constructed. The observed features may be basins and craters, or perhaps frost from various ices.
[Courtesy of Alan Stern (Southwest Research Institute), Marc Buie (Lowell Observatory), NASA,
and ESA.]

The Possible Formation of Charon by a Large Impact

With a mass that is almost 1/8 that of Pluto, Charon is proportionately the most massive
moon in the Solar System relative to its parent planet.3 It appears that Charon must have
formed as a result of a large impact on Pluto, similar to the way scientists believe our Moon
formed around Earth. It is also possible that the two moons discovered in 2005 are additional
products of that collision. The impactor probably had a mass of between 0.2 and 1 MPluto.

Complete Spin–Orbit Coupling

worlds have resulted in the final state of lowest energy. Because they are fully locked, the
tidal forces do not produce the constantly changing bulges seen in other systems, such
as Earth’s tidal bulges produced by the Moon. Therefore, the frictional heat losses and
angular momentum transfer in operation elsewhere have now ceased for the Pluto–Charon
interaction.

A necessary consequence of the locked, synchronous orbit is that Charon is located
directly over Pluto’s equator. If this weren’t the case, the orbital motion would carry Charon
alternately north and south of Pluto’s equator, and any deviation from spherical symmetry
between the two worlds would result in constantly changing tidal forces. Since the orbital

3Our Moon, which is the second-largest satellite in the Solar System relative to its parent planet, contains only
about 1/81 the mass of Earth.

Minor Bodies of the Solar System

Pluto and  Charon also have another interesting  dynamical characteristic: Both ob-
jects have rotation periods that are exactly the same as their orbital period about 
their mutual center of mass. Since they spin in the same direction as their orbital mo-
tion, Pluto and Charon keep the same faces toward each other at all times; they are 
completely locked in a synchronous orbit. The tidal forces between these two small



plane of the system is inclined 122.5◦ to its orbit around the Sun, this implies that both

A Frozen Surface and a Changing Atmosphere

In 1992 Tobias C. Owen and collaborators used the United Kingdom Infrared Telescope
on Mauna Kea, Hawaii, to carry out a spectroscopic study of Pluto’s surface. Their work
revealed that the surface is covered with frozen nitrogen (N2), which constitutes some 97%
of the total area, with carbon monoxide ice (CO) and methane ice (CH4) each accounting for
1% to 2%, similar to the surface of Triton. Oddly, Charon’s surface appears to be composed
primarily of water-ice; no molecular nitrogen, carbon monoxide, or methane ices or gases
have been detected on Charon.

When Pluto occulted a faint star in 1988, a very tenuous atmosphere was detected,
with a surface pressure of about 10−5 atm. The atmosphere is dominated by N2, with CH4

and CO probably making up roughly 0.2% of the total by number, consistent with the
composition of the surface ice and the rate of sublimation of the various species. Curiously,
when Pluto occulted another star in 2002, measurements of the pressure and scale height
of the atmosphere had doubled, implying that Pluto’s atmosphere had become significantly
thicker over the 14-year period.

It has been suggested that the atmosphere of this tiny, distant world is not permanent. The
1988 observation of its atmosphere was made near perihelion when the planet’s temperature
was near its maximum value of approximately 40 K. At this temperature, ices on the surface
are able to undergo partial sublimation. The atmosphere apparently thickened between
1988 and 2002 because ices continued to sublimate, releasing additional gases into the
atmosphere. However, as the planet moves back toward aphelion, the atmosphere will
probably “freeze out” again.

A Rendezvous with Pluto

In January 2006, NASA launched the New Horizons flyby mission. If all goes according
to plan, New Horizons will pass near Pluto in 2015, giving us the first close-up look at
this tiny, distant planet and its moons. Whether Pluto will still have an atmosphere at the
time of the flyby is one of the many interesting questions waiting to be answered about this
Trans-Neptunian quadruple system.

2 COMETS AND KUIPER BELT OBJECTS

orbital period is 76 years).4 Because of their unusual appearance when near perihelion, bright

4This famous comet has probably been making its periodic tours of the inner Solar System for 23,000 years, but
it was Edmond Halley who first realized that these were repeated observations of the same object. The proof of
his hypothesis was accomplished with the aid of Newton and his newly developed mechanics.

Minor Bodies of the Solar System

Pluto and Charon rotate retrograde. Uranus also rotates retrograde and that its ring sys-
tem and regular satellites are located directly over its equator; that orientation has also 
been attributed to tidal forces.

Comets such as Comet Mrkos and Comet Halley [Fig.  3(a)], have been observed 
frequently throughout history. In fact, the periodic visits of Comet Halley have been 
 recorded during each passage through the inner Solar System since at least 240 B.c. (its
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FIGURE 3 (a) Comet Halley clearly exhibited both a dust tail (curved) and an ion tail (straight)
during its most recent trip through the inner Solar System. This image was obtained by the Michi-
gan Schmidt telescope at Cerro Tololo Interamerican Observatory on April 12, 1986. Visible is a
detachment event occurring in the ion tail. (Courtesy of NASA/JPL.) (b) The anatomy of a comet.

comets have long been associated with mystery and forces beyond human comprehension.
While many people believed that comets foretold coming evils, others considered them
messengers of good news. The artist Giotto di Bondone (1266–1337) depicted the “Star of
Bethlehem” as a comet in his work Adoration of the Magi, which adorns the interior of the
Scrovegni Chapel in Padua, Italy (Fig. 4). The painting dates from 1303, just two years
after Comet Halley had last appeared.

A Model of a Comet

In 1950 Fred L. Whipple (1906–2004) proposed a model of comets that successfully ex-
plained most of their physical characteristics, including the development of tails when they
enter the inner Solar System; see Fig. 3(b). He suggested that a “dirty snowball,” roughly
10 km across, lies at the center of the comet. This dirty snowball constitutes the comet’s
nucleus. The nucleus is composed of ices and embedded dust grains. As the nucleus moves
from the cold environment of the outer Solar System into the warmer regions near the Sun,
the ices begin to sublimate. The released dust and gas then expand outward to produce a
109-m cloud of gas and dust known as the coma. Subsequently, the material in the coma
interacts with the sunlight and solar wind, producing the very long, familiar tails (up to
1 AU in length) that are always associated with our images of comets. We now know that
a hydrogen gas halo (or envelope) also surrounds the coma and can have a diameter of
1010 m. When the comet leaves the inner Solar System, the temperature decreases suffi-
ciently that the rate of sublimation diminishes significantly and the halo, coma, and tails
disappear. Cometary activity does not stop entirely, however; small outbursts can occur
from time to time as heat from the Sun travels inward through the nucleus, releasing highly
volatile gases.

Minor Bodies of the Solar System



FIGURE 4 Adoration of the Magi, by Giotto di Bondone (1266–1337). The painting adorns the
interior of the Scrovegni Chapel in Padua, Italy. Work on the painting began two years after the 1301
appearance of Comet Halley.

The Dynamics of Comet Tails

Comet tails are always directed away from the Sun, as depicted in Fig. 5. Two independent
mechanisms are responsible for the structure of the tails: radiation pressure on the liberated
dust grains, and the interaction of ions with the solar wind and the Sun’s magnetic field.

First consider the effect of radiation pressure on grains. For an idealized spherical dust
grain of radius R that is located a distance r from the Sun and that absorbs all of the incident
light that strikes it, the following equation can be used to calculate the outward force

The factor of cos θ means that the grain’s cross-sectional area σ = πR2 should
be used in calculating the force. In other words, for the case of complete absorption the
same force would be exerted if the grain were replaced by a circular disk with an identical
radius, oriented perpendicular to the light. Using ⟨S⟩ = L⊙/4πr2 for the magnitude of the
time-averaged Poynting vector, the force on the grain due to radiation pressure is

Frad = ⟨S⟩σ
c

= L⊙
4πr2

πR2

c
. (1)

Of course the Sun’s gravity is also acting on the grain. If the density of the grain is ρ, its
mass is

mgrain = 4
3
πR3ρ

of radiation pressure on the grain:

Frad = ⟨S⟩A
c

cos θ (absorption),

Minor Bodies of the Solar System
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FIGURE 5 The curved dust tail and the straight ion tail are always directed away from the Sun.

and the magnitude of the gravitational force acting on it is given by

Fg = GM⊙mgrain

r2
= 4πGM⊙ρR3

3r2
,

where Fg is directed inward toward the star. Now, the ratio of the magnitudes of these forces
is

Fg

Frad
= 16πGM⊙Rρc

3L⊙
. (2)

Because both gravity and light obey an inverse square law, this ratio does not depend on
the distance r from the Sun.

The magnitudes of the gravitational and radiation pressure forces on a cometary dust
grain will be equal if the radius R of the grain has the critical value

Rcrit = 3L⊙
16πGM⊙ρc

. (3)

Grains smaller than Rcrit will experience a net outward force and will spiral away from the
Sun. The curvature of the dust tail arises because of the decrease in the orbital speeds of the
grains with increasing distance from the Sun. For a typical density of ρ = 3000 kg m−3,
the critical radius of the dust grain is found to be Rcrit = 1.91 × 10−7 m = 191 nm.

Minor Bodies of the Solar System

Grains larger than Rcrit will continue to orbit the Sun. However, a compet-
ing process, the Poynting–Robertson effect, causes larger grains to spiral slow-
ly in toward the Sun. The time required for a spherical particle of radius R and



density ρ to spiral into the Sun from an initial orbital radius r is given by5

tSun = 4πρc2

3L⊙
Rr2. (4)

Because Rcrit is comparable to the wavelengths λ of light emitted by the star, the actual
situation is more complicated than this simple analysis suggests. The smallest grains (R ≪
λ) are inefficient absorbers of light and have absorption cross sections that are much smaller
than πR2. Furthermore, the dust grains will scatter some of the incident light rather than
absorb it. The effect of scattering on the radiation pressure force depends on the composition
and geometry of the dust grains and on the wavelength of the light.

The Compositions of Comets

It is the scattering of light that gives dust tails their white or yellowish appearance. On the
other hand, the color of an ion tail is blue because CO+ ions absorb and reradiate solar
photons at wavelengths near 420 nm. However, CO+ is certainly not the only species iden-
tified in comets. To date, a rich variety of atoms, molecules, and ions have been discovered
spectroscopically, including some molecules that are quite complex. During its 1986 peri-
helion passage, the inner coma of Comet Halley was found to contain roughly (by number)
80% H2O, 10% CO, 3.5% CO2, a few percent (H2CO)n (polymerized formaldehyde), 1%
methanol (CH3OH), and traces of other compounds. A partial list of chemical species that
have been found in comets is given in Table 1.

Disconnection Events

The straight ion (or plasma) tail owes its structure to a complex interaction among the
comet, the solar wind, and the Sun’s magnetic field.6 Since the comet is an obstruction in
the path of the solar wind and because the relative speed of the solar wind and the comet

comet encounters a reversal in the solar magnetic field (the boundary between magnetic
field directions is known as a sector boundary). During a disconnection event, the ion tail
breaks away and a new one forms in its place. Disconnection events are quite common and
are evident in the image of Halley’s comet in Fig. 3(a), as well as in the time sequence
of Comet Hyakutake in March 1996 (Fig. 6).

Robotic Investigations of Comets

Whipple’s dirty-snowball hypothesis was dramatically verified in March 1986, when an in-
ternational armada of spacecraft rendezvoused with Comet Halley. The fleet was made up of

5

6The model of a cometary magnetotail was first proposed by Hannes Alfvén in 1957.
The Poynting–Robertson effect is also important in understanding the dynamics of Saturn’s rings.
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exceeds both the local sound speed and the Alfvén speed, a shock front develops in 
the direction of motion. As matter piles up at this bow shock, ions in the coma get 
trapped in the Sun’s magnetic field, loading the field down. This causes the magnet-
ic field to wrap around the nucleus. The cometary ions circle the field lines and trail 
behind the nucleus in the antisolar direction. A disconnection event occurs when the



TABLE 1 A Partial List of Chemical Species Found in Comets. Various isotopomers have also
been detected, such as HDO (deuterium replacing one of the hydrogen atoms in H2O).

Atoms Molecules Ions
H CH H+

C C2 C+

O CN Ca+

Na CO CH+

Mg CS CN+

Al NH CO+

Si N2 N+
2

S OH OH+

K S2 H2O+

Ca H2O H2S+

Ti HCH CO+
2

V HCN H3O+

Cr HCO H3S+

Mn NH2 CH3OH+
2

Fe C3

Co OCS
Ni H2CO
Cu H2CS

NH3

NH4

CH3OH
CH3CN
(H2CO)n

two spacecraft from Japan (Suisei and Sakigake), two from the former Soviet Union
(Vega 1 and Vega 2), one from the European Space Agency (Giotto, named for the twelfth-

On March 6 and 9, from distances of 8900 km and 8000 km, respectively, Vega 1 and
Vega 2 were able to obtain low-resolution pictures of the nucleus of the comet. Relaying
the Vega telemetry data to the European Space Agency, the Giotto scientists were then able
to guide their spacecraft to an even closer encounter. As a direct result of extraordinary

The two Soviet missions traveled to Venus first, releasing probes into its atmosphere.
ICE was originally named the International Sun–Earth Explorer 3 when it was launched in 1978. After many

years on another mission, the spacecraft was reassigned to investigate the two comets.

7

7

8
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century Italian painter), and one from the United States (the International Cometary 
Explorer, which flew past Comet Giacobini–Zinner six months earlier)8. A number of 
spacecraft that were already flying other missions temporarily trained their instruments on 
the comet as well, even though they did not actually go out and meet the famous  visitor.



FIGURE 6 A spectacular example of a disconnection event in the March 25 image of this
sequence of images of Comet Hyakutake in 1996. (©Shigemi Numazawa/Atlas Photo Bank/Photo
Researchers, Inc.)

international cooperation, Giotto came within 596 km of the nucleus on March 14 (the
mission goal was 540 km).

Because of the high relative velocity of Giotto and Halley (68.4 km s−1), even a collision
with a small dust grain from the nucleus could cause serious damage to the spacecraft.
Therefore, to protect the instruments on board, Giotto was equipped with a 50-kg shield
made of aluminum and plastic Kevlar. Despite these precautions, just seven seconds before
its closest approach to the nucleus, a dust particle struck the spacecraft off-axis, causing it
to wobble severely. Stability was restored again one-half hour later.

Near its closest approach, the Giotto camera recorded the image of the nucleus seen in
Fig. 7. The size of Whipple’s dirty snowball is approximately 15 km × 7.2 km × 7.2 km,
and it is shaped roughly like a potato. The surface is extremely dark, with an albedo of
between 0.02 and 0.04. Repeated trips near the Sun have apparently left behind a layer of
dust and possibly organic material as the ices evaporated away.

Visible in Fig. 7 are dust jets (ejected streams of material) located on the Sunward
side of the nucleus. The positions of the jets probably correspond to thin regions in the
dark covering on the surface through which trapped, heated gases in the interior are able to
escape.As the nucleus rotates, other surfaces are exposed to the Sun, and new jets develop.10

“The Halley Encounters,” by Rüdeger Reinhard, in The New Solar System, Third Edition, Beatty and Chaikin
(eds.), Cambridge University Press and Sky Publishing Corporation, Cambridge, MA, 1990, pp. 207–216, offers
a fascinating recounting of the flybys.
10The nucleus of Comet Halley appears to have two rotation periods (2.2 days and 7.4 days) corresponding to
motions about different axes of this irregularly shaped object.

9

9
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FIGURE 7 The nucleus of Comet Halley as seen by the Giotto spacecraft. Evident are jets of
gases on the sunward side of the nucleus. (Image from Reitsema et al., 20th ESLAB Symp., ESA
SP-250, Vol. II, 351, 1986.)

It has been estimated that during the flybys, jets were present on 15% of the surface, with gas
and dust discharge rates of approximately 2 × 104 kg s−1 and 5 × 103 kg s−1, respectively.
Because of the reaction forces produced by the jets, comets tend to have slightly erratic
orbits.

By considering these nongravitational perturbations to its orbit, the mass of Comet
Halley’s nucleus has been estimated at between 5 × 1013 kg and 1014 kg. If these crude
estimates turn out to be correct, the average density of the nucleus is less than 1000 kg m−3

and may be as low as 100 kg m−3. It is likely that gases and dust escaping from the icy
body have left a porous, honeycomb structure inside the nucleus with an average density
close to that of new-fallen snow. ( Jupiter also
appear to have been very loosely packed, with densities of about 600 kg m−3.)

The passage of the International Cometary Explorer through the tail of Comet Giacobini–
Zinner and the extensive international collaboration to rendezvous with Comet Halley were
the first two of several missions to comets that have occurred since the mid-1980s. In 2001
the experimental ion-propulsion spacecraft Deep Space 1 obtained images of the 10-km-
long nucleus of Comet Borrelly from a vantage point of 2200 km. In addition, on January 2,
2004, Stardust passed within 250 km of Comet Wild 2, obtaining high-resolution images of
the surface. Stardust also captured dust from the comet and, on January 15, 2006, returned
the dust to Earth for analysis.

A very dramatic encounter occurred on July 4, 2005, when Deep Impact sent a 370-kg
impactor into Comet Tempel 1, a 7.6 km by 4.9 km object, at a speed of 10.2 km s−1. Images
of Comet Tempel 1 obtained by Deep Impact are shown in Fig. 8. The impactor created

The Shoemaker–Levy 9 fragments that hit
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(a) (b)

(c)

FIGURE 8 (a) Comet Tempel 1 seen from Deep Impact five minutes before the impactor struck
the comet. The nucleus measures 5 km by 11 km. (b) 67 seconds after impact. (c) The surface of
Tempel 1, 20 seconds before impact. The image was obtained by the impactor’s targeting sensor.
Features as small as 4 m can be identified. (NASA/JPL-Caltech/UMD.)

a crater in the comet’s nucleus that allowed scientists to study the interior. Analysis of the
data identified a variety of compounds, including water, carbon dioxide, hydrogen cyanide,
methyl cyanide, polycyclic aromatic hydrocarbons (PAHs), and other organic molecules,
as well as minerals such as olivine, calcite, iron sulfite, and aluminum oxide. The 107 kg
of material excavated from the near surface of the comet has the consistency of a very fine
sand, or perhaps even the consistency of talcum powder. It also seems that the comet’s
density is roughly that of powder snow, loosely held together by its weak gravity. With a
mass of 7.2 × 1013 kg, Tempel 1 has a density of only 600 kg m−3. The low density suggests
that Tempel 1 may be a very porous rubble pile.

In the future, ESA’s Rosetta spacecraft, which was launched in 2004, is scheduled to
rendezvous with Comet Churyumov–Gerasimenko in 2014 and then spend almost two years
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carefully studying the comet from a low orbit around the nucleus. The mission will also land
a probe on the surface of the comet. During its extended tour, Rosetta will fly alongside the
comet as it moves into the inner Solar System, is heated by the Sun, and begins releasing
trapped volatiles from its interior. Among other goals, this exhaustive study may help us to
determine whether or not the “seeding” of Earth with cometary organic material may have
helped life develop on our planet.

Sun-Grazing Comets

While many comets that venture into the inner Solar System suffer relatively small amounts
of sublimation near perihelion compared with their masses, other comets may experience
more severe consequences. For instance, when Comet West moved through the inner Solar
System in 1976, its nucleus broke into four separate pieces. Comet Kohoutek also split apart
in 1974. Perhaps more impressive are the Sun-grazing comets. While it has been intensely
studying the Sun, the LASCO instrument onboard the SOHO spacecraft has discovered
more than 1000 comets that make close approaches to the Sun. In some instances the
comets’ orbits cause them to plunge into the Sun, as occurred with Comet SOHO-6, shown
in Fig. 9.

The Oort Cloud

Halley is one example of a class of comets known as short-period comets with orbital
periods of less than 200 years. Short-period comets are found near the ecliptic and return to
the inner Solar System repeatedly. The long-period comets have orbital periods of greater
than 200 years, and some may take from 100,000 to 1 million years or more to return.
In 1950, based on a very careful statistical study of their apparently random orbits, Jan
Oort (1900–1992) concluded that long-period comets originate in a distant distribution of
cometary nuclei now known as the Oort cloud. Although the Oort cloud has never been

FIGURE 9 An image of Comet SOHO-6 plunging into the Sun (lower left-hand side). The disk
of the Sun is covered so that the Sun’s corona and coronal mass ejections can be studied. The image
was obtained by the LASCO instrument onboard SOHO on December 23, 1996. [SOHO (ESA &
NASA).]
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1012–1013 members with a total mass on the order of 100 M⊕. For comparison, the nearest
stars are approximately 275,000 AU away. The inner Oort cloud (3000 AU to 20,000 AU)
may be slightly concentrated along the ecliptic, while the outer Oort cloud (20,000 AU to
100,000 AU) has a nearly spherical distribution of cometary nuclei.

The comets in the Oort cloud probably did not form at their present locations. Instead,
they may be ancient planetesimals that coalesced near the ecliptic in the vicinity of Uranus
and Neptune. After repeated gravitational interactions with the ice giants, the nuclei were
catapulted out to their current distances. Because these nuclei were so far from the Sun,
passing stars and gas clouds ultimately randomized their orbits, resulting in the nearly
spherical distribution that exists in the outer cloud today. With the inner cloud being deeper
in the Sun’s gravitational well, these cometary nuclei did not become quite as randomly
distributed. Therefore, comets in the inner Oort cloud were able to retain some history of
their original locations when the Solar System was young. It is probably the gravitational
perturbations of other stars and gas clouds that cause some of the cometary nuclei to start
their long falls into the inner Solar System.

The Kuiper Belt

Since the orbits of short-period comets lie preferentially near the ecliptic, it seems unlikely
that these objects originated in the Oort cloud. Kenneth E. Edgeworth (1880–1972) in 1949
and Kuiper in 1951 independently proposed that a second collection of cometary nuclei
might be located close to the plane of the ecliptic.

In August 1992, 1992 QB1, a 23rd-magnitude object, was discovered by Jane Luu and
David Jewitt 44 AU from the Sun and having an orbital period of 289 years. Seven months
later a second 23rd-magnitude object (1993 FW) was discovered at nearly the same distance
from the Sun.Assuming these objects have albedos characteristic of typical cometary nuclei
(3% to 4%), then they must have diameters of approximately 200 km in order to appear as
bright as they do. That would make them about one-tenth the size of Pluto. By early 2006,
telescopic surveys employing sensitive CCD cameras had resulted in the discovery of more
than 900 similar objects beyond Neptune’s orbit.

Now known as the Kuiper belt,11 this disk of cometary nuclei extends from 30 to 50 AU
from the Sun; the semimajor axis of Neptune’s orbit is 30 AU. Some members appear to
have particularly eccentric orbits that may reach out to 1000 AU at aphelion, however.
Noting their location beyond the outermost ice giant, these Kuiper Belt Objects (KBOs)
are sometimes alternatively referred to as Trans-Neptunian Objects (TNOs).

A Kuiper Belt Object Larger Than Pluto

As more and more KBOs have been discovered, a number of them have been found to
have diameters somewhat smaller than, but comparable to, that of Pluto (see Table 2).
However, in 2005, astronomers Mike Brown (Caltech), ChadTrujillo (Gemini Observatory),
and David Rabinowitz (Yale University) announced the discovery of the first object in the

11In recognition of the independent suggestion of Edgeworth, this collection of objects is sometimes referred to
as the Edgeworth–Kuiper belt.
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observed, its existence seems certain. The reservoir of nuclei appears to be 
 located between 3000 AU and 100,000 AU from the Sun and probably contains



TABLE 2 A List of the Largest Known Kuiper Belt Objects, as of May 2006. Many of the
listed diameters are quite uncertain.

Name Diameter (km) Period (yr) a (AU) e i (deg)
2003 UB313 2400 559 67.89 0.4378 43.99
Pluto 2274 248 39.48 0.2488 17.16
Sedna∗ 1600 12,300 531.7 0.857 11.93
Orcus 1500 247 39.39 0.220 20.6
Charon 1270 248 39.48 0.2488 17.16
2005 FY9 1250 309 45.71 0.155 29.0
2003 EL61 1200 285 43.34 0.189 28.2
Quaoar 1200 287 43.55 0.035 8.0
Ixion 1070 249 39.62 0.241 19.6
Varuna 900 282 42.95 0.052 17.2
2002 AW197 890 326 47.37 0.131 24.4
∗ Sedna has an orbit that is much larger than the classical Kuiper belt.

Kuiper belt known to be larger than Pluto. 2003 UB313 was discovered on January 5, 2005,
from data that were collected in a sky survey in 2003. With an orbital period of P = 559 yr,
a semimajor axis of a = 68 AU, an orbital eccentricity of e = 0.44, and an inclination with
respect to the ecliptic of i = 44◦, the orbital characteristics of 2003 UB313 are why it took
so long to find this large object in the Kuiper belt. Since most surveys looking for KBOs
have been focused near the plane of the ecliptic, it was surprising to find 2003 UB313 with
such a large inclination. HST observations indicate that the diameter of 2003 UB313 is
2400 km, making it about 6% larger than Pluto. The spectrum of 2003 UB313, shown in
Fig. 10, is also strikingly similar to Pluto’s, suggesting a surface composition dominated
by frozen methane. A moon has been detected orbiting 2003 UB313 as well.

The discovery of 2003 UB313 has rekindled the debate over what officially constitutes
a planet. Should 2003 UB313 be designated as a planet since it is larger than Pluto? Should
Pluto be removed from the planet classification? Interestingly, prior to the discovery of large
KBOs, no formal scientific definition of a planet had ever been established; it had more or
less been assumed that we will recognize a planet when we see one! At the time of writing,
this is an issue that the International Astronomical Union is struggling to resolve. Given
that society has long come to see Pluto as a planet, the decision may very well be beyond
the formal definitions of scientists. Whatever the resolution of these questions, it is clear
that in light of the apparent size and composition of 2003 UB313 and many of the other
KBOs, Pluto and Charon are certainly Kuiper belt objects; they just happen to be among
the largest known members. After all, Pluto and Charon have more in common with very
large cometary nuclei than with a “typical” planet–moon system. Neptune’s unusual moon,
Triton, is probably a captured KBO as well.

Classes of Kuiper Belt Objects

As the number of known KBOs has continued to grow, it has become evident that they
fall into three different groups based on their orbital characteristics. Classical KBOs are
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FIGURE 10 The reflection spectrum of 2003 UB313 (individual points) compared to the spec-
trum of Pluto (gray line). Absorption features of methane dominate the spectrum. The large points
are data from BVRIJHK photometry. [Courtesy of Mike Brown (Caltech), Chad Trujillo (Gemini
Observatory), and David Rabinowitz (Yale University).]

those that orbit between 30 and 50 AU from the Sun, most have semimajor axes between 42
and 48 AU. The orbital inclinations of classical KBOs tend to be less than 30◦. It has been
suggested that the cutoff of classical KBOs at 50AU may be due to a passing star early in the
formation of the Solar System. Scattered KBOs have much higher orbital eccentricities
than the classical KBOs and were probably pumped up to those orbits by gravitational
interactions with the ice giants, most notably Neptune. 2003 UB313 is one example of
a scattered KBO. The perihelion distances of scattered KBOs are characteristically about
35AU, and they tend to have greater orbital inclinations than the classical KBOs. In addition,
it is likely that the scattered KBOs are at least one source of the short-period comets. Finally,
a class of resonant KBOs exists that have orbital resonances with Neptune. As we noted in
Section 1, Pluto is locked in a 3:2 orbital resonance with Neptune that protects it from
ever colliding with the ice giant. As a result, Pluto (and Charon) are resonant KBOs. In fact,
KBOs that have 3:2 orbital resonances with Neptune are referred to as Plutinos. Orbital
resonances of 4:3, 5:3, and 2:1 have been observed for KBOs as well.

Centaurs

Other fairly large icy bodies have been discovered orbiting the Sun as well. In 1977, an
object known as 2060 Chiron was detected in an orbit that carries it from inside Saturn’s
orbit out to the orbit of Uranus. Chiron’s diameter has been estimated to be between 200 km
and 370 km. A slightly smaller object, nicknamed “Son of Chiron” but officially called
5145 Pholus, has also been seen orbiting among the outer planets, between 8.7 and 32 AU.
Originally classified as an asteroid, Chiron brightened unexpectedly in 1988 and developed
a measurable coma. Such behavior defines this object as a comet rather than a rocky asteroid.
Chiron and 5145 Pholus are two examples of a class of objects known as Centaurs that
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Plot prepared by the Minor Planet Center (2005 Sept 8).
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FIGURE 11 The positions of known classical and resonant Kuiper belt objects (circles), Centaurs
and scattered KBOs (triangles), comets (squares), and Trojan asteroids from the orbit of Jupiter
outward on September 8, 2005. The position of each object has been projected onto the plane of
the ecliptic. Open symbols are objects observed at only one opposition; filled symbols are objects
that have been observed at multiple oppositions. For the comets, filled squares represent numbered
periodic comets; other comets are indicated by open squares. The classical Kuiper belt is clearly
evident beyond the orbit of Neptune. In this orientation, the planets and most of the other objects orbit
counterclockwise, and the vernal equinox is to the right. (Adapted from a figure courtesy of Gareth
Williams, Minor Planet Center.)

appear to be KBOs which were scattered into the region of the planetary orbits. Centaurs
may eventually become short-period comets.

Figure 11 shows the locations of KBOs, Centaurs, comets, and Jupiter’s Trojan as-
teroids (see Section 3) on September 8, 2005, projected onto the plane of the ecliptic.
Because of the projection effect and the very large sizes of the symbols relative to the actual
sizes of the objects, the outer Solar System appears to be more crowded than it really is.

The Implications for Water in the Inner Solar System

condensed out of the warm inner solar nebula with large abundances of volatiles such as
It seems unlikely that the terrestrial planets could have
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water. It has been suggested that much of the water that is found in the oceans of Earth,
that is trapped in the permafrost and ice caps of Mars, and that probably existed on Venus
in the past could have been delivered to those worlds by impacting comets after the planets
formed. However, “the devil is in the details.” After careful examination of the composition
of several comets that have been explored by spacecraft, it has been noted that the deuterium-
to-hydrogen (D/H) ratio in the comets exceeds that in Earth’s oceans by at least a factor
of two. In fact, the D/H ratio is more characteristic of the interstellar medium than of the
terrestrial oceans. From the small sample of comets that have been closely investigated to
date, it appears that another source for the water in Earth’s oceans must be determined. On
the other hand, it may be that the sample is biased, consisting only of objects that probably
derived from the Oort cloud, rather than the Kuiper belt. Of course, it is also possible that
the delivery of water to Earth was a prolonged process, involving a variety of mechanisms,
including comets, asteroids with relatively high water content (Section 3), water-rich
meteorites (Section 4), and planetesimals.

3 ASTEROIDS

it may be that the total number is in excess of 107. However, despite their large numbers,
the combined mass of all the asteroids may be as low as 5 × 10−4 M⊕. A close-up view of
asteroid 243 Ida and its moon, Dactyl, is shown in Fig. 12. (The number designates the
order in which the asteroid was discovered. Ceres is designated 1 Ceres.)

FIGURE 12 243 Ida and its moon, Dactyl, as seen by the Galileo spacecraft on August 28,
1993, during its journey to Jupiter. 243 Ida is 55 km long, and Dactyl (100 km from Ida at the time of
the flyby) is somewhat egg-shaped, measuring 1.6 km by 1.2 km. Surface features as small as 30 m
are visible on Ida. Galileo was about 10,500 km from Ida when this image was taken. (Courtesy of
NASA/JPL.)

Minor Bodies of the Solar System

Asteroids (sometimes referred to as minor planets) usually occupy orbits that 
are closer to the Sun than most comets. The vast majority of asteroids can be 
found in a belt situated between the orbits of Mars and Jupiter. Since the discov-
ery of Ceres in 1801, several hundred thousand asteroids have been cataloged, and
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FIGURE 13 The distribution of 1796 asteroids in the asteroid belt. Asteroid group names and
orbital resonances with Jupiter are also shown. Kirkwood gaps are evident at numerous resonance
locations, and enhancements in the number of asteroids are apparent at other resonance locations.
(Data from Williams, Asteroids II, Binzel, Gehrels, and Matthews (eds.), University of Arizona Press,
Tucson, 1989.)

The Kirkwood Gaps in the Asteroid Belt

The distribution of asteroids in the belt is not completely uniform or even smoothly vary-
ing with distance from the Sun. Instead, for various values of the orbital semimajor axis,
asteroids are either conspicuously absent or overabundant (see Fig. 13). These positions
correspond to orbital resonances with Jupiter, analogous to the resonances in Saturn’s rings
that are produced by its moons, most notably Mimas. Regions where asteroids are under-
abundant are known as the Kirkwood gaps, the most prominent being at 3.3 AU (a 2:1
resonance of orbital periods) and at 2.5 AU (a 3:1 resonance). In reality, physical gaps in the
belt, equivalent to gaps in Saturn’s rings such as the Cassini division, do not actually exist.
Instead, the varying eccentricities and orbital inclinations of the asteroids tend to smear
out the gaps somewhat, populating them with objects that are transients at those radii. The
locations of the asteroids (and of some comets) on September 8, 2005, projected onto the
plane of the ecliptic, are shown in Fig. 14.

The Trojan Asteroids

In some cases, resonances with Jupiter correspond to local increases in the number of
asteroids. A particularly interesting resonance group is the Trojan asteroids (1:1), which
occupy the same orbit as Jupiter but either lead or trail the planet by 60◦, as illustrated in
Fig. 15 and evident in Figs. 11 and 14. In addition, at least one asteroid is orbiting
the Sun at the trailing 60◦ position in Mars’s orbit, and two are in the lead 60◦ position
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Plot prepared by the Minor Planet Center (2005 Sept 8).

FIGURE 14 The distribution of minor bodies in the inner Solar System on September 8, 2005,
projected onto the ecliptic. Approximately 237,000 objects are shown in this plot. The outer orbit is
that of Jupiter, and the asteroid belt is clearly visible. The belt is not actually saturated with asteroids;
rather, the symbols representing them are vastly larger than the objects themselves. The location
of each planet is marked by a ⊕ sign; Jupiter is seen in the lower left of the diagram. Jupiter’s
Trojan asteroids are evident in the large “clouds” that lead and trail Jupiter by 60◦. The orbits of
the terrestrial planets are visible among the clutter of the Amors, Apollos, and Atens. Comets are
indicated by squares, as in Fig. 11. In this orientation the planets and most of the other objects
orbit counterclockwise, and the vernal equinox is to the right. (Courtesy of Gareth Williams, Minor
Planet Center.)

of Neptune’s orbit. These asteroids are found in regions of unusual gravitational stability
(gravitational “wells”) that are established by the combined influence of the Sun and Jupiter.
The positions are the L4 and L5 Lagrangian points, which are locations of equilibrium that
exist in a three-body system when one of the bodies (in this case an asteroid) is much smaller
than the other two. Lagrangian points play an important role in the evolution of some
binary star systems.

The Amors, Apollos, and Atens

Other special groups of asteroids are those that have orbits among the terrestrial planets.
The Amors are located between the orbits of Mars and Earth, the Apollos cross Earth’s orbit
as they approach perihelion, and the Atens have semimajor axes that are less than 1 AU,
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FIGURE 15 Trojan asteroids are located in Jupiter’s orbit, either leading or trailing the planet
by 60◦. The occupied positions are two of the five Lagrangian points in the Sun–Jupiter system.

although they can cross Earth’s orbit near aphelion. It appears that many of these objects
were probably main-belt asteroids at one time, but perturbations with Jupiter reoriented
their orbits. Some of the Earth-crossing objects could also be extinct cometary nuclei that
have lost most of their volatiles after repeated trips near the Sun. Since the Apollo and Aten
asteroids intersect Earth’s orbit, there is always the possibility that a collision could occur.

Hirayama Families

In 1918, the Japanese astronomer Kiyotsugu Hirayama (1874–1943) pointed out associ-
ations of asteroids that occupy nearly identical orbits. Today, more than 100 Hirayama
families (also known as asteroid families) have been identified. It is believed that each
family was once a single larger asteroid that suffered a catastrophic collision. With collision
speeds that can reach 5 km s−1, the available energy is more than enough to crush rock and
cause pieces of the original asteroid to escape. If the collisional energy is not sufficient,
only a portion of the surface may escape, or, after fracture, the self-gravity of the debris
could cause the asteroid to reform again as a rubble pile. The InfraredAstronomical Satellite
observed dust bands that seem to be associated with some of the major Hirayama families.

Rendezvousing with Asteroids

The first asteroids to be visited by a spacecraft were 951 Gaspra and 243 Ida in 1991 and
1993, respectively (Ida and its moon, Dactyl, are shown in Fig. 12). The flybys occurred
as the Galileo spacecraft passed through the asteroid belt while on its trip to Jupiter. Just
as astronomers had expected, the irregularly shaped asteroids show evidence of having
sustained numerous meteoritic impacts throughout their existence. In fact, the number of
impacts suggests that Gaspra (a member of the Flora family) was probably broken off from
a larger asteroid 200 million years ago. On the other hand, age estimates for Ida (a member
of the Koronis family) vary. Given the small size of Dactyl, it is unlikely that the moon
could have existed for more than 100 million years without getting destroyed by a major
collision. However, based on the high crater density on Ida’s surface, it appears that Ida
may be as old as 1 billion years. Assuming that the two objects were created together from
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the breakup of a larger body, the resolution to the puzzle may rest with an increased rate
of cratering from debris created when the larger object was destroyed. Even though the
number density of asteroids in the belt is very low, the expected frequency of collisions is
such that very few would have been lucky enough to avoid a major impact sometime during
the Solar System’s history.

With the discovery of Dactyl orbiting Ida, it is possible to estimate the mass of Ida
from Kepler’s third law. Unfortunately, because of the high relative speed of the flyby
(12.4 km s−1) and the spacecraft’s trajectory relative to the orbit of Dactyl (the angle between
the trajectory and the orbit was about 8◦), only an approximate range of orbits were derived
from the data. The results suggest that the mass of Ida is approximately 3 to 4 × 1016 kg,
giving an average density of between 2200 and 2900 kg m−3.

The Near Earth Asteroid Rendezvous mission (NEAR–Shoemaker)12 was launched
in 1996. On its way to its ultimate destination of asteroid 433 Eros, NEAR–Shoemaker
also made a 10-km s−1 flyby of 253 Mathilde. Based on the gravitational perturbations of
Mathilde on the spacecraft, it was determined that the average density of the asteroid is
only 1300 kg m−3, indicating that this asteroid is likely a very heavily fractured rubble pile
that has been broken apart by multiple collisions and only loosely reassembled by its own
gravity.

When NEAR–Shoemaker arrived at 433 Eros on February 14, 2000, it entered into orbit
around the asteroid and began a year-long intensive study of the object (see Fig. 16).

FIGURE 16 A composite image of the two hemispheres of 433 Eros as observed from orbit
around the asteroid. Eros is heavily covered with regolith and shows significant evidence of cratering.
Eros is one of the largest near-Earth asteroids, measuring 33 km long by 8 km wide by 8 km thick.
(Courtesy of NASA/Johns Hopkins University Applied Physics Laboratory.)

12The mission was renamed in flight in honor of the late Eugene M. Shoemaker, planetary scientist and co-
discoverer of the Shoemaker–Levy 9 comet. Shoemaker had always said that he wanted to hit 433 Eros with a
rock hammer to see what was inside.
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FIGURE 17 The surface of Eros from an altitude of 250 m. The image is 12 m across. The image
was taken during the February 12, 2001, descent of the NEAR–Shoemaker spacecraft. (Courtesy of
NASA/Johns Hopkins University Applied Physics Laboratory.)

During the orbital mission, the spacecraft studied Eros’s gravitational field and obtained
information about its surface composition. Although not designed as a lander, after one year
in orbit, NEAR–Shoemaker survived an intentional landing on the surface of the asteroid at
a speed of about 1.6 m s−1, and was able to transmit information back to Earth for another
week. During the descent phase of the mission, NEAR–Shoemaker returned many close-up
images, including the one shown in Fig. 17.

Measurements obtained during the mission indicate that the density of Eros is 2670
kg m−3 and that it has probably been fractured, but not to the point of being a rubble pile like
Mathilde. The interior of Eros appears to have a porosity of 25% or so. From measurements
of radioactivity and from gamma-ray spectroscopy measurements (see Fig. 18), it appears
that Eros contains K, Th, U, Fe, O, Si, and Mg, as expected for this primitive object.

Classes of Asteroids

It was in the 1930s that astronomers first realized that asteroids vary in color. By observing
the spectrum of reflected sunlight, it is possible to identify absorption bands that provide
important information about the surface compositions of these objects. Information can
also be obtained by studying their albedos. The composition of asteroids is now known
to vary significantly, but a general trend exists with increasing distance from the Sun (see
Fig. 19). Some of the major classes of asteroids are

• S-type asteroids reside in the inner part of the belt (2–3.5 AU) and make up roughly
one-sixth of all the known asteroids. Their surfaces are dominated by a mixture of
iron- or magnesium-rich silicates, together with pure metallic iron–nickel. They tend
to have a low abundance of volatiles, appear somewhat reddish, and have moderate
albedos (0.1–0.2). Gaspra, Ida, and Eros are S-type asteroids.
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• M-type asteroids are very metal-rich with absorption spectra dominated by iron and
nickel. They appear slightly reddish, and they have moderate albedos (0.10–0.18).
M-types are preferentially located in the inner portion of the belt, among the S-types
(2–3.5 AU).

• C-type asteroids constitute perhaps three-fourths of all the minor planets. These
objects are located predominantly near 3 AU but can be found throughout the main
belt (2–4 AU). They are very dark, with albedos in the range 0.03–0.07, and they
appear to be rich in carbonaceous material. Two-thirds of the C-types also contain
significant quantities of volatiles, particularly water. Mathilde is a C-type asteroid.

• P-type asteroids are located near the outer edge of the main belt and beyond (3–5AU),
peaking in population near 4 AU. They have a slightly reddish appearance and low
albedos (0.02–0.06). Their surfaces may contain a significant abundance of ancient
organic compounds, which are also present in comets.

• D-type asteroids are much like P-types, except that they have a redder appearance
and are located farther from the Sun. The Trojan asteroids are dominated by D-types.
Some of Jupiter’s smaller moons also exhibit spectra similar to D-type asteroids.

It seems likely that the differences in asteroid types with distance from the Sun are
largely a result of the process of condensation out of the solar nebula.

Closer to the Sun, near the inner edge of the asteroid belt where
the temperature was higher, more refractory compounds (like silicon) condensed
out while volatiles such as water and organic compounds could not. Farther from the Sun,
temperatures had decreased sufficiently to allow more volatile compounds to condense and
become part of the asteroids in that region. Many of the C-type asteroids in the middle of
the belt appear to be hydrated (meaning that water is present in these objects), whereas the
more distant P- and D-types may contain water-ice, like most of the moons of the outer
Solar System. Interestingly, 1 Ceres, at a distance from the Sun of 2.77 AU, and the largest
asteroid in the belt, appears to be nearly spherical and may have a water-ice mantle.

Evidently the majority of the minor planets in the inner part of the belt have been
subjected to significant gravitational separation during their lifetimes, including most or all
of the S-type asteroids. The unusual and very metal-rich M-types have also been profoundly
altered by evolution since formation. It is generally believed that M’s represent the cores of
much larger parent asteroids that became chemically differentiated and were later shattered
by cataclysmic collisions, exposing the core.

At least one asteroid, 4 Vesta, appears to have a surface that is covered with basalt (rock
formed from lava flows). Vesta has a radius of 250 km and is the third-largest asteroid
known, behind 1 Ceres and 2 Pallas. It seems that magma developed in the interior and
eventually found its way through cracks to the surface, where it solidified. Vesta also has
an impact crater large enough to have exposed the subsurface mantle.

Internal Heating

As Vesta and the S- and M-type asteroids suggest, the interiors of at least some asteroids
must have become molten for a period of time during their lives, raising the question of the
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source of the heat. Being small objects, the asteroids readily radiate their interior heat into
space, so they should have cooled off rather quickly after formation, too quickly to allow for

τ ∝

26
13Al, with a half-life of 716,000 years:

26
13Al → 26

12Mg + e+ + νe. (5)

One difficulty with this suggestion is that in order to be effective in melting the interior
of an asteroid, the aluminum must be incorporated relatively rapidly into a forming asteroid
after the aluminum is produced (in just a small number of half-lives). This places a severe
constraint on the formation timescale for the Solar System.

A second problem with the radioactive isotope solution lies in the apparent trend from
chemically differentiated, volatile-poor asteroids in the inner belt to hydrated asteroids
around 3.2 AU and icy bodies near Jupiter. This distribution seems to imply that 26

13Al was
preferentially included in asteroids in the inner belt if it is the source of heat that led to
chemical differentiation.

4 METEORITES

In the early morning hours of February 8, 1969, residents in the region around Chihuahua
City, Mexico, saw a bright blue-white light that streaked across the sky. As they watched,
the light broke into two parts, each in turn exploding into a spectacular display of glowing
fragments. Sonic booms were also heard accompanying the light show. It was reported that
some observers even believed that the world was coming to an end. Rocks rained down
on the countryside over an area that measured 50 km by 10 km (known as a strewnfield).
The next day the first meteorite was discovered in the small village of Pueblito de Allende.
All of the more than two tons of specimens collected from this meteor shower are now
collectively referred to as the Allende meteorite. Many of the Allende stones were taken
to the NASA Lunar Receiving Laboratory in Houston, Texas, for study.13 One sample of
the Allende meteorite is shown in Fig. 20.14

The observed streaks of light were produced by the frictional heating of the meteorite
surfaces by Earth’s atmosphere, causing the meteorites to glow. Although the outsides of the
samples were covered by fusion crusts produced by the frictional heating, the interiors of
the samples were unaffected. When a meteorite passes through the atmosphere, its damaged
surface flakes off almost as quickly as it forms.

13The Lunar Receiving Laboratory was preparing to analyze the Moon rocks that were to be collected later that
year by the Apollo astronauts.
14After attending a lecture about a meteoritic fall given by two Yale professors in Connecticut in 1807, President
Thomas Jefferson (1743–1826) reportedly commented, “I could more easily believe that two Yankee professors
could lie than that stones could fall from Heaven.” Jefferson was, himself, a well-respected amateur scientist.
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significant gravitational separation (recall that cool  R). Furthermore, the very long-half-
life radioactive isotopes that are, in large part, responsible for maintaining the hot inte-
rior of Earth could not generate heat rapidly enough to melt the interior of an asteroid. 
It has been suggested that a relatively short, intense burst of heat could be produced if 
a shorter-half-life isotope were available in sufficient abundance. A likely candidate is



(a) (b)

FIGURE 20 (a) A sample of the Allende meteorite. The surface has a fusion crust. (b) A close-
up of a portion of the interior of the sample showing CAIs and chondrules embedded in a matrix.
(Courtesy of Smithsonian Astrophysical Observatory.)

The Age and Composition of the Allende Meteorite

A very precise chronometer for determining ages of events in the formation of the Solar
System is available by comparing the relative abundances of two stable isotopes of lead
that can be identified in meteorites, 207

82Pb and 206
82Pb. These isotopes are ultimately produced

by independent sequences of decays that begin with 235
92U (half-life of 0.704 Gyr) and 238

92U
(half-life of 4.47 Gyr), respectively. By using this Pb–Pb system, scientists have deduced
an age for the Allende meteorite of 4.566 ± 0.002 Gyr, which is very close to the solar
model age of the Sun (4.57 Gyr) It seems that the Allende meteorite is a nearly primordial
remnant of the early solar nebula (as are other meteorites).

A chemical analysis of the samples revealed that the meteorite’s composition is close
to solar (similar to the Sun’s photosphere), with some exceptions; the most volatile ele-
ments (H, He, C, N, O, Ne, and Ar) are underabundant, and lithium (Li) was found to be
overabundant. The relative underabundance of volatiles can be understood by assuming
that the Allende meteorite condensed out of the inner portion of the solar nebula where
the temperature was too high for those elements to be included in solar concentrations.1

Allende’s lithium content is probably overabundant relative to the Sun because the Sun has
actually destroyed much of its own complement of that element during the star’s lifetime.

CAIs and Chondrules

Contained in the Allende samples are two types of nodules embedded in a matrix of
dark silicate material. The calcium- and aluminum-rich inclusions (CAIs, also known
as refractory inclusions) are small pockets of material ranging in size from microscopic
to 10 cm in diameter that are relatively overabundant in calcium, aluminum, and titanium
when compared with the remainder of the meteorite. This is significant because they are the

15Of course, light gases such as hydrogen and helium easily escape low-mass objects such as meteorites.
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most refractory (least volatile) of the primary elements in meteoritic material. It seems that
the CAIs have undergone repeated episodes of evaporation and condensation. Chondrules
are spherical objects (1–5 mm across) made predominantly of SiO2, MgO, and FeO, which
seem to have cooled very rapidly from a molten state. Apparently no more than one melting
and cooling event occurred for a given chondrule, and some chondrules may have been
only partially molten.

A particularly intriguing discovery in the Allende CAIs is the overabundance of 26
12Mg.

Because this particular nuclide is produced by the radioactive decay of 26
13Al (recall Eq. 5),

which is known to be produced by supernovae, the meteorite may have formed out of
material significantly enriched with supernova ejecta. Moreover, because the half-life of
26
13Al is relatively short by astronomical timescales, the meteorite must have formed within a
few million years or so following the production of the 26

13Al. This suggests that a supernova
shock wave may have triggered the collapse of the solar nebula. Because the material from
the supernova should not be expected to mix thoroughly with the original nebula, regions
of enhanced abundance would probably exist out of which objects such as the Allende
meteorite could form. An alternative mechanism for the production of the required 26

13Al
has also been proposed: Intense flares during pre-main-sequence T-Tauri and FU Orionis
phases appear capable of synthesizing 26

13Al. This mechanism seems to eliminate the need
for a possibly ad hoc supernova trigger.

Carbonaceous and Ordinary Chondrites

The Allende meteorite is one example of a class of primitive specimens known as car-
bonaceous chondrites, so named because they are rich in organic compounds and contain
chondrules. They may also include appreciable amounts of water in their silicate matrix.
The matrix even records the existence of a fairly strong primordial magnetic field (about
equal in strength to the value of Earth’s present-day field). Ordinary chondrites contain
fewer volatile materials than the carbonaceous chondrites, implying that they formed in a
somewhat warmer environment. Both general types of chondrites are chemically undiffer-
entiated stony meteorites.

Chemically Differentiated Meteorites

Several forms of chemically differentiated meteorites have also been discovered. Igneous
stones, known as achondrites, do not contain any inclusions or chondrules; instead, they
were formed entirely out of molten rock. Iron meteorites do not contain any stony (silicate)
material, but they may be composed of up to 20% nickel. About three-quarters of all iron
meteorites have long iron–nickel crystalline structures, up to several centimeters long and
known as Widmanstätten patterns, that could have developed only if the crystal cooled
very slowly over millions of years.16 Stony–iron meteorites contain stony inclusions in a
matrix of iron–nickel. Stones (chondrites and achondrites) make up about 96% of all the
meteorites that hit Earth, irons account for about 3% of the total, and stony–irons make up
the remainder (1%).

16The patterns were named for CountAlois von Widmanstätten, director of the Imperial Porcelain Works in Vienna,
who discovered them in 1808.
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Sources of Meteorites

The vast majority of all meteorites probably originate from asteroids, either chipped off their
parents or liberated from the deep interior during a catastrophic collision. For a sufficiently
large asteroid, significant gravitational separation may have occurred, as suggested by the
M-type minor planets. The exposed metallic cores are the source of the irons, and the
core–rock interface is the source of the stony–irons. Other asteroids underwent very little
chemical alteration during their lives and may account for the chondrites.

The reflection spectra of asteroids can be compared with meteorite samples to test whether
the asteroids could be the source of objects striking Earth. Figure 21 shows the strong
correlations between the spectra of some asteroids and meteorites. Note, for instance, that
the asteroid 176 Iduna has a spectrum very similar to that of the carbonaceous chondrite,
Mighel, while the basaltic surface of 4Vesta agrees well with that of the achondrite meteorite,
Kapoeta.

An unusual achondrite was discovered on the ice cap of Antarctica in 1982.17 It has
the chemical makeup of rocks collected from the lunar highlands by the Apollo astronauts.
Clearly this achondrite was ejected from the Moon instead of from an asteroid. Because
the escape velocity of the Moon is much larger than the escape velocities of asteroids, the
discovery was certainly unexpected. Even more surprising, a small handful of meteorites
have been discovered whose ages date back only 1.3 Gyr. Because these stones are much
younger than the surface of the Moon, they must have originated on a body that has been
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FIGURE 21 Comparisons between the infrared spectra of asteroids and meteorites. The reflec-
tion data for the asteroids are depicted by open circles with attached error bars. The laboratory spectra
of the meteorites are given as solid curves. (Adapted from a figure courtesy of C. R. Chapman, in The
New Solar System, Third Edition, Beatty and Chaikin (eds.), Cambridge University Press and Sky
Publishing, Cambridge, MA, 1990.)

17Antarctica is an excellent site for finding meteorites. Any rock lying on the surface of a glacier is almost certainly
extraterrestrial in origin.
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TABLE 3 The Dates and Parent Bodies of Principal Meteor Showers.

Shower Approximate Date Parent Body
Quadrantid January 3 (unknown)
Lyrid April 21 Comet 1861 I
Eta Aquarid May 4 Comet Halley
Delta Aquarid July 30 (unknown)
Perseid August 11 Comet Swift–Tuttle
Draconid October 9 Comet Giacobini–Zinner
Orionid October 20 Comet Halley
Taurid October 31 Comet Encke
Andromedid November 14 Comet Biela
Leonid November 16 Comet 1866 I
Geminid December 13 Asteroid 3200 Phaeton

geologically active more recently. The only real candidate is Mars, with an escape velocity
of 5 km s−1. At least one of the meteorites has inclusions of shock-melted glass that contain
noble gases and nitrogen in the same proportions as the Martian atmosphere. However,
also recall that Mars has produced at least one very old meteorite, ALH84001.

A number of meteor showers occur near the same dates every year, during which time
meteors seem to emanate from a fixed position on the celestial sphere, known as a radiant.
The source of the meteorites is debris left in the orbits of comets or asteroids that happen
to intersect Earth’s orbit. As Earth passes through the body’s orbit, material rains down as
if that material were coming from a position in the sky that Earth happens to be moving
toward at the time; hence the radiant. Most parent bodies of meteor showers are comets,
although at least one object, 3200 Phaeton, is classified as an asteroid. Meteor showers
are named for the constellation in which their radiants lie. A list of the principal meteor
showers, their approximate dates of maximum, and the parent object (if known) is given in
Table 3.

A History of Collisions with Earth

By now it should be apparent that objects throughout the Solar System have been subjected
to numerous and sometimes violent collisions; Earth is no exception. Even as recently as
50,000 years ago, an iron meteorite, estimated to be 50 m in diameter, hit the ground in
Arizona, producing a crater 1.2 km wide and 200 m deep (Fig. 22). There is also strong
evidence to support the hypothesis that a stony asteroid exploded in the atmosphere above
Siberia in 1908 (an episode known as the Tunguska event). The detonation leveled trees
in a radial pattern for 15 km in every direction. It is even reported that the blast wave
knocked a man off his porch 60 km from the epicenter and that the explosion was audible at
distances of up to 1000 km. Estimates place the energy released during the Tunguska event
at 5 × 1017 J, equivalent to a nuclear explosion of 12 MTons.

Could other, even more energetic collisions have produced catastrophic consequences
for life on Earth at the time? In about 1950, Ralph Baldwin suggested that meteoritic impacts
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FIGURE 22 The 50,000-year-old Meteor Crater (also known as Barringer’s Crater) in Arizona
is 1.2 km in diameter and 200 m deep. It was produced by an iron meteorite estimated to be 50 m in
diameter. (Courtesy of D. J. Roddy and K. Zeller, USGS.)

could have been responsible for the mass extinctions of many species seen in the paleon-
tological record. Support for this hypothesis came in 1979 when geologist Walter Alvarez
and his father, Luis Alvarez (1911–1988), a Nobel Prize winner in physics, announced the
discovery of high abundances of iridium in a dark-colored clay that was located in the geo-
logic strata at the Cretaceous–Tertiary boundary (commonly called the K–T boundary). The
K–T boundary corresponds in time to the extinction, 65 million years ago, of 70% of the
species then in existence, including the last of the dinosaurs. Since their original discovery
in the Appenine Mountains of Italy, the anomalously high iridium concentrations have been
seen throughout the world at the K–T boundary.

The significance of iridium is that it is rare in rock found near Earth’s surface. This is
because iridium is readily soluble in molten iron (it is a siderophile) and as such participated
in the chemical differentiation of heavy elements sinking toward the core of Earth. However,
iridium is fairly common in iron-rich meteorites. The amount of iridium present in the K–T
clay strata, where it is thousands of times more abundant than is typical of ordinary rock, is
consistent with an impact by a stony asteroid that measured 6 to 10 km across (or perhaps
the object was a slightly larger comet). An impactor of this size should have produced a
crater some 100 to 200 km in diameter.

Shocked mineral grains have also been found worldwide at the K–T boundary but are
most abundant in North America, suggesting that the impact (or impacts) could have oc-
curred there. Attention has focused on an ancient impact site along the northern coast of
the Yucatan peninsula, near the town of Chicxulub. A nearly semicircular structure at least
180 km across is located there and, based on radioactive dating, appears to be of the correct
age. Based on the size of the crater, the energy of the impact is estimated to have been
4 × 1022 J, the equivalent of 1013 tons of TNT.An impact of that magnitude at the Chicxulub
site could also account for evidence of an enormous tidal wave (a tsunami) that apparently
traveled as far north as central Texas.

How could such an ocean impact have led to mass extinctions? If a meteorite of the
size suggested hit in the ocean, it would vaporize a large amount of water. Some of this

For comparison, the vertical rise of a typical mountain in the Rockies is about 1.5 km above the valley floor,
and ocean depths are approximately 6 km.

Some scientists have suggested that the diameter of the crater may be more like 300 km.
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water would wash out airborne dust while the rest of the moisture would increase the
greenhouse effect. As the temperature rose, even more water would evaporate into the
atmosphere. Global atmospheric and ocean surface temperatures could rise by as much as
10 K through this enhanced greenhouse effect.

Alternatively, if a major impact were to occur on land, a tremendous amount of dust
would be injected into the atmosphere. As a consequence, the albedo would increase and
more solar radiation would be reflected back into space, cooling the surface.20

In either case, as the meteorite passed through the atmosphere, the enormous amount of
kinetic energy available in the impactor would have produced searing heat and generated
devastating fires. It would also have reacted with appreciable amounts of nitrogen, producing
nitrogen oxides and nitric acid. The ensuing acid rain would have damaged delicate land-
based and aquatic ecosystems, killing vegetation and destroying much of the remaining
food source. Carbon soot is found in the K–T clay layer, and there is also geologic evidence
suggesting that flowering plants were destroyed in some regions for periods of at least
several thousand years. Regardless of whether the impact occurred on land or in an ocean,
the global environment would have been dramatically affected.

Even if asteroids or comets did not kill the dinosaurs and other creatures, there is clear
evidence that major impacts have occurred in the past. By some estimates, the probability
of the occurrence, during our lifetimes, of a cataclysmic impact that would be capable of
destroying civilizations is perhaps as high as one in a few thousand. In light of this rather
surprising statistic, some scientists have suggested that we should build a global asteroid–
comet defense system. Although no definite plans have yet been formulated, conferences
have been held to discuss the possibility.

The Basic Building Blocks of Life

Ironically, even though impactors have been proposed as the mass murderers of some life
forms on Earth, a number of carbonaceous chondrites have been found to contain many of
the basic building blocks of life. Seventy-four amino acids have been found in one meteorite
alone (the Murchison meteorite, which fell in Australia in 1972). Of those, seventeen are
important in terrestrial biology. In addition to the amino acids, all four of the bases that cross-
link the double helix of the DNA molecule (guanine, adenine, cytosine, and thymine), and
the fifth base that is important in cross-linking in RNA (uracil), have been discovered in the
Murchison meteorite. Other molecules important to life on Earth (such as fatty acids) have
also been found in carbonaceous chondrites. Of course, it is a long way from producing
relatively simple amino acids and cross-linking bases to the generation of the extremely
complex DNA and RNA molecules, but these discoveries indicate that the fundamental
chemistry necessary to start the process can occur in an extraterrestrial environment.

20It has been suggested that such a situation could also arise following a large-scale nuclear war. This scenario
has been referred to as “nuclear winter.”
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1 (a) Assume that a spherical dust grain located 1 AU from the Sun has a radius of 100 nm and
a density of 3000 kg m−3. In the absence of gravity, estimate the acceleration of that grain
due to radiation pressure. Assume that the solar radiation is completely absorbed.

(b) What is the gravitational acceleration on the grain?

2

(a) Beginning, with the equation  below show that the time required for a spherical particle
of radius R and density ρ to spiral into the Sun from an initial orbital radius of r ≫ R⊙
is given by Eq. (4). Assume that the orbit of the dust grain is approximately circular
at all times.

(b) Find the radius of the largest spherical particle that could have spiraled into the Sun from
the orbit of Mars during the Solar System’s 4.57-billion-year history. Take the density of
the dust grain to be 3000 kg m−3.

3 Estimate the amount of mass lost by Comet Halley during its most recent trip through the inner
Solar System. Take into consideration the fact that the comet exhibits significant activity only
during a short period of time near perihelion (an interval of approximately one year). Compare
your answer with the total amount of mass present in the nucleus. Assuming that the mass loss
rates are the same for each trip, how many more trips might the comet be able to make before
it becomes extinct?

4 In the text it was mentioned that nongravitational perturbations were used to estimate the
mass of Comet Halley. How might this be done?

5 Comet 1943 I, which last passed through perihelion on February 27, 1991, has an orbital
period of 512 years and an orbital eccentricity of 0.999914. This is one member of the class
of Sun-grazing comets.
(a) What is the comet’s semimajor axis?
(b) Determine its perihelion and aphelion distances from the Sun.
(c) What is the most likely source of this object, the Oort cloud or the Kuiper belt?

6 Using Kepler’s laws, verify that the 2:1 and 3:1 orbital resonances of Jupiter correspond to the
two prominent Kirkwood gaps indicated in Fig. 13.
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(4)

,

The Poynting–Robertson effect, together with radiation pressure, is important in clearing the 
Solar System of dust left behind by comets and colliding asteroids (the dust that is responsible 
for the zodiacal light).



(a) If there are 300,000 large asteroids between 2AU and 3AU from the Sun, and each asteroid
is assumed to be spherical with a radius of 100 km, determine the total volume occupied
by the asteroids considered here.

(b) Model the region in which these asteroids orbit as an annulus with an inner radius of 2 AU,
an outer radius of 3 AU, and a thickness of 2 R⊙. Determine the volume of the region.

(c) What is the ratio of the volume occupied by asteroids to the volume of the region in which
they orbit?

(d) Comment on the validity of a spaceship needing to maneuver quickly through a dense
population of asteroids as frequently depicted in popular science fiction movies.

7 Vesta orbits the Sun at a distance 2.362 AU and has an albedo of 0.38 (unusually reflective for
an asteroid).
(a) Estimate Vesta’s blackbody temperature, assuming that the temperature is uniform across

the asteroid’s surface.
(b) If Vesta’s radius is 250 km, how much energy does it radiate from its surface every second?

8 Figure 14 makes it appear that the asteroid belt is saturated with objects. In this problem
we will consider the fraction of the volume actually occupied by asteroids.
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FIGURE 13 The distribution of 1796 asteroids in the asteroid belt. Asteroid group names and
orbital resonances with Jupiter are also shown. Kirkwood gaps are evident at numerous resonance
locations, and enhancements in the number of asteroids are apparent at other resonance locations.
(Data from Williams, Asteroids II, Binzel, Gehrels, and Matthews (eds.), University of Arizona Press,
Tucson, 1989.)

Minor Bodies of the Solar System: Problem Set



9 In this problem you will estimate the amount of energy released per second by the radioactive
decay of 26

13Al inside Vesta during its lifetime.
(a) Vesta has a radius of 250 km and a density of 2900 kg m−3. Assuming spherical symmetry,

estimate the asteroid’s mass.
(b) Assume for the moment that the asteroid is composed entirely of silicon atoms. Estimate

the total number of atoms inside Vesta. The mass of one silicon atom is approximately
28 u.

(c) The mass of 26
13Al is 25.986892 u and the mass of 26

12Mg is 25.982594 u. How much energy
is released in the decay of one aluminum atom? Express your answer in joules.

(d) The ratio of 26
13Al to all aluminum atoms formed in a supernova is about 5 × 10−5, and

aluminum constitutes approximately 8680 ppm (parts per million) of the atoms in a
chondritic meteorite. Assuming that these values apply to Vesta, estimate the number
of 26

13Al atoms originally present in the asteroid.

Plot prepared by the Minor Planet Center (2005 Sept 8).

FIGURE 14 The distribution of minor bodies in the inner Solar System on September 8, 2005,
projected onto the ecliptic. Approximately 237,000 objects are shown in this plot. The outer orbit is
that of Jupiter, and the asteroid belt is clearly visible. The belt is not actually saturated with asteroids;
rather, the symbols representing them are vastly larger than the objects themselves. The location
of each planet is marked by a ⊕ sign; Jupiter is seen in the lower left of the diagram. Jupiter’s
Trojan asteroids are evident in the large “clouds” that lead and trail Jupiter by 60◦. The orbits of
the terrestrial planets are visible among the clutter of the Amors, Apollos, and Atens. Comets are
indicated by squares In this orientation the planets and most of the other objects orbit
counterclockwise, and the vernal equinox is to the right. (Courtesy of Gareth Williams, Minor
Planet Center.)
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10 With the aid of a diagram, explain why it is best to observe a meteor shower between 2 a.m.
and dawn instead of in the early evening. Hint: Consider the velocities of the infalling meteors
and the orbital and rotational motions of Earth.

11 Suppose that the Tunguska event was caused by an asteroid colliding with Earth. Assume that
the density of the object was 2000 kg m−3 and that it exploded above the surface of the planet
traveling at a rate equal to Earth’s escape velocity. If all of the energy of the explosion was
derived from the asteroid’s kinetic energy, estimate the mass and radius of the impacting body
(assume spherical symmetry).

(e) Find an expression for the amount of energy released per second in the decay of 26
13Al

within Vesta as a function of time, and plot your results over the first 5 × 107 years on
semilog graph paper. You may find the below equation useful.

(f) How much time was required after the formation of Vesta before energy production due
to the radioactive decay of 26

13Al dropped to 1 × 1013 W, comparable to the current rate of
energy output from the asteroid? See Problem 7.

dN

dt
= −λN,
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Formation of Planetary Systems

1 Characteristics of Extrasolar Planetary Systems
2 Planetary System Formation and Evolution

1 CHARACTERISTICS OF EXTRASOLAR PLANETARY SYSTEMS

Detections through the Reflex Radial Velocity Technique

he most effective method of discovering extrasolar planets to date
has been through the measurement of the reflex radial velocity of the parent star.
With the exception of the pulsar, PSR 1257+12, 51 Pegasi was the first star (other than
our Sun) found to have a planet in orbit around it. Michel Mayor and Didier Queloz of the
Geneva Observatory made the announcement in October 1995 of a planet with a period of
P = 4.23077 d in a nearly circular orbit (e < 0.01) around 51 Peg (a more recent radial
velocity curve of 51 Peg obtained by Geoffrey Marcy and his collaborators is shown in
Fig. 1). Since the system is not eclipsing, and the planet is too faint to be visually
identified, the inclination of the orbit of the planet (i) is unknown. As a result, only the
quantity m sin i can be determined for the planet from radial velocity measurements

Given that the parent star is a near twin of our Sun, with a spectral
classification of G2V–G3V, implying a stellar mass of approximately 1 M⊙, the lower mass
limit of the orbiting planet is obtained from the maximum radial velocity wobble of the star.

Example 1.1. To determine the minimum mass of the planet orbiting 51 Peg, we must
first determine its orbital velocity. From Kepler’s third law and assuming that the
mass of the star is m51 = 1 M⊙ and that the planet’s mass, m, is insignificant (m ≪ m51),
we find

a =
[

GP 2(m51 + m)

4π2

]1/3

= 7.65 × 109 m = 0.051 AU.

T

.

Several methods have been used to detect extrasolar planets (sometimes referred to as 
exoplanets). With the rapid increase in the number of known planets beyond our own Solar 
System, important new information is being gathered concerning how planetary systems 
form and evolve. In addition to these systems being interesting to study in their own right, 
this increase in knowledge about extrasolar planets helps to inform us about our own Solar 
System.

,



Since the orbit of the planet is nearly circular, the orbital speed of the planet is

v = 2πa/P = 131 km s−1.

oting from Fig. 1 that the amplitude of the star’s observed
radial velocity is vr,max = v51 sin i = 56.04 m s−1, we find that

m sin i = m51
v51 sin i

v
= 8.48 × 1026 kg = 0.45 MJ,

where MJ is the mass of Jupiter. Since sin i ≤ 1, the mass of the planet, 51 Peg b, must be
greater than 0.45 MJ.

51 Peg b is one example of a “hot Jupiter,” one of a number of extrasolar planets that
have been discovered having Jupiter-class masses but orbiting very close to their parent
star.

Multi-Planet Systems

A number of extrasolar planetary systems have been found through the radial velocity
technique to have multiple planets in orbit about the central stars. An example of one such
system is υ Andromedae; see Fig. 2. After the orbital perturbations due to the 4.6-d orbit
of one planet were removed from the radial velocity curve of the star, evidence remained
of additional perturbations. The υ And system contains at least three planets with orbital
periods of 4.6 d, 241 d, and 1284 d, with m sin i’s of 0.69 MJ, 1.89 MJ, and 3.75 MJ,
respectively. The mass of the F8V parent star is estimated to be 1.3 M⊙

As of May 2006, 193 extrasolar planets have been detected in 165 planetary systems.
While most of the planetary systems have had just one planet detected in them so far, 20
systems are known to be multi-planet systems.
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FIGURE 1 The radial velocity measurements of 51 Pegasi, revealing the presence of a planet
orbiting only 0.051 AU from the star. The sinusoidal shape of the velocity curve is evidence of a very
low orbital eccentricity (Figure adapted from Marcy, et al., Ap. J., 481, 926, 1997.)
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FIGURE 2 The residuals in the radial velocity measurements of υ Andromedae after the grav-
itational perturbations of the 4.6-day planet have been removed. The data reveal the presence of at
least three planets orbiting υ And. (Adapted from a figure provided by Debra A. Fischer, private
communication.)

The Mass Distribution of Extrasolar Planets

Initially, the radial velocity technique was able to discover only very massive (Jupiter-class)
planets in close-in orbits around their parent stars. One of the reasons for this selection effect
is that these objects exert the greatest gravitational influence on their parent star and generate
the largest reflex radial velocities. The other reason is that a star must be observed over a time
interval greater than the orbital period of the planet before the existence of the planet can
be confirmed. As the amount of time increases for the systems being surveyed, the longer
time-line data have allowed researchers to find lower-mass planets and planets orbiting
farther from the star. The lowest-mass planet discovered to date is in a multiple system
orbiting Gliese 876 and has an m sin i = 0.023 MJ, which is just 7.3 M⊕. The largest orbit
detected thus far using the reflex motion technique is in the multiple system 55 Cancri, with
a semimajor axis of 5.257 AU and an orbital period of 4517 d = 12.37 yr.

Over time, this selection effect is systematically diminishing.As is evident from statistical
studies of the systems investigated so far, nature seems able to produce planets with a range
of masses, with the lowest-mass planets being the most common. When binned by mass
interval (see Fig. 3), the number of planets in each mass bin varies as

dN

dM
∝ M−1. (1)

The Distribution of Orbital Eccentricities

It is also interesting to note the relationship between orbital eccentricity (e) and semimajor
axis for extrasolar planets (Fig. 4). Those planets that are orbiting close to their parent star

Formation of Planetary Systems
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FIGURE 3 The number of planets in mass bins of interval 0.5 MJ. The solid line is given by
Eq. ( 1). (Data from The Extrasolar Planets Encyclopedia, http://exoplanet.eu, maintained
by Jean Schneider.)
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FIGURE 4 The orbital eccentricities of the known extrasolar planets as a function of semi-
major axis. Only 3 planets (< 2%) are known to have eccentricities greater than 0.75, and less
than 15% have eccentricities greater than 0.5. (Data from The Extrasolar Planets Encyclopedia,
http://exoplanet.eu, maintained by Jean Schneider.)
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tend to have circularized orbits (or at least orbits with smaller eccentricities). Planets orbiting
farther from their parent star may have high orbital eccentricities, with the maximum value
determined to date being a planet orbiting HD 80606 with e = 0.927 and a semimajor axis
of 0.439 AU. However, from the data obtained thus far, only 15% of planets are known
to have eccentricities of greater than 0.5, and less than 2% have eccentricities in excess of
0.75.

With the small number of high-eccentricity planets, it is important to ask whether or not
there is something unique about the systems in which they are found. HD 80606 turns out to
be one member of a wide stellar binary system, the other member being HD 80607. These
two G5V stars are nearly identical and slightly smaller than the Sun. The two stars are also
separated by a projected distance of 2000 AU. It has been suggested that the gravitational
perturbations exerted on the planet, HD 80606b, by HD 80607 may have pumped its orbit
up to its current very high eccentricity. In support of this suggestion, another planet with a
high eccentricity (e = 0.67), 16 Cyg Bb, is also a member of a binary star system. However,
the timescale for the gravitational perturbations provided by HD 80607 that would cause
the orbital eccentricity of HD 80606b to significantly increase is estimated to be 1 Gyr. This
long period of time comes from the necessary resonant alignment of the second star with
the planet. The 1-Gyr timescale must be compared against the 1-Myr timescale provided
by the general relativistic effect of the advance of the periastron of HD 80606b’s orbit due
to its parent star

It is argued that the general relativistic effects would completely overwhelm
the perturbations from HD 80607 unless there were a third body in the HD 80606 system
with an orbital period of roughly 100 yr that could also gravitationally influence HD 80606b.
So far, a third object has not been discovered.

Two conclusions may be drawn from these data: (1) Planets with orbital periods of
less than 5 days tend to have the smallest eccentricities (e < 0.17, with 80% of those
having e < 0.1), probably due to strong tidal interactions with the parent star, and (2)
planets sufficiently far from the parent star may have fairly large orbital eccentricities, but
typically less than about 0.5. It seems that our own Solar System is somewhat unique,
at least compared to the systems studied to date, in that our planets tend to have orbital
eccentricities that are very small (excluding the Kuiper belt objects).

The Trend toward High Metallicity

An additional important trend has also been emerging from the extrasolar planetary system
data obtained to date. It appears that there is a strong tendency for planetary systems to pref-
erentially form around metal-rich (Population I) stars. One way to quantify the metallicity
is by comparing the ratios of iron to hydrogen in stars relative to our Sun, defining the
metallicity to be

[Fe/H] ≡ log10

[

(NFe/NH)star

(NFe/NH)⊙

]

, (2)

where NFe and NH represent the number of iron and hydrogen atoms, respectively. Stars
with [Fe/H] < 0 are metal-poor relative to the Sun, and stars with [Fe/H] > 0 are relatively

.
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FIGURE 5 The percentage of stars found to have planetary systems, relative to the number of
stars investigated in each metallicity bin. The solid curve is given by Eq. ( 3). (Figure adapted from
Fischer and Valenti, Ap. J., 622, 1102, 2005.)

metal-rich. For comparison, extremely metal-poor (Population II) stars in the Milky Way
Galaxy have been measured with values of [Fe/H] as low as −5.4, while the highest values
for metal-rich stars are about 0.6.

As can be seen in Fig. 5, most stars with planetary systems detected so far tend to
be metal-rich compared to the Sun. Those stars that do have a metallicity lower than the
solar value are only moderately lower. The data in Fig. 5 are plotted as the percentage of
stars in a given metallicity bin that were well studied and found to have planetary systems.
According to the sample of 1040 F, G, and K stars used in the study, the data seem to be
well-fit by the relationship

P = 0.03 × 102.0[Fe/H], (3)

where P is the probability of a star having a detectable planetary system.

Measuring Radii and Densities Using Transits

the small number of systems where this has been possible, it appears that the Jupiter-class
planets have densities that are similar to those of the gas giants in our Solar System (see
Fig. 6). However, some of the so-called “hot Jupiters” that orbit close to the parent star
appear to be somewhat inflated (e.g., HD 209458b and OGLE-TR-10b). The simple answer
to explain the effect, namely the higher surface temperature due to the planet’s proximity
to the parent star, doesn’t seem to explain all of the close-in systems, so apparently another
source (or sources) of heat is required to puff up the planets. Some of the suggestions
for solving the puzzle include tidal dissipation due to ongoing circularization of the orbit
(perhaps involving another undetected object trying to simultaneously pump up the orbital

Formation of Planetary Systems

The transit of a planet across the disk of the parent star provides further information 
about the planet. From the timing of the eclipse, and using atmospheric models of the 
star that include limb darkening, it is possible to determine the planet’s radius. Of course, 
once the radius is determined, the planet’s average density may also be computed. From



111b

10b

209458b 189733b

132b

56b

300 kg m–3 600 kg m–3

1000 kg m–3

1500 kg m–3

TrES-1
Jupiter

Saturn

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Mass (MJup)

0.6

0.8

1.0

1.2

1.4

R
ad

iu
s 

(R
Ju

p)

113b

149026b

FIGURE 6 The relationship between radius and mass for transiting extrasolar planets. The
dashed lines correspond to specific average mass densities. (Adapted from a figure provided by Debra
A. Fischer, private communication.)

eccentricity), a misalignment between the planet’s orbital plane and the equator of the
star, and dissipation of atmospheric currents in the planet as its gas migrates from the hot,
substellar point to the cooler region on the back of the planet (Hadley circulation).

At least one planet appears to have a massive rocky core. The G0IV star HD 149026 has a
transiting “hot Saturn,” with an m sin i = 0.36 MJ. From the transits, the orbital inclination
has been determined to be 85.3◦ ± 1.0◦, allowing a determination of the mass of the planet
(not just a lower limit) of 0.36 MJ = 1.2 MS, where MS designates the mass of Saturn.
The timing of the transits also yields a radius of 0.725 ± 0.05 RJ for the planet, implying
an average density of 1253 kg m−3, which is 94% the density of Jupiter but 1.8 times the
density of Saturn. The star itself has a mass and radius of 1.3 ± 0.1 M⊙ and 1.45 R⊙,
respectively. In addition, the star’s metallicity is [Fe/H] = 0.36, making it a significantly
metal-rich star. Based on computer models of the planet’s interior, it appears that the planet
possesses a 67 M⊕ core composed of elements heavier than hydrogen and helium, assuming
that the core density is 10,500 kg m−3, which is believed to be similar to Saturn’s core. If
the core density is only 5500 kg m−3, then the calculated core mass would be even larger
(78 M⊕).

The Detection of an Extrasolar Planet Atmosphere

Transits of extrasolar planets across the disks of their parent stars also provide for the
possibility of detecting extrasolar planetary atmospheres. The first planet for which this

Formation of Planetary Systems



was accomplished was HD 209458b. David Charbonneau and his collaborators were able
to detect the spectroscopic signature of sodium at its resonance doublet wavelength of
589.3 nm by noting differences in the spectrum of the star as the planet passed in front of
it. The starlight passing through the planet’s atmosphere produced an enhanced absorption
feature at that wavelength. The effect was very subtle, with deepening of the absorption
feature by only an additional factor of 2.32 ± 10−4 relative to adjacent wavelength bands
during the transit. It has been proposed that the spectral signatures of water, methane, and
carbon monoxide may be able to be detected in this way as well.

Distinguishing Extrasolar Planets from Brown Dwarfs

With the detection of a few extrasolar planets having masses more than a factor of ten larger
than the mass of Jupiter, the question is again raised concerning the definition of a planet.
At the low-mass end, large Kuiper belt objects such as Pluto have been classified as planets.
At the upper end, what distinguishes a planet from a brown dwarf?

planets. One proposed definition of planet is that it is an object that forms through a process
beginning with the bottom-up accretion of planetesimals, whereas a brown dwarf forms
directly from gravitational collapse. The challenge with such a definition is determining
after the fact how a particular object may have formed.

A second criterion that has been proposed is based on whether or not the object that
forms is massive enough ever to have had nuclear fusion occur in its core. Computer
models of very low-mass objects indicate that if the mass of the object is greater than
13 MJ, deuterium can burn while the object is forming. The rate of energy production

as being those objects having masses between these two limits (13 MJ < Mbd < 75 MJ);
in other words, brown dwarfs are “stars” that burn some deuterium but never reach a
stable nuclear-burning phase during contraction. Given the difficulty with the formation-
mechanism criterion, the nuclear-reaction/mass-based criterion is generally favored.

An Image of an Extrasolar Planet

In 2004 the first image of an extrasolar planet was obtained by Gael Chauvin and collabo-
rators, using the European Southern Observatory’s Very Large Telescope with an infrared
detector; see Fig. 7. The parent star is a 25 MJ brown dwarf of spectral type M8.5, known
as 2MASSWJ1207334−393254, or 2M1207 for short! The system was also resolved later
by the Hubble Space Telescope’s NICMOS instrument. The planet resides 55 AU from the
brown dwarf and has an estimated mass of 5 ± 2 MJ. From the infrared observations, the
spectral type of the planet is between L5 and L9.5.

Formation of Planetary Systems

Two different criteria have been proposed to answer this question. One suggestion 
is tied to the formation process of planets and stars. Stars form from the gravitational 
collapse of a gas cloud. As we will explore further in the next section, planets are gen-
erally believed to form from a bottom-up accretion process, although there has been 
speculation that gravitational collapse in the star’s accretion disk may also produce

would not be sufficient to stabilize the object during gravitational collapse, but deu-
terium burning can be sufficient to affect the luminosity of the object during col-
lapse. At the ther end, stars with mass of at least 0.072 M⊙ (75 MJ) for solar compo-
sition undergo nuclear fusion at a sufficient rate to stabilize them at the low-mass end 
of the main sequence. Thus, it is proposed that brown dwarfs should be considered



FIGURE 7 The first image obtained of an extrasolar planet. The planet is orbiting the brown
dwarf 2MASSWJ1207334−393254. (Image courtesy of the European Southern Observatory.)

Future Space-Based Planet Searches

Given the dramatic success since the mid 1990s in detecting planetary companions of main-
sequence stars, a number of projects are planned to further the search using space-based
observatories:

• COROT (COnvection, ROtation, and planetary Transits) is a joint mission of France,
ESA, Germany, Spain, Belgium, and Brazil that is designed to study stellar seismol-
ogy and search for planetary transits. COROT is scheduled for launch in 2006.

• NASA’s Kepler mission is slated for launch in 2008 and will search for transits of
Earth-sized planets across their parent stars’ disks. Specifically, the Kepler mission
hopes to identify Earth-like planets in the habitable zone around solar-type stars out
to a distance of about 1 kpc.

• The SIM PlanetQuest mission, scheduled for launch in 2011, is designed to obtain
high-precision astrometric data One of SIM’s primary missions is to search for
nearby extrasolar Earth-sized planets.

• The data obtained from Kepler and SIM will provide input data for another NASA
mission, known as the Terrestrial Planet Finder (TPF). TPF, as it is currently en-
visioned, will be made of two complementary component missions: a visible-light
coronagraph, scheduled for launch around 2014, and an infrared nulling interferom-
eter that will be composed of five individual spacecraft flying in precise formation (to
be launched before 2020). Together, the two components of the TPF should be able
to identify Earth-like planets and measure their atmospheric chemistries. One goal
of TPF is to try to detect the signatures of life in the atmospheres of other Earth-like
planets.

.
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• Sometime in 2015 or later, ESA plans to launch Darwin, a free-flying array of six
infrared telescopes that will also act as an infrared nulling interferometer.

With the great focus on planetary searches currently under way from the ground and from
space, and with additional space-based missions planned for the future, the tremendous
advances in this field of modern astrophysics can be expected to continue.

2 PLANETARY SYSTEM FORMATION AND EVOLUTION

The question of how Earth and the Solar System formed has intrigued humans in all cultures
for thousands of years. In 1778 Georges-Louis Leclerc, Comte de Buffon (1707–1788)
proposed that a giant comet collided with the Sun, causing the ejection of a disk of material
that ultimately condensed to form the planets. Competing tidal theories argued that a close
encounter with a passing star ripped material from the Sun. Unfortunately, each of these
theories suffers from a number of difficulties, including inadequate energy, composition
differences between the planets and the Sun, and the sheer improbability of such an event.
Another class of theories suggested that the Sun accreted planetary material from interstellar
space, taking care of the difficulty of composition differences between the Sun and the
planets, but not those among the planets themselves. Yet another class of theories, the basis
of today’s models, argue for the simultaneous formation of the Sun and the planets out
of the same nebula. Among the early proponents of these so-called nebular theories were
René Descartes (1596–1650), Immanuel Kant (1724–1804), and Pierre-Simon, Marquis de
Laplace (1749–1827).

Although a significant number of problems remain to be solved, there is now some sense
of convergence on the basic components of planetary system formation. Throughout Part III
(as well as in the rest of the book to this point), we have presented clues related to critical
features of a comprehensive model, some obvious and others more subtle. Before discussing
our present understanding of the formation of planetary systems, we will review some of
these clues and the questions they raise.

Accretion Disks and Debris Disks

and pre-main-sequence evolution of stars. It is clear from both observational and theoretical
studies that stars form from the gravitational collapse of clouds of gas and dust. If a collapsing
cloud contains any angular momentum at all (which it surely will), the collapse leads to the
formation of an accretion disk around the growing protostar

As a direct observational consequence of the conservation of angular momentum, nu-

There is also substantial evidence of debris disks around older stars, such as β Pictoris
The implication is that material is left over in the disk after the star has finished
forming. Debris disks may be the extrasolar analogs to the asteroid belt and the Kuiper belt.

There is a wide range of observational data related to the formation

.

.
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merous examples of accretion disk formation have been discovered and studied in detail, 
including the many proplyds observed in the Orion Nebula and elsewhere and the jets and 
Herbig–Haro objects associated with young protostars. In addition, there is growing evi-
dence that clumps of material exist in these disks.



Angular Momentum Distribution in the Solar System

However, one problem that has frustrated most attempts to put together an adequate picture
of how our own Solar System developed concerns the present-day distribution of its angular

the angular momentum of the entire Solar System, and most of the remainder is associated
with Jupiter.1 To complicate matters further, the Sun’s spin axis is tilted 7◦ with respect to
the average angular momentum vector of the planets, making it hard to envision how such
a distribution of angular momentum could develop.

An additional interesting component of the angular momentum question concerns the
amount of angular momentum possessed by other stars. It turns out that, on average, main-
sequence stars that are more massive rotate much more rapidly and contain more angular
momentum per unit mass than do less massive ones. Moreover, as can be seen in Fig. 8,
a very discernible break occurs in the amount of angular momentum per unit mass as a
function of mass near spectral class A5. If the total angular momentum of the Solar System
were included, rather than just the angular momentum of the Sun, the trend along the upper

11

12

13

14

L
og

10
 (L

/M
) (

m
2  s

–1
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Log10 (M/M  )

Sun

G0

F5

F0

A5
A0

B8
B5 B3

B0 O8
Solar
System

FIGURE 8 The average amount of angular momentum per unit mass as a function of mass for
stars on the main sequence. The Sun’s value and the total for the entire Solar System are indicated by
triangles. Best-fit straight lines have been indicated for stars A5 and earlier, as well as for stars A5
and later (not including the Sun).

0.073M⊙R2
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1The Sun does not rotate as a rigid body, and because it is centrally condensed, its moment of inertia is closer to
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momentum. A simple calculation of the angular momentum in the Sun and Jupiter 
 reveal that the orbital angular momentum of that planet exceeds the rotational angular 
momentum of the Sun by roughly a factor of twenty. A more detailed analysis shows 
that even though the Sun contains 99.9% of the mass, it contains only about 1% of



end of the main sequence would extend to include our Solar System as well (the
Sun is a G2 star).

A portion of the angular momentum problem may be solved by the transport of angu-
lar momentum outward via plasma drag in a corotating magnetic field. Charged particles
trapped in the protosun’s field would have been dragged along as the field swept through
space. In response, the protosun’s rotation speed slowed because of the torque exerted on
it by the magnetic field lines. In addition, much of the rotational angular momentum of
the newly formed Sun was probably also carried away by the particles in the solar wind

Composition Trends throughout the Solar System

We have already seen that lower-mass stars with metallicities similar to or greater than
the solar value seem able to form planetary systems routinely. Therefore, the process of
planetary system formation must be robust. The process must also be capable of producing
systems with planets that are far from the parent star and systems where the planets are very
close in.

A crucial piece of any successful theory must be the ability to explain the clear composi-
tion trends that exist among the planets in our Solar System
The inner terrestrial planets are small, generally volatile-poor, and dominated by rocky
material, while the gas and ice giants contain an abundance of volatile material. Moreover,
even though the ice giants Uranus and Neptune contain substantial volatiles, the gas gi-
ants Jupiter and Saturn contain the overwhelming majority of volatile material in the Solar
System.

The moons of the giant planets also exhibit composition trends. In going from Jupiter out
to Neptune, the progression is from rocky moons to increasingly icy bodies, first containing
water-ice and then methane- and nitrogen-ice. The pattern even includes such objects as the
asteroids, the Centaurs, the Kuiper belt objects, and other cometary nuclei. It is particularly
important to note that a composition trend also exists across the asteroid belt itself. Even on
the smaller scale of Jupiter’s system of satellites, the Galilean moons change from volcanic
Io to the thick-ice surface of Callisto.

The Temperature Gradient in the Solar Nebula

Apparently, either a composition gradient or a temperature gradient (or both) must have
existed in the early solar nebula while these objects were forming. For instance, the ob-
servations just described could be accounted for if the temperature of the nebular disk had

a well-determined temperature gradient [T ∝r−3/4

.

.

star system has . An analogous sort]
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In support of these mechanisms is Fig.  8. The change in slope of the angular-momentum-
per-unit-mass curve corresponds well with the onset of surface convection in low-mass 
stars, which in turn is linked to the development of coronae and mass loss. Other mecha-
nisms for angular momentum transport will be discussed later.

decreased sufficiently across the asteroid belt. In that case, water would not have 
condensed in the region of the terrestrial planets but could have condensed in the 
form of ice in the vicinity of the giant planets. Another temperature gradient associ-
ated with the formation of Jupiter could help to explain the formation of the Gali-
lean moons from the Jupiter subnebula. An accretion disk that forms in a binary
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FIGURE 9 An equilibrium model of the temperature structure of the early solar nebula. Water-ice
was able to condense out of the nebula in those regions beyond approximately 5 AU, and methane-ice
could condense out of the nebula beyond 30 AU. The positions of the planets and Ceres represent
their present-day locations.

of temperature structure should have existed in the solar nebula as well. The temperature
structure for an equilibrium solar nebula model is shown in Fig. 9. Even though specific
features of the distribution may change with more sophisticated modeling (by including
time dependence, turbulence, and magnetic fields), it seems apparent that the condensation
temperature of water-ice must be reached at some point near the current position of Jupiter,
perhaps in the outer portions of the main asteroid belt (roughly 5 AU). The position in the
solar nebula where water-ice could form has been variously referred to as the “snow line,”
the “ice line,” or, more dramatically, the ”blizzard line.”

We have also learned that the environments around newly forming stars can be very
dynamic places, with mass accretion and mass loss happening at virtually the same time
in T-Tauri systems. During FU Orionis events, the environment around the star can be-
come particularly active, with significant outbursts of energy occurring because of greatly
increased mass accretion rates. It also seems certain that these environments will have com-
plex magnetic fields that would lead to frequent and intense flares, analogous to the solar
flares on our Sun that are produced by magnetic field reconnection events

Consequences of Heavy Bombardment

Of course, it is readily apparent that our Solar System is riddled with evidence of colli-
sions in the past, leaving cratered surfaces on objects of all sizes, from planets and moons

.
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At least within our own Solar System, the formation of the Sun was accompanied by the 
formation of a wide range of objects, including small rocky planets, gas giants, ice giants, 
moons, rings, asteroids, comets, Kuiper belt objects, meteoroids, and dust.



to asteroids and comets. As a consequence, any formation theory must also be able to ac-
count for the obvious, heavy bombardment endured by bodies in the early Solar System.

composition of the Moon strongly suggest that both of these worlds were directly influenced
by cataclysmic collisions involving very large planetesimals (the Moon’s formation is tied
to just such a collision with Earth). Heavy surface cratering shows that collisions continued
even after their surfaces formed, with a brief episode of late heavy bombardment about
700 Myr after the formation of the Moon. Features such as the enormous Herschel crater
on Mimas and the bizarre surface of Miranda testify to the fact that the other bodies in the
Solar System underwent the same intense barrage from planetesimals.

Another consequence of the heavy bombardment by planetesimals is the variety of
present-day orientations for the spin axes of the planets. The extreme examples of the
retrograde rotations of Uranus and Pluto have already been discussed, but the other planets
must have had their rotation axes shifted as well. Assuming that the planets did form out of
a flattened nebular disk, the inherent angular momentum of the system would have resulted
in rotation axes being initially aligned nearly perpendicular to the plane of the disk. Because
this is not the case today, some event (or events) must have occurred to alter the directions
of the planets’ rotational angular momentum vectors. With the exception of Venus’s and
Mars’s complex tidal interactions with the Sun and the other planets, the only likely mech-
anism suggested to date that can naturally account for the range of orientations observed
requires collisions of planets or protoplanets with large planetesimals.

The Distribution of Mass within Planetary Systems

Other features of the present-day Solar System that should be explained in a model of Solar
System formation include the relatively small mass of Mars compared with its neighbors,
the very small amount of mass present in the asteroid belt, and the existence of the Oort
cloud and the Kuiper belt.

Furthermore, if we are to seek a general, unifying model of planetary system formation
that includes our own Solar System as one example, it is necessary to understand the
distributions of planets in other systems. Particularly perplexing when first discovered was
the existence of “hot Jupiters” such as 51 Peg b. How could a gas giant form and survive
so close to its parent star? In our own Solar System, none of the giant planets resides closer
to the Sun than 5.2 AU.

Formation Timescales

One aspect of all formation theories that cannot be neglected are constraints imposed by
timescales:

• Once the collapse of a molecular cloud is initiated, on the order of 10 5years is required
for the formation of a protosun and nebular disk.

•

The high mass density of Mercury and the extremely volatile-poor
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The onset of violent T-Tauri and FU Orionis activity and extensive mass loss 
follows the initial collapse in some 10 5 to 10 7  years. This means that any



nebular gas and dust that has not been accreted into a planetesimal or a protoplanet will
be swept away within about 10 Myr, terminating further formation of large planets.

• The presence of 26
13Al in carbonaceous chondrites indicates that these meteorites must

have been formed within a few million years after the creation of the aluminum,
whether it was through a supernova detonation or through flares during FU Orionis
activity. Otherwise, all of the radioactive nuclides that were created would have
decayed into 26

12Mg. This observation puts severe constraints on condensation rates in
the early solar nebula.

• The oldest meteorites, including Allende, date back to near 4.566 Gyr, while the age
of the Sun itself is 4.57 Gyr. Clearly these oldest meteorites must have formed rapidly
within the solar nebula.

• The ages of rocks returned from the Moon show that the surface of that body must
have solidified some 100 Myr after the collapse of the solar nebula. Similar constraints
exist on the formation of the surface of Mars judging on the basis of the age of the
Martian meteorite, ALH84001.

• The lunar surface underwent a spike of late heavy bombardment about 700 Myr after
the Moon formed.

• As we will learn later, as planets grow in accretion nebulae, they tend to migrate
inward due to tidal interactions with the nebula and viscosity effects. It is estimated
that a planetesimal could drift all the way into its parent star from a distance of 5 AU
within roughly 1 to 10 Myr.

• Arather loose constraint on any model requires that all of the planets, moons, asteroids,
Kuiper belt objects, and comets must be fully formed today, 4.57 Gyr years after
the process started. Although this may seem trivial, not all models of Solar System
formation have been successful in creating planets this rapidly!

The Gravitational Instability Formation Mechanism

Two general, competing mechanisms have been proposed for the formation of planets within
the accretion disks of proto- and pre-main-sequence stars. One mechanism is based on the
idea that planets (or perhaps brown dwarfs) could form in accretion disks in a manner
analogous to star formation. In regions where there may be a greater density of material in
the disk, self-collapse could result. As the mass accumulates in that region, its gravitational
influence on the surrounding disk increases, causing additional material to accrete onto the
newly forming planet. This mechanism could even result in a local subnebula accretion
disk forming around the protoplanet that could lead to the creation of moons and/or ring
systems.

While this “top-down” gravitational instability mechanism has several attractive fea-
tures, including simplicity and being strongly analogous to the formation of protostars, its
general applicability suffers from numerous difficulties. By observations of other accretion
disks, along with T-Tauri accretion and mass-loss rates, and combined with detailed numer-
ical simulations, it appears that the solar nebula’s lifetime would not have been sufficient
to allow objects like Uranus and Neptune to grow quickly enough to attain the masses we
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observe before the nebula was depleted. This mechanism also does not explain the large
number of other, smaller objects that are present in our Solar System and are likely to exist
in other planetary systems as well (recall the β Pic debris disk). In addition, the gravita-
tional instability mechanism doesn’t appear to readily account for the mass distribution of
extrasolar planets, the correlation between planetary system formation and metallicity, or
the wide range in the densities and core sizes of planets, both within our Solar System and
among the extrasolar planets.

The Accretion Formation Mechanism

An alternative model, and the one general favored by most astronomers, is that planets
grow from the “bottom up” through a process of accretion of smaller building blocks.
Based on all of the observational and theoretical information presently available, it appears
that a reasonable description of the formation of planetary systems can now be given. What
follows is a possible scenario for the formation of our own Solar System, although references
to general aspects of planetary system formation will also be made. It is important to note,
however, that because of the complexity of the problem, revisions in the model (both minor
and major) are likely to occur in the future.

The Formation of the Solar System: An Example

on the upper end of the main sequence, while less massive pieces either were still in the
process of collapsing or had not yet started to collapse. Within a period of a few million
years or less, the most massive stars would have lived out their entire lives and died in
spectacular supernovae explosions.

As the expanding nebulae from one or more of the supernovae traveled out through space
at a velocity of roughly 0.1c, the gases cooled and became less dense. It may have been
during this time that the most refractory elements began to condense out of the supernova
remnants, including calcium, aluminum, and titanium, the ingredients of the CAIs that
would eventually be discovered in carbonaceous chondrites that would fall to Earth billions
of years later. When a supernova remnant encountered one of the cooler, denser components
of the cloud that had not yet collapsed, the remnant began to break up into “fingers” of gas
and dust that penetrated the nebula unevenly. The small cloud fragment would have also been
compressed by the shock wave of the high-speed supernova remnant when the expanding
nebula collided with the cooler gas. It is possible that this compression may have even
helped trigger the collapse of the small cloud. In any case, the material in the solar nebula
was now enriched with elements synthesized in the exploded star.

Assuming that the solar nebula possessed some initial angular momentum, conserva-
tion of angular momentum demands that the cloud “spun up” as it collapsed, producing
a protosun surrounded by a disk of gas and dust. In fact, the disk itself probably formed
more rapidly than the star did, causing much of the mass of the growing protosun to be
funneled through the disk first. Although this important point is not entirely resolved, it has

Formation of Planetary Systems

Within an interstellar gas and dust cloud (perhaps a giant molecular cloud), 
the Jeans condition was satisfied locally, and a portion of the cloud began to col-
lapse and fragment. The most massive segments evolved rapidly into stars



been estimated that the solar nebular disk may have contained a few hundredths of a solar
mass of material, with the remaining 1 M⊙ of the nebula ending up in the protosun. At the
very least, a minimum amount of mass must have ended up in the nebular disk to form the
planets and other objects that exist today. Such a disk is referred to as the Minimum Mass
Solar Nebula

The Hill Radius

Within the nebular disk, small grains with icy mantles were able to collide and stick together
randomly. When objects of appreciable size were able to develop in the disk, they began to
gravitationally influence other material in their areas.

To quantify the influence that these growing planetesimals had, we can define the Hill
radius, RH , to be that distance from the planetesimal where the orbital period of a test
particle around the planetesimal is equal to the orbital period of the planetesimal around
the Sun.

Assuming a circular orbit, the orbital period of a test particle (mt ) around an object of
mass M (M ≫ mt ) at a distance R is given by Kepler’s third law as

P ≃ 2π

√

R3

GM
.

At a distance a from the Sun, the orbital period of the growing planetesimal around the
Sun equals the orbital period of a massless test particle around the planetesimal at the Hill
radius when

√

a3

M⊙
=
√

R3
H

M
.

Thus, the Hill radius is given by

RH =
(

M

M⊙

)1/3

a. (4)

Rewriting in terms of the density of the Sun and the density of the planetesimal (assumed
to be spherical), the Hill radius becomes

RH = R/α (5)

where R is the radius of planetesimal and

α ≡
(

ρ⊙
ρ

)1/3
R⊙
a

.

The physical significance of the Hill radius is that if a particle comes within about one
Hill radius of a planetesimal with a relative velocity that is sufficiently low, the particle can
become gravitationally bound to the planetesimal. In this way, the planetesimal acquires the
mass of the particle and continues to grow. Of course, as the planetesimal’s radius grows,
so does its Hill radius.

.
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Example 2.1. For a planetesimal of density ρ = 800 kg m−3 and radius 10 km, located
5 AU from the Sun (ρ⊙ = 1410 kg m−3), the planetesimal’s Hill radius would be

RH = R/α = R

(

ρ

ρ⊙

)1/3 (
a

R⊙

)

= 8.9 × 106 m = 1.4 R⊕.

This planetesimal is similar to present-day cometary nuclei.

The Formation of the Gas and Ice Giants

As the low-energy collisions continued, progressively larger planetesimals were able to
form. In the innermost regions of the disk the accreting particles were composed of CAIs,
silicates (some in the form of chondrules), iron, and nickel; relatively volatile materials
were unable to condense out of the nebula because of the high temperatures in that region.
At distances greater than 5 AU from the growing protosun, just inside the present-day orbit
of Jupiter, the nebula became sufficiently cool that water-ice could form as well. The result
was that water-ice could also be included in the growing planetesimals beyond that distance.
Even farther out (perhaps near 30 AU, the present-day orbit of Neptune), methane-ice also
participated in the development of planetesimals. The location of the “snow line” where
water-ice could form is shown in Fig. 10 (recall also Fig. 9).

The object that grew most rapidly was Jupiter. Thanks to the presence of water-ice along
with rocky materials, and with a nebula that was sufficiently dense in its region, Jupiter’s
core reached a mass of between 10 and 15 M⊕. At that point the planet’s gravitational
influence became great enough that it started to collect the gases in its vicinity (principally
hydrogen and helium). In effect, this created a localized subnebula, complete with its own
accretion disk. The outcome was the formation of the massive planet we see today, together
with the Galilean satellites. Heat generated in the gravitational collapse of Jupiter, combined
with tidal effects, led to the eventual evolution of its moons. Astronomers believe that the
entire process of forming Jupiter required on the order of 106 years, halting when the gas
was depleted.

As we will see shortly, the formation of the massive Jupiter had a significant impact
on the other three planetesimals that had also grown to significant size beyond the snow
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FIGURE 10 A schematic drawing of the solar nebular disk, indicating the position of the water-
ice “snow line” 5 AU from the protosun. Methane-ice began forming at roughly 30 AU from the
protosun as well. The protosun, the protoplanets, and Ceres are located at their relative present-day
distances, but their relative sizes are not correct.
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line. Although Saturn, Uranus, and Neptune all developed cores of 10 to 15 M⊕, they were
somewhat farther out in the nebula where the density was lower. As a result, they were
unable to acquire the amount of gas that Jupiter captured in the same period of time.

The Formation of the Terrestrial Planets and the Asteroids

In the inner portion of the solar nebula the temperatures were too warm to allow the volatiles
to condense out and participate in the formation of planetesimals. But as the nebula cooled,
the most refractory elements were able to condense out to form the CAIs. Next to condense
were the silicates and other equally refractory materials.

The slow relative velocities of silicate grains in nearly identical orbits resulted in low-
energy collisions that promoted grain growth. Eventually, a hierarchy of planetesimal sizes
developed. Computer simulations suggest that in the region of the terrestrial planets, along
with a large number of smaller objects, there may have been as many as 100 planetesimals
roughly the size of the Moon, 10 with masses comparable to Mercury’s, and several as large
as Mars. However, during the accretion process, most of these large planetesimals became
incorporated into Venus and Earth. When the forming planets became massive enough,
internal heat that was generated by decaying radioactive isotopes, together with energy
released during collisions, started the process of gravitational separation. The results were
the chemically differentiated worlds we see today.

With the formation of the massive Jupiter just beyond 5 AU from the Sun, gravitational
perturbations began to influence the orbits of planetesimals in the region. In particular, most
of the objects in the present-day asteroid belt had their orbits “pumped up” into progressively
more and more eccentric orbits until some of them were absorbed by Jupiter or the other
developing planets or were sent crashing into the Sun, while most were ejected from the
Solar System entirely. This process stole material from the “feeding zones” near Mars and in
the asteroid belt, resulting in a smallish fourth planet and very little mass in the belt. Perhaps
only 3% of the original mass near Mars’s orbit remained and only 0.02% of the mass in
the region of the belt. Continued perturbations from Jupiter meant that the remaining belt
of planetesimals had rather high relative velocities and were never able to consolidate into
a single object. In fact, the high relative velocities imply that collisions cause fracturing,
rather than growth.

As planetesimals continued to move throughout the forming Solar System, other colli-
sions occurred. Some of the largest planetesimals in the inner Solar System collided with
Mercury, removing its low-density mantle, and some struck Earth, forming the Earth–Moon
system. Still other planetesimals of significant mass crashed into Mars and the outer planets,
changing the orientations of their axes. Apparently, some of the planetesimals were also
captured as moons or were torn apart by the giant planets when they wandered inside the
planets’ Roche limits.

Long before the terrestrial planets finished “feeding” on planetesimals in their regions of
the disk, however, the evolving Sun reached the stage of thermonuclear ignition in its core,
initiating the T-Tauri phase. At this point the infall of material from the disk was reversed
by the strong stellar wind that ensued, and any gases and dust that had not yet collected into
planetesimals were driven out of the inner Solar System.

It is only in the innermost part of the Solar System that the nebula was warm enough to form CAIs in the first
place.

2

2
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The Process of Migration

The accretion scenario described above is not without its own challenges. For instance,
a long-standing problem has to do with the formation of the ice giants. At their current
positions in the Solar System, it appears that the solar nebula would not have been dense
enough to allow them to reach their present-day masses before the remaining gas was swept
away by the T-Tauri wind. In addition, how is the episode of late heavy bombardment to be
explained as a spike in collision rates roughly 3.8 Gyr ago? The apparent solution to both
of these problems seems to lie in understanding a perplexing problem with many extrasolar
planets.

With the discovery of “hot Jupiters” in extrasolar planetary systems, scientists realized
that planets must be able to migrate inward while they are forming, and Jupiter is no different.
Computer simulations of Solar System evolution suggest that Jupiter formed about 0.5 AU
farther out in the nebula than its current position.

One mechanism by which inward migration of Jupiter (and extrasolar planets) could
occur involves gravitational torques between the planet and the disk. In this mechanism,
initial deviations from axial symmetry produce density waves in the disk.

The gravitational interaction between a growing planet and density waves results in the
simultaneous transfer of angular momentum outward and mass inward.This so-called Type I
migration mechanism can be shown to be proportional to mass, implying that as the planet
accretes more material, it moves more rapidly toward its parent star. It may be that this can
actually cause some planets to collide with the star on a timescale of one to ten million
years.

However, it initially appeared that the timescale for Type I migration was too short
compared with the runaway accretion of gases onto the growing Jupiter; in other words,
Jupiter would crash into the Sun before it could fully form. It also appeared that Jupiter
couldn’t grow rapidly enough to reach its present size before the nebula was dissipated by
the T-Tauri wind.

The solution to these problems may rest with the migration process itself. As the growing
planet moves through the solar nebula, it continually encounters fresh material to “feed on.”
If the planet remained in a fixed orbit, it would quickly consume all of the available gas
within several Hill radii and would grow only slowly after that. Migration allows it to move
through the disk without creating a significant gap in the nebula.

It has also been shown that viscosity within the disk can cause objects to migrate inward.
This Type II migration mechanism causes slowly orbiting particles farther out to speed up
because of collisions with higher-velocity particles occupying slightly smaller orbits. The
loss of kinetic energy by the inner particles causes them to spiral inward. Type II migration
can become the more significant, if slower, migration process when a gap is opened up in
the disk.

Peter Goldreich and Scott Tremaine suggested in 1980 that this mechanism would be important in the dynamical
evolution of accretion disks. Their paper was published some fifteen years before the first confirmed detection of
an extrasolar planet.

3
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Outward migration is also possible. In this case, the scattering of planetesimals inward
results in migration outward. Whether inward or outward migration occurs depends on the
density of the nebula and the abundance of planetesimals.

Applying the mechanisms of migration to the evolution of our own Solar System, it
appears that Jupiter not only influenced objects interior to its present-day orbit but also was
influential in causing Saturn, Uranus, and Neptune to migrate outward. It seems that Uranus
and Neptune initially formed their cores in a region of the nebula with a greater density, just
as Jupiter and Saturn did. However, because of outward migration, they were able to put
on only a small amount of extra gas and remain today as ice giants, rather than gas giants.

Resonance Effects in the Early Solar System

Assuming that Jupiter originally formed at about 5.7 AU from the Sun as some simulations
suggest, and that Saturn formed perhaps 1 AU closer to the Sun than its current position, the
two gas giants would have moved through a critical resonance as Jupiter migrated inward
and Saturn migrated outward. When the orbital periods of the two planets reached a 2:1
resonance (i.e., the orbital period of Saturn was exactly twice the orbital period of Jupiter),
their gravitational influences on other objects in the Solar System would have periodically
combined at the same points in their orbits, causing significant perturbations to orbits of
objects in the asteroid belt and in the Kuiper belt. Computer simulations suggest that this
resonance effect may have occurred about 700 Myr after the formation of the inner planets
and our Moon. It seems plausible that the passage of Jupiter and Saturn through this 2:1
resonance may have caused the episode of late heavy bombardment that is now recorded
on the surface of the Moon.

As a consequence of Neptune’s outward migration, Neptune swept up some of the re-
maining planetesimals, trapping them in 3-to-2 orbital resonances with the planet as it
moved outward. It may be that Pluto and the other Plutinos were caught up in this outward
migration. The orbits of the scattered Kuiper belt objects were also likely to have been
perturbed by the migration of Neptune. The classical KBOs were probably far enough from
Neptune not to be as drastically affected by its migration. In fact, the Kuiper belt may be
the Solar System’s analog to debris disks seen around other stars.

Similarly, the Oort cloud cometary nuclei are likely to be planetesimals that were scat-
tered more severely by Uranus and Neptune. Once sufficiently far from the Sun, scattered
cometary nuclei had their orbits randomized by passing stars and interstellar clouds.

The Formation of CAIs and Chondrules

A particularly challenging problem with the model of Solar System formation described
above is the presence of chondrules mixed in with CAIs in a matrix of hydrated and carbon-
bearing minerals in chondritic meteorites. Both the chondrules and the CAIs have certainly
been exposed to intense heat, but the matrix has clearly never been heated to temperatures
greater than a few hundred kevins. Because silicates require lower temperatures to condense
out of the solar nebula, the chondrules probably formed after the CAIs. Silicate dust grains
likely formed out of the nebula, coalescing into small clumps through repeated collisions.

Formation of Planetary Systems
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FIGURE 11 A schematic diagram of the X-wind model. (Figure adapted from Shu et al., Ap. J.,
548, 1029, 2001.)

However, they could not have formed initially as molten droplets but, instead, were melted
after formation.

Currently, the most plausible scenario suggests that powerful flares during FU Orionis
events may be responsible for the melting or partial melting of chondrules and CAIs. As the
inner edge of the accretion disk moves in and out on timescales of 30 years or so (perhaps
associated with magnetic field activity), the silicate grains are exposed to flash heating by
flares resulting from reconnection events. In the rarefied environment at the interior edge
of the nebula, the droplets are able to cool rather quickly, perhaps between 100 and 2000 K
per hour. Frank Shu and his colleagues have suggested that the metamorphosed chondrules
may be launched back into the planet-forming region of the nebula by an X-wind, similar
to the wind responsible for the ejection of Herbig–Haro objects in jets (see Fig. 11). In
the planet-forming region of the nebula, the chondrules and CAIs are incorporated into the
matrix. This model of chondrule formation implies that the solar nebula was a very dynamic
system indeed.

Although much work remains to be done in fully developing our understanding of Solar
System formation and the formation extrasolar planetary systems, tremendous progress has
been made in this very complex area of research.

SUGGESTED READING

General

Basri, Gibor, “A Decade of Brown Dwarfs,” Sky and Telescope, 109, 34, May, 2005.
Naeye, Robert, “Planetary Harmony,” Sky and Telescope, 109, 45, January, 2005.
Marcy, Geoffrey, et al., “California and Carnegie Planet Search,”

http://exoplanets.org.
Schneider, Jean, “The Extrasolar Planets Encyclopedia,” http://exoplanet.eu.

Formation of Planetary Systems



Technical

Alibert, Y., Mordasini, C., Benz, W., and Winisdoerffer, C., “Models of Giant Planet For-
mation with Migration and Disc Evolution,” Astronomy and Astrophysics, 434, 343,
2005.

Beaulieu, J. P., Lecavelier des Etangs,A., and Terquem, C. (eds.), Extrasolar Planets: Today
and Tomorrow, Astronomical Society of the Pacific Conference Proceedings, 321, San
Francisco, 2004.

Bodenheimer, Peter, and Lin, D. N. C., “Implications of Extrasolar Planets for Understand-
ing Planet Formation,” Annual Review of Earth and Planetary Sciences, 30, 113, 2002.

Butler, R. Paul, et al., “Evidence for Multiple Companions to υ Andromedae,” The Astro-
physical Journal, 526, 916, 1999.

Canup, R. M., and Righter, K. (eds.), Origin of the Earth and Moon, University of Arizona
Press, Tucson, 2000.

Charbonneau, David, et al., “Detection of an Extrasolar Planet Atmosphere,” The Astro-
physical Journal, 568, 277, 2002.

de Pater, Imke, and Lissauer, Jack J., Planetary Sciences, Cambridge University Press,
Cambridge, 2001.

Fischer, DebraA., andValenti, Jeff, “The Planet–Metallicity Correlation,” TheAstrophysical
Journal, 622, 1102, 2005.

Goldreich, Peter, and Tremaine, Scott, “Disk-Satellite Interactions,” The Astrophysical
Journal, 241, 425, 1980.

Goldreich, Peter, Lithwick, Yoram, and Sari, Re’em, “Planet Formation by Coagulation: A
Focus on Uranus and Neptune,” Annual Review of Astronomy and Astrophysics, 42, 549,
2004.

Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A., “Origin of the Cataclysmic
Late Heavy Bombardment of the Terrestrial Planets,” Nature, 435, 466, 2005.

Lecar, Myron, Franklin, Fred A., Holman, Matthew J., and Murray, Norman W., “Chaos in
the Solar System,” Annual Review of Astronomy and Astrophysics, 39, 581, 2001.

Mannings, Vincent, Boss, Alan P., and Russell, Sara S. (eds.), Protostars and Planets, IV,
University of Arizona Press, Tucson, 2000.

Marcy, Geoffrey, et al., “Observed Properties of Exoplanets: Masses, Orbits, and Metallic-
ities,” Progress of Theoretical Physics Supplement, 158, 1, 2005.

Mayor, M., and Queloz, D., “A Jupiter-Mass Companion to a Solar-Type Star,” Nature,
378, 355, 1995.

Shu, Frank H., Shang, Hsien, Gounelle, Matthieu, Glassgold, Alfred E., and Lee, Typhoon,
“The Origin of Chondrules and Refractory Inclusions in Chondritic Meteorites,” The
Astrophysical Journal, 548, 1029, 2001.

Taylor, Stuart Ross, Solar System Evolution, Second Edition, Cambridge University Press,
Cambridge, 2001.

Formation of Planetary Systems



1 (a) If the actual separation between HD 80606 and HD 80607 is 2000 AU, determine the orbital
period of the binary star system. Hint: You may want to refer to the data in Appendix G to
estimate the masses of the two stars.

(b) How many orbits will the planet HD 80806b make around its parent star in the time that
the two stars complete one orbit about their common center of mass? The semimajor axis
of the planet’s orbit is 0.44 AU.

(c) What is the ratio of the force of gravity exerted on HD 80606b by its parent star to that
exerted by HD 80607 when it is aligned between the two stars?

2 Compare Pluto with asteroids and cometary nuclei. Comment on the significance of any differ-
ences in view of the evolutionary model discussed in the chapter.

3 (a) If all of the angular momentum that is tied up in the rest of the Solar System could be
returned to the Sun, what would its rotation period be (assume rigid-body rotation)? Refer
to the data in Fig. 8. The moment-of-inertia ratio of the Sun is 0.073.

(b) What would the equatorial velocity of the photosphere be?
(c) How short could the rotation period be before material would be thrown off from the Sun’s

equator?

4 The Minimum Mass Solar Nebula is the smallest nebula that could be formed and still have
sufficient mass to create all of the objects in the Solar System. Make a rough estimate of the
mass of the Minimum Mass Solar Nebula.

5 Estimate the present-day Hill radius of Jupiter. Express your answer in terms of the radius of
Jupiter, as well as in astronomical units.
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FIGURE 8 The average amount of angular momentum per unit mass as a function of mass for
stars on the main sequence. The Sun’s value and the total for the entire Solar System are indicated by
triangles. Best-fit straight lines have been indicated for stars A5 and earlier, as well as for stars A5
and later (not including the Sun).
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6 HD 63454 is a K4V star known to have an extrasolar planet orbiting it in a circular orbit with an
orbital period of 2.81782 d, producing a maximum radial reflex velocity of 64.3 m s−1 relative
to the center of mass of the star. The distance to HD 63454 is 35.80 pc. Consulting Appendix:

(a) the semimajor axis of the planet’s orbit.
(b) the minimum mass of the planet.
(c) the maximum astrometric wobble of the star due to the planet’s pull, expressed in arcseconds.

7 14 Her is a K0V star located 18.1 pc from Earth. The extrasolar planet orbiting the star has
an orbital period of 1796.4 d with an orbital eccentricity of 0.338. Consulting Appendix:

(a) the semimajor axis of the planet’s orbit.
(b) the maximum separation of the planet from the center of mass of its parent star.
(c) the velocity of the planet in its orbit at closest approach to the star.

8 Explain why the high metallicities of systems with known extrasolar planets support the hy-
pothesis that planets form from the “bottom up” by mass accretion of planetesimals.

9 Assume that Jupiter and Saturn formed 5.7 AU and 8.6 AU from the Sun, respectively. Show
that if the planets simultaneously migrated to their present orbital distances, they passed through
a 2:1 orbital period resonance.

Formation of Planetary Systems: Problem Set
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The Nature of Galaxies

1 The Hubble Sequence
2 Spiral and Irregular Galaxies
3 Spiral Structure
4 Elliptical Galaxies

1 THE HUBBLE SEQUENCE

if the Milky Way is limited in extent, perhaps the diffuse and very faint “elliptical nebulae”
seen in the night sky might actually be extremely distant disk-like systems, similar to our
own but well beyond its boundary.1 He called these objects island universes.

Cataloging the Island Universes

The true nature of the island universes became a matter of much investigation, and extensive
catalogs of these objects were collected. One such catalog we owe to Charles Messier (1730–
1817), who, while hunting for comets, recorded 103 fuzzy objects that could otherwise be
confused with the intended targets of his search.2 Although many of the members of the
Messier catalog are truly gaseous nebulae contained within the Milky Way (such as the
Crab supernova remnant and the Orion Nebula, M1 and M42, respectively), and others are
stellar clusters (for instance, the Pleiades open cluster is M45 and the great globular cluster
in Hercules is M13), the nature of other nebulae, such as M31 in Andromeda
was unknown.

Another catalog of nebulae was produced by William Herschel and subsequently ex-
panded by his son, Sir John Herschel (1792–1871), to include the southern hemisphere.

1Although today we generally use the word nebula to refer to gas and dust clouds, it was originally used to describe
any fuzzy patch of light in the sky that could not be resolved into a clear ensemble of stars.
2Later, other astronomers added seven additional members to the original list, bringing the total number of Messier
objects to 110.

It was in the middle of the eighteenth century that Kant and Wright first suggested 
that the Milky Way represents a finite-sized disk-like system of stars. In the two cen-
turies of scientific investigation since their proposal, we have indeed come to learn 
that a major component of our Galaxy is well represented by a disk of stars that 
also contains a significant amount of gas and dust. As an extension of their philo-
sophical argument about the nature of the Galaxy, Kant went on to suggest that



Later, J. L. E. Dreyer (1852–1926) published the New General Catalog (NGC), which
was based on the work of the Herschels and contained almost 8000 objects. Like Messier’s
catalog, the NGC includes many entries that are either gaseous nebulae or stellar clusters
located within the Milky Way. However, the true nature of other objects in the catalog
remained in question.3

It was in 1845 that William Parsons, the third Earl of Rosse (1800–1867), built what was
then the largest telescope in the world. Located in Ireland and nicknamed the “Leviathan,”
the 72-in (1.8-m) instrument was able to resolve, for the first time, the spiral structure in
some nebulae. Their pinwheel appearance strongly suggested that these spiral nebulae may
be rotating. This suspicion was eventually verified by Vesto M. Slipher (1875–1969) in
1912 when he detected Doppler-shifted spectral lines in a number of these objects.

The Great Shapley–Curtis Debate

The argument over the nature of the nebulae centered on their distances from us and the
relative size of the Galaxy. Many astronomers believed that the spiral nebulae resided within
the confines of the Milky Way, and others favored the view that they were really Kant’s
island universes. On April 26, 1920, at the National Academy of Sciences in Washington,
D.C., Harlow Shapley of the Mount Wilson Observatory and Heber D. Curtis (1872–1932)
of the Lick Observatory met to argue the merits of each point of view. In what has become
known as the Great Debate in astronomy, Shapley supported the idea that the nebulae are
members of our Galaxy. Curtis, on the other hand, was a proponent of the extragalactic
interpretation of the data, believing that the nebulae were physically much like the Milky
Way, but separated from it.

One of Shapley’s strongest points was based on the apparent magnitudes of novae ob-
served in M31. He argued that if the disk of Andromeda were as large as the Milky Way
(approximately 100 kpc in diameter by his own recent estimates), then its angular size in
the sky (∼ 3◦ × 1◦) would imply a distance to the nebula that was so large as to make the
luminosities of the novae in M31 much greater than those found in the Milky Way.

His second major point was based on data of Adrian van Maanen (1884–1946), a well-
respected observer, whose proper-motion measurements of M101 seemed to suggest an
angular rotation rate of 0.02′′ yr−1. If M101 had a diameter similar to Shapley’s estimate
for the Milky Way, then points near its outer edge would have rotational speeds far in excess
of those observed within the Milky Way.

In defense of the extragalactic hypothesis, Curtis argued that the novae observed in spi-
ral nebulae must be at least 150 kpc away from us in order to have intrinsic brightnesses
comparable to those in the Milky Way. At this distance, M31 would be similar in size to
Kapteyn’s much smaller estimate of the diameter of the Galaxy, rather than to Shapley’s

3It is worth pointing out that most of the members in the Messier catalog are contained within the NGC; for
instance, M31 is also designated as NGC 224.
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estimate. He also argued that the large radial velocities measured for many spi-
ral nebulae seemed to indicate that they could not remain gravitationally bound 
within a Kapteyn-model Milky Way. Furthermore, assuming that the transverse 
 velocities of the nebulae are similar in value to their radial velocities, then if the neb-
ulae were close enough to be located within the Milky Way it should be possible to



measure their proper motions across the sky; however, no such motions had been detected.
Finally, for those spiral nebulae that are oriented edge-on, dark absorption regions can be
seen. Curtis suggested that if the Milky Way had a similar dark layer, the zone of avoidance
would be easily explained.

In the end, neither set of arguments proved to be definitive and the Great Debate served
more to highlight the issues than to solve the dilemma. Although, as we now know, errors
existed on both sides of the controversy, Shapley’s arguments were perhaps the more flawed.
Part of the problem rested in his overestimate of the size of the Milky Way’s disk. The other
difficulty was in his reliance on van Maanen’s data, which van Maanen himself later showed
to be incorrect. In fact, proper-motion studies were unable to measure any rotation of M101.

The debate was finally settled in 1923 when Edwin Hubble (1889–1953) detected
Cepheid variable stars in M31 using the 100-inch telescope at Mount Wilson. By measur-
ing their apparent magnitudes and determining their absolute magnitudes via the period–

The process of scientific exploration that led to the realization that our Solar System is
not located near the center of the Milky Way, and that the Galaxy is only one of a countless
number of galaxies in the universe, represented an advance in our understanding of the uni-
verse comparable to that of the Copernican Revolution. Although many people contributed

The Classification of Galaxies

Now that the extragalactic nature of the galaxies had been established, work began on
determining their physical properties. As a first step in understanding any new collection
of objects, it is necessary to classify them according to their intrinsic characteristics, akin
to the zoological classification of various species of animals. Once again Hubble played
a key role. In his 1926 paper “Extra-Galactic Nebulae,” and later in his book The Realm
of the Nebulae, Hubble proposed that galaxies be grouped into three primary categories
based on their overall appearance. This morphological classification scheme, known as the
Hubble sequence, divides galaxies into ellipticals (E’s), spirals, and irregulars (Irr’s).
The spirals are further subdivided into two parallel sequences, the normal spirals (S’s), and
the barred spirals (SB’s). A transitional class of galaxies between ellipticals and spirals,
known as lenticulars, can be either normal (S0’s) or barred (SB0’s). Hubble then arranged
his morphological sequence in the form of a tuning-fork diagram, shown in Fig. 1,
which explicitly shows the two types of spirals. A galaxy’s Hubble type is its designation
along the Hubble sequence.

A more modern classification designates true irregulars as Ir, as shown in Fig
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luminosity relation, he was able to use the distance modulus m − M  to calculate the 
distance to Andromeda. Hubble’s original value of 285 kpc is approximately 2.7 times 
smaller than the modern estimate of 770 kpc, but it was still good enough to show defini-
tively that the spiral nebulae are indeed island universes.

distance to Andromeda. Hubble’s original value of 285 kpc is approximately 2.7 times 
smaller than the modern estimate of 770 kpc, but it was still good enough to show defini-
tively that the spiral nebulae are indeed island universes.
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FIGURE 1 Hubble’s tuning-fork diagram of galaxy types.

Hubble originally thought (incorrectly) that the tuning-fork diagram could be interpreted
as an evolutionary sequence for galaxies. As a result, he referred to galaxies toward the left
of the diagram as early types and to those toward the right as late types, terminology that is
still in widespread use today.

Within the category of ellipticals, Hubble made divisions based on the observed ellip-
ticity of the galaxy, defined by

ϵ ≡ 1 − β/α, (1)

where α and β are the apparent major and minor axes of the ellipse, respectively, projected
onto the plane of the sky. The Hubble type is then quoted in terms of 10ϵ. Ellipticals range
from a spherical distribution of stars, E0, to a highly flattened distribution, E7. Galaxies
with ellipticities greater than ϵ = 0.7 have never been observed, implying that no E galaxies
with intrinsic ellipticities greater than 0.7 appear to exist.

It is important to realize that a difficulty immediately arises with this scheme: The
apparent ellipticity may not correspond well to an actual ellipticity since the orientation
of the spheroid to our line of sight plays a crucial role in our observations. This effect
can be seen in Figs. 2 and 3, when observers view oblate and prolate galaxies,
respectively. Note that, in general, a ≥ b ≥ c represents the lengths of the three axes of a
triaxial spheroidal system. For a sphere a = b = c, for a perfectly oblate spheroid a = b,
and for a perfectly prolate spheroid b = c. In general, however, there is no requirement that
any of the axes of a spheroidal system have equal lengths.

The physical properties of elliptical galaxies cover an enormous range. Their absolute B

magnitudes may be as dim as −8 or brighter than −23, their masses (including both luminous
and dark matter) vary from as little as 107 M⊙ to more than 1013 M⊙, and their diameters can
be as small as a few tenths of a kiloparsec or as large as hundreds of kiloparsecs. The giant
elliptical galaxies are among the largest objects in the universe, while the smallest dwarfs
are comparable in size to a typical globular cluster. The lenticular galaxies have masses
and luminosities comparable to the larger ellipticals. Although the giant ellipticals and the

The term spheroid is commonly used to mean axisymmetric ellipsoid.
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FIGURE 2 An oblate spheroidal galaxy has axis lengths a = b and c < a. If c/a = 0.6, the
apparent shape resembles an E4 galaxy (β/α = 0.6) when seen by observer A. The same galaxy
appears as an E0 when seen by observer B (β/α = 1).
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FIGURE 3 A prolate spheroidal galaxy has axis lengths b = c and a > b. If b/a = 0.6, the
apparent shape resembles an E0 galaxy when seen by observer A. The same galaxy appears as an E4
when seen by observer B.

lenticulars are the easiest to observe, the dwarfs are by far the most numerous. Typical
examples of elliptical galaxies are shown in Fig. 4, along with an S0 and an SB0. The
physical characteristics of these galaxies will be discussed in more detail in Section 4.

Hubble subdivided the spiral sequences into Sa, Sab, Sb, Sbc, Sc, and SBa, SBab,
SBb, SBbc, SBc. The galaxies with the most prominent bulges (the largest bulge-to-disk
luminosity ratios, Lbulge/Ldisk ∼ 0.3), the most tightly wound spiral arms (with pitch angles
of approximately 6◦), and the smoothest distribution of stars in the arms are classified as Sa’s
(or SBa’s), while Sc’s (or SBc’s) have smaller bulge-to-disk ratios (Lbulge/Ldisk ∼ 0.05),
more loosely wound spiral arms (∼ 18◦), and spiral arms that resolve into clumps of stars
and H II regions. Examples of normal and barred spiral galaxies are shown in Figs. 5
and 6, respectively. M31 and NGC 891 are Sb’s, whereas the Milky Way is probably an
SBbc

Sa–Sc (SBa–SBc) galaxies tend to have much smaller variations in their physical pa-
rameters than do ellipticals. On average, spirals also tend to be among the largest galaxies
in the universe, with absolute B magnitudes from −16 to less than −23, masses (including
both luminous and dark matter) between 109 M⊙ and 1012 M⊙, and disk diameters of 5 to
100 kpc.

The pitch angle is defined as the angle between the tangent to the spiral arm and the tangent to a perfect circle,
measured at the point where the arm and the circle intersect.

6
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(a) (b) (c)
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FIGURE 4 Typical early-type galaxies. (a) IC 4296 (E0), (b) NGC 4365 (E3), (c) NGC 4564
(E6), (d) NGC 4623 (E7), (e) NGC 4251 (S0), (f) NGC 4340 (RSB0). (Images from Sandage and
Bedke, The Carnegie Atlas of Galaxies, Carnegie Institution of Washington, Washington, D.C., 1994.)

Hubble split the remaining category of irregulars into Irr I if there was at least some hint
of an organized structure, such as spiral arms, and Irr II for the most extremely disorganized
structures. Both the Large Magellanic Cloud and the Small Magellanic Cloud are examples
of Irr I galaxies, while M82 (NGC 3034) is an example of an Irr II; see Fig. 7.

Irregular galaxies have a wide range of characteristics, although they tend not to be
particularly large. Typically their absolute B magnitudes vary from −13 to −20, they have
masses of between 108 M⊙ and 1010 M⊙, and their diameters range from 1 to 10 kpc. Most
irregulars also tend to have noticeable bars that are often off-center.

Since the publication of Hubble’s tuning-fork diagram, astronomers have made numerous
modifications to his original classification scheme. For instance, Gerard de Vaucouleurs
suggested the elimination of the irregular classifications, Irr I and Irr II, in favor of the
addition of other morphological classes later than Sc (or SBc). Those galaxies that were
binned into Irr I have been designated Sd (SBd), Sm (SBm), or Im (where m stands for
Magellanic type); for instance, the LMC is classified as an SBm, and the SMC is an Im. The
truly irregular galaxies are simply designated Ir, such as M82 (which is why Ir is used as
the designation in Fig. 1). Sandage and Brucato further suggested that the Ir class should
more appropriately be termed amorphous to indicate the lack of any organized structure.
As we shall see, spirals of Hubble-type Sd and later tend to be significantly smaller than
earlier-type spirals; consequently, they are sometimes referred to as dwarf spirals.

The Nature of Galaxies



(a) (b)

(c) (d)

FIGURE 5 Typical normal spirals. (a) NGC 7096 (Sa(r)I), (b) M81/NGC 3031 (Sb(r)I–II),
(c) M101/NGC 5457/Pinwheel (Sc(s)I), (d) M104/NGC 4594/Sombrero (Sa/Sb) seen nearly edge on.
(Images from Sandage and Bedke, The Carnegie Atlas of Galaxies, Carnegie Institution of Washing-
ton, Washington, D.C., 1994.)

In order to make finer distinctions between normal and barred spirals, de Vaucouleurs
had also suggested referring to normal spirals as SA rather than simply S. Intermediate
types with weak bars are then characterized as SAB, and strongly barred galaxies are SB.

As a further refinement to the system, the lenticular galaxies are also sometimes sub-
divided according to the amount of dust absorption in their disks. S01 galaxies have no
discernable dust their disks, while S03 galaxies have significant amounts of dust, and sim-
ilarly for SB01 through SB03.

Thus, the modern sequence from early ellipticals through normal late-type galaxies is
(see also Fig. 1)

E0, E1, . . . , E7, S01, S02, S03, Sa, Sab, Sb, Sbc, Sc, Scd, Sd, Sm, Im, Ir.

A similar sequence exists for barred spirals.
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(a)

(b) (c)

FIGURE 6 Typical barred spirals. (a) NGC 175 (SBab(s) I–II), (b) NGC 1300 (SBb(s) I),
(c) NGC 2525 (SBc(s)II). (Images from Sandage and Bedke, The Carnegie Atlas of Galaxies, Carnegie
Institution of Washington, Washington, D.C., 1994.)

Sidney van den Bergh introduced the luminosity class for spirals. The class ranges from
I through V, with I representing those spirals with well-defined arms; galaxies with the least
distinct arms are classified as V. M31 is classified as SbI–II (intermediate between I and
II), the Milky Way Galaxy is an SBbcI–II, M101 is an ScI, the LMC is an SBmIII, and
the SMC is an ImIV–V. Except for the largest elliptical galaxies (to be discussed further in
Section 4), the Milky Way and M31 are among some of the largest and brightest galaxies
in the universe. It is important to note, however, that despite its name, luminosity class does
not necessarily correlate well with absolute magnitude.

Besides their striking arms, spirals also show an amazing array of more complex and
subtle features. While some galaxies have spiral arms that can be followed nearly all the
way into the center, others have arms that appear to terminate at the location of an inner
ring. Special designations further help to classify these systems. M101 [Fig. 5(c)] is a
galaxy of the former type and is labeled as an Sc(s)I, where (s) designates that the spiral
can be traced to the center of the galaxy. On the other hand, NGC 7096 [Fig. 5(a)] and
M81 [Fig. 5(b)] are galaxies of the later type and are classified as Sa(r)I and Sb(r)I–II,

The Nature of Galaxies



(a)

(b) (c)

FIGURE 7 Examples of irregular galaxies. (a) The Large Magellanic Cloud (Irr I/SBmIII),
(b) the Small Magellanic Cloud (Irr I/ImIV–V), (c) M82/NGC 3034 (Irr II/Ir/Amorphous). (Images
from Sandage and Bedke, The Carnegie Atlas of Galaxies, Carnegie Institution of Washington, Wash-
ington, D.C., 1994.)

respectively, where (r) indicates an inner ring. Galaxies may also have outer rings that can
be identified. One such example is NGC 4340 [Fig. 4(f)], which is designated as an
RSB0, where the R prefix stands for outer ring. In some cases, galaxies may have both an
inner ring and an outer ring.

Given the enormous range in galaxy morphological types, it is not surprising that any
classification scheme will necessarily be complex. Fortunately, the Hubble sequence, with
its various permutations and enhancements, has greatly facilitated the process of trying to
understand the nature of galaxies.

2 SPIRAL AND IRREGULAR GALAXIES

Hubble’s classification scheme for late-type galaxies has proved to be very successful in
organizing our study of these objects. Not only do bulge-to-disk ratios, the tightness of the
spiral arms, and the ability to resolve the arms into stars and H II regions all correlate well
with Hubble type, but so do a host of other physical parameters.

Tables 1 and 2 summarize the characteristics of late-type galaxies, the details of
which will be discussed later. Although the spread in parameters can be quite large, trends
in Hubble type are clearly evident. For instance, if we compare an Sa galaxy with an Sc

The Nature of Galaxies



TABLE 1 Characteristics of Early Spiral Galaxies.

Sa Sb Sc
MB −17 to −23 −17 to −23 −16 to −22
M (M⊙) 109–1012 109–1012 109–1012
〈

Lbulge/Ltotal
〉

B
0.3 0.13 0.05

Diameter (D25, kpc) 5–100 5–100 5–100
⟨M/LB⟩ (M⊙/L⊙) 6.2 ± 0.6 4.5 ± 0.4 2.6 ± 0.2
⟨Vmax⟩ (km s−1) 299 222 175
Vmax range (km s−1) 163–367 144–330 99–304
pitch angle ∼ 6◦ ∼ 12◦ ∼ 18◦

⟨B − V ⟩ 0.75 0.64 0.52
〈

Mgas/Mtotal
〉

0.04 0.08 0.16
〈

MH2/MH I
〉

2.2 ± 0.6 (Sab) 1.8 ± 0.3 0.73 ± 0.13
⟨SN ⟩ 1.2 ± 0.2 1.2 ± 0.2 0.5 ± 0.2

TABLE 2 Characteristics of Late Spiral and Irregular Galaxies.

Sd/Sm Im/Ir
MB −15 to −20 −13 to −18
M (M⊙) 108–1010 108–1010

Diameter (D25, kpc) 0.5–50 0.5–50
⟨M/LB⟩ (M⊙/L⊙) ∼ 1 ∼ 1
Vmax range (km s−1) 80–120 50–70
⟨B − V ⟩ 0.47 0.37
〈

Mgas/Mtotal
〉

0.25 (Scd) 0.5–0.9
〈

MH2/MH I
〉

0.03–0.3 ∼ 0
⟨SN ⟩ 0.5 ± 0.2 0.5 ± 0.2

galaxy of comparable luminosity, the Sa will be more massive (larger M/LB), have a higher
peak in its rotation curve (Vmax), have a smaller mass fraction of gas and dust, and contain
a higher proportion of older, red stars.

The K-Correction

Before we can consider these correlations in more detail, it is necessary to discuss the prob-
lems associated determining the brightnesses of galaxies. As is the case with determining
absolute magnitudes for stars, calculating the absolute magnitudes of galaxies requires mak-
ing corrections to their observed apparent magnitudes if we are to properly account for the
effects of extinction, both within the Milky Way and within the target galaxy
(Extinction is generally negligible in the nearly empty space between galaxies.) Further-
more, for extragalactic objects another important correction must be considered as well.

.
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for very distant galaxies. If this effect were not considered, possible conclusions about the
evolution of galaxies would be likely to be in error

The Brightness of the Background Sky

Another problem that arises when making observations of faint galaxies, or when mea-
suring their outermost regions, is the competition with the brightness of the background
sky. The dimly glowing night sky has an average surface brightness of about µsky =
22 B-mag arcsec−2 (measured in the B wavelength band). Sources of this background
light include light pollution from nearby cities, photochemical reactions in Earth’s upper
atmosphere, the zodiacal light, unresolved stars in the Milky Way, and unresolved galaxies.
However, in modern photometric studies using CCDs, the surface brightnesses of galax-
ies can be measured down to levels of 29 B-mag arcsec−2 or fainter. Consequently, to
accurately determine the light distribution of a galaxy at these extremely faint levels, it is
necessary to subtract the contribution from the background sky.

Isophotes and the de Vaucouleurs Profile

Once the sky subtraction is performed, it becomes possible to map contours of constant
surface brightness. Such contours are known as isophotes (lines of constant photon number).
In specifying the “radius” of a galaxy, it is necessary to define the surface brightness of
the isophote being used to determine that radius.

1/4

ellipsoid having an isophotal surface brightness of µH = 26.5 B-mag arcsec−2. A second
standard radius in frequent use is the effective radius, re, the projected radius within which
one-half of the galaxy’s light is emitted. The surface brightness level at re, designated µe,
depends on the distribution of the surface brightness with radius.

For the bulges of spiral galaxies, and for large ellipticals, the surface brightness distri-
bution typically follows an r1/4 law given by

µ(r) = µe + 8.3268

[

(

r

re

)1/4

− 1

]

. (2)

This is just the r1/4 de Vaucouleurs profile written in units of mag arcsec−2, rather than
L ⊙ pc−2. It is left as an exercise to show that these two forms are equivalent.

.

,
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Since most galaxies are observed to have measurable redshifts, some or even most of 
the light that would normally fall within the wavelength band of interest, say the 
B band, would be redshifted to longer-wavelength regions. Accounting for this ef-
fect is known as the K  -correction. As we will learn, the K  -correction is most severe

No definite cutoff is known to exist in either the exponential distribu-
tion of the disk or the r  distribution of the spheroid. One commonly used 
 radius, introduced by Erik Holmberg, a Swedish astronomer, is the Holm-
berg radius, rH, defined to be the projected length of the semimajor axis of an



µ(r) = µ0 + 1.09
(

r

hr

)

, (3)

where hr is the characteristic scale length of the disk along its midplane
A generalized version of the r1/4 law is frequently used in which 1/4 is replaced by

1/n. The resulting generalized de Vaucouleurs profile, also known as the Sérsic profile
(named for José Luis Sérsic), has the form

µ(r) = µe + 8.3268

[

(

r

re

)1/n

− 1

]

, (4)

where µe, re, and n are all free parameters used to obtain the best possible fit to the actual
surface brightness profile. Note that when n = 1, Eq. ( 3) is a special case of Eq. ( 4),
where µ0 and hr are written in terms of µe and re, respectively.

The Rotation Curves of Galaxies

While surface brightness profiles, such as the generalized de Vaucouleurs profile, sample
the distribution of luminous matter in a galaxy, they do not reveal the distribution of the
galaxy’s dark matter. A direct means to determine the distribution of all matter, luminous
and dark, is to measure the galaxy’s rotation curve

Examples of rotation curves, averaged over groups of galaxies of a given MB

range and Hubble type, are shown in Fig. 8.

When rotation curves are compared with either luminosity or Hubble type, a number
of correlations are found. For instance, with increasing luminosity in the B band, LB , the
rotation curves tend to rise more rapidly with distance from the center and peak at higher
maximum velocities (Vmax). For galaxies of equal B-band luminosities, spirals of earlier
type have larger values of Vmax. Within a given Hubble type, galaxies that are more luminous
have larger values of Vmax. Also, for a given value of Vmax, the rotation curves tend to rise
slightly more rapidly with radius for galaxies of progressively earlier type. The fact that
galaxies of different Hubble types, and therefore very different bulge-to-disk luminosity
ratios, exhibit rotation curves that are very similar in form if not in amplitude suggests
that the shapes of their gravitational potentials do not necessarily follow the distribution of
luminous matter. This behavior is believed to be a signature of the existence of dark matter
in these galaxies.

Although the maximum rotational velocity within the disk increases for earlier-type
galaxies, a wide range in Vmax exists for each type. For typical samples of spirals of
type Sc and earlier, the mean maximum rotation velocities are Vmax = 299 km s−1 for
Sa, 222 km s−1 for Sb, and 175 km s−1 for Sc, while the ranges in values are 163 km s−1 to

.

.
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Disks are frequently modeled with an exponential decay However, as with the r1/4

law, the disk luminosity per unit area can be written in units of mag arcsec−2 as
.
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FIGURE 8 Variations in the average rotation curves of Sa, Sb, and Sc galaxies for various values
of absolute magnitude in the B band. (Figure adapted from Rubin et al., Ap. J., 289, 81, 1985.)

367 km s−1, 144 km s−1 to 330 km s−1, and 99 km s−1 to 304 km s−1, respectively. Notice
that the value of Vmax ≃ 250 km s−1 for the Milky Way Galaxy (believed to be an SBbc
is only slightly greater than the mean value of Vmax for Sb’s.

The corresponding maximum rotation velocities for irregular galaxies is significantly
lower than it is for earlier-type spirals, typically ranging from 50 to 70 km s−1. This seems
to suggest that a minimum rotation speed of roughly 50 to 100 km s−1 may be required for
the development of a well-organized spiral pattern. The slower rotation velocities of Im’s
imply that their values of the rotational angular momentum per unit mass are only about
10% of the value found for our Galaxy in the solar neighborhood.

The Tully–Fisher Relation

As the preceding discussion suggests, a relationship exists between the luminosity of a
spiral galaxy and its maximum rotation velocity. This correlation, now known as the Tully–
Fisher relation, was first determined in 1977 by R. Brent Tully and J. Richard Fisher when

)
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FIGURE 9 The global H I profile for NGC 3198. (Data from Begeman, Astron. Astrophys., 223,
81, 1991.)

they measured the Doppler-broadened 21-cm radio emission line of neutral hydrogen in
a sample of spiral galaxies. When the 21-cm line is sampled across the entire galaxy at
one time, this line typically displays a double peak, as shown in Fig. 9. The double
peak arises because of the flat rotation curve of the galaxy, which generally has the highest
rotational velocity in the flat part of the curve. Since so much of the H I participates in
the rotation at this maximum velocity, the flux density is greatest at this value. The double
peak occurs because a portion of the disk is rotating toward the observer, causing the line
to be blueshifted, and a portion of the disk is rotating away from the observer, resulting in
a redshifted line. The average radial velocity of the galaxy relative to the observer is the
midpoint value between the two peaks.

The shift $λ of a peak from its rest wavelength is give

$λ

λrest
≃ vr

c
= V sin i

c
.

Here, vr is the radial velocity, and i is the angle of inclination between the observer’s line
of sight and the direction perpendicular to the galactic plane (so i = 90◦ when viewing the
galaxy edge-on).

Figure 10 shows the Tully–Fisher relation as MB vs. Vmax for a sample of Sa, Sb,
and Sc galaxies. Notice the shift to lower values of Vmax for galaxies of later Hubble type
but with similar MB’s. When the data are fitted with linear relations that depend on Hubble
type, we find that

MB = −9.95 log10 Vmax + 3.15 (Sa),

MB = −10.2 log10 Vmax + 2.71 (Sb),

MB = −11.0 log10 Vmax + 3.31 (Sc).

(5)

(6)

(7)

The Tully–Fisher relation can be further refined and tightened if observations are made
at infrared wavelengths. This offers two advantages. Observing at dust-penetrating infrared

n by,
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Sa: MB = 3.15–9.95 log Vmax  r = –0.89
Sb: MB = 2.71–10.2 log Vmax  r = –0.62
Sc: MB = 3.31–11.0 log Vmax  r = –0.82
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FIGURE 10 The Tully–Fisher relation for early spiral galaxies. (Figure adapted from Rubin et
al., Ap. J., 289, 81, 1985.)

wavelengths reduces extinction by a factor of 10. In addition, the infrared light comes
primarily from late-type giant stars that are good tracers of the galaxy’s overall luminous
mass distribution; the B band tends to emphasize young, hot stars in regions of recent star
formation. One expression of the Tully–Fisher relation in the infrared H wavelength band
(1.66 µm), devised by Pierce and Tully (1992), is

Mi
H = −9.50(log10 Wi

R − 2.50) − 21.67 ± 0.08. (8)

Wi
R is a measure of the rotation of the galaxy defined as

Wi
R ≡ (W20 − Wrand)/ sin i, (9)

where W20 is the velocity difference between the blueshifted and redshifted emission in the
H band when the intensity of the emission is 20% of its blue and red peak values. Wrand is a
measure of the random velocities superimposed on observed velocities due to noncircular
orbital motions in the galaxy. Finally, i is the inclination angle of the plane of the galaxy.
An example of the H -band Tully–Fisher relation (Eq. 8) for galaxies in three clusters is
shown in Fig. 11.

Although the exact form of the Tully–Fisher relation depends on the distribution of mass
within galaxies, as well as on variations in their mass-to-light ratios, we can still
gain some insight into its origin. As is evident in Fig. 8, spiral galaxies have nearly

For a Gaussian random velocity distribution, it can be shown that Wrand is related to the velocity dispersion σ by
Wrand = 3.6σ .

7

7
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FIGURE 11 The Tully–Fisher relation in the infrared H -band (1.66 µm) as given by Eq. ( 8).
The data are for galaxies in the Local, Sculptor, and M81 groups of galaxies. (Data from Pierce and
Tully, Ap. J., 387, 47, 1992.)

flat rotation curves beyond a few kiloparsecs. Evaluating this for the entire galaxy
(r → R and Mr → M) results in

M = V 2
maxR

G
, (10)

where the maximum rotation speed, Vmax, is equated with the flat portion of the rotation
curve. Now, if the mass-to-light ratio has the same value for all spirals (M/L ≡ 1/CML,
where CML is a constant), then

L = CML
V 2

maxR

G
.

Finally, if we make the crude assumption that all spirals have the same surface brightness
at their centers, then L/R2 ≡ CSB, where CSB is another constant. Eliminating R from the
expression for the luminosity, we obtain

L = C2
ML

CSB

V 4
max
G2 = CV 4

max,

where C incorporates the other constants. The absolute magnitude comes from

M = MSun − 2.5 log10

(

L

L⊙

)

= MSun − 2.5 log10 V 4
max − 2.5 log10 C + 2.5 log10 L⊙

= −10 log10 Vmax + constant.

,
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Although the additive (zero-point) constant remains unevaluated, this simple argument
nearly reproduces the leading coefficients of Eqs. ( 5– 8), the slopes of the B-band
Tully–Fisher relations for Sa’s, Sb’s, and Sc’s, and the slope of the collective relationship
in the H band.

Radius–Luminosity Relation

Another important pattern also emerges in the data of early-type spiral galaxies (e.g., Sa–
Sc): Radius increases with increasing luminosity, independent of Hubble type. At the disk
radius (R25) corresponding to a surface-brightness level of 25 B-mag arcsec−2, the data are
well represented by the linear relationship

log10 R25 = −0.249MB − 4.00, (11)

where R25 is measured in units of kpc.

Masses and Mass-to-Light Ratios

Through the use of the Tully–Fisher relation (Eqs. 5– 7), combined with Eq. ( 11)
and (24.49), it is now possible to estimate both the masses of early-type spiral galaxies and
their mass-to-light ratios interior to R25. While masses range from greater than 109 M⊙ to
at most about 1012 M⊙, there is only a very weak relationship between a galaxy’s mass
and its Hubble type (on average, Sc’s are slightly less massive than Sa’s), as might be
expected, given the lack of any dependence on Hubble type in the correlation between R25
and MB . However, a correlation does exist for the mass-to-light ratios, with the average
value of M/LB decreasing with progressively later Hubble type; ⟨M/LB⟩ = 6.2 ± 0.6 for
Sa’s, 4.5 ± 0.4 for Sb’s, and 2.6 ± 0.2 for Sc’s.

Colors and the Abundance of Gas and Dust

The trend in M/LB suggests that Sc’s tend to have a greater fraction of massive main-
sequence stars relative to earlier spirals

we should also expect Sc’s to be bluer than Sa’s and Sb’s, which is just what is observed.
The mean values of the color index, B − V , decrease with later Hubble types: 0.75 for Sa’s,
0.64 for Sb’s, and 0.52 for Sc’s. For successively later-type galaxies, progressively greater
portions of the overall light from spirals is emitted in bluer wavelength regions, implying
an increasingly greater fraction of younger, more massive, main-sequence stars.

Irregulars tend to be the bluest of all galaxies represented by the Hubble sequence, with
characteristic values of B − V ∼ 0.4. Furthermore, Ir’s often get bluer toward their centers,
rather than redder as is the case for early-type spirals. This suggests that irregulars are still
actively manufacturing stars in their central regions. For instance, the LMC and the SMC
still appear to be making blue globular clusters in their disks.

It is an unfortunate consequence of the historical development of the terminology that galaxies of later Hubble
type are actually dominated by stars lying on the early (upper) part of the main sequence.

(that upper main-sequence stars have low mass-to-light ratios). If this is the case,

8
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Since blue main-sequence stars are short-lived, they must have formed relatively recently.
Presumably an abundant supply of gas and dust exists in Sc’s from which these stars can be
produced. Based on the analysis of 21-cm radiation, Hα emission, and CO emission (which
is a good tracer of H2), we find that the mass fraction of gas relative to the total mass interior
to R25 increases steadily from Sa’s to Sc’s and later. For instance, ⟨Mgas/Mtotal⟩ = 0.04 for
Sa’s, 0.08 for Sb’s, 0.16 for Sc’s, and 0.25 for Scd’s. This agrees with the observation that
the brightness of H II emission also increases with later Hubble types.

The relative amounts of atomic and molecular hydrogen also change with Hubble type.
For Sab’s, ⟨MH2/MH I⟩ = 2.2 ± 0.6, decreasing to 1.8 ± 0.3 for Sb’s, 0.73 ± 0.13 for
Sc’s, and 0.29 ± 0.07 for Scd’s. This observation has been interpreted as implying that
Sa’s are somewhat more centrally condensed, containing correspondingly deeper gravita-
tional wells in which gas can collect and combine to form molecules. This means that the
interstellar medium of Sa’s is dominated by molecular gas while the interstellar medium
of Scd’s is primarily composed of atomic hydrogen. Overall, the amount of molecular hy-
drogen in spirals can range from 5 × 1010 M⊙ for the most massive galaxies to as little as
106 M⊙ for dwarf spirals. The mass of dust is characteristically 150 to 600 times lower than
the mass of gas in the ISM.

It is dust that is primarily responsible for the far-infrared (FIR) luminosities of galaxies,
although synchrotron radiation and the emissions of stars can also contribute to the total.
From observations made by IRAS, astronomers have discovered that LFIR/LB = 0.07 for
M31 (an SbI–II), 0.2 for M33 (an Sc(s)II–II), 0.4 for M101 (an Sc(s)I), 0.18 for the LMC
(an SBmIII), and 0.09 for the SMC (an ImIV–V). In general, Sc’s have a larger fraction of
infrared emission than Sa’s or Sb’s, consistent with the other observations of correspond-
ingly greater fractions of their masses being in the form of gas and dust. Interestingly, SB’s
tend to have greater infrared luminosities than do normal S’s.

Metallicity Gradients and Color Gradients of Spirals

Not only is there a dependence of color on Hubble type, but individual spiral galaxies
also exhibit color gradients, with their bulges generally being redder than their disks.
This arises for two reasons: metallicity gradients and star formation activity. The aver-
age number of electrons per atom is larger for metal-rich stars than for metal-poor stars.
Since ionization and the orbital transitions of electrons contribute to the opacity in stel-
lar photospheres, the opacity in metal-rich stars is greater. Because it is more difficult for
light generated in the interior to escape from a star with a higher-opacity photosphere,
the star will tend to “puff up”; its radius will increase, with a corresponding decrease in
effective temperature. Hence, a higher-opacity star will be redder than a lower-opacity
star, all else being equal
The redness of bulges argues for those regions being more metal-rich than are the por-
tions of disks farther from the center, as is the case in our own Galaxy. In fact, within the
Milky Way, metallicity gradients have been measured at Galactocentric radii of between
4 and 14 kpc with values of d [He/H] /dr = −0.01 ± 0.008 dex kpc−1, d [O/H] /dr =
−0.07 ± 0.015 dex kpc−1, and d [Fe/H] /dr = −0.01 to −0.05 dex kpc−1.

“dex” refers to the logarithmic nature of the metallicity term in the gradient

9
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FIGURE 12 Metallicity is observed to increase linearly with absolute magnitude. The symbols
in the upper panel correspond to dE’s (dwarf ellipticals, open squares) and ellipticals (open circles and
open triangles). In the lower panel, spirals are represented by filled circles and irregulars are indicated
by filled squares. (Figure adapted from Zaritsky, Kennicutt, and Huchra, Ap. J., 420, 87, 1994.)

Star formation, the second major cause of color gradients, implies that the disks of spiral
galaxies are more actively involved in star-making than are their bulges. This is consistent
with the distribution of gas and dust in the galaxies. The spheroidal components of spirals
usually contain much less gas and have correspondingly lower star formation rates than their
disks. Since disks are able to produce young, hot, blue stars at a greater rate, the spheroids
appear relatively redder and a color gradient is established.

Color gradients have been observed within the spheroids of spiral galaxies as well, such
as NGC 7814. The galaxies’ spheroidal components become bluer with increasing radius.
This is also the case for the Milky Way, with the more metal-rich, redder globular clusters
orbiting closer to the Galactic center.

Observations indicate that metallicity correlates with the absolute magnitudes of galax-
ies; [Fe/H] and [O/H] both increase with MB (see Fig. 12). Apparently chemical enrich-
ment was somehow more efficient in luminous, massive galaxies. Composition enrichment
histories and gradients have significant implications for galaxy formation theories

X-Ray Luminosity

The X-ray luminosities of galaxies also provide some information concerning their evolu-
tion. In spirals, luminosities in the wavelength region sampled by the Einstein satellite (with
photon energies of 0.2 to 3.5 keV) typically range from LX = 1031 W to 1034 W. A sur-
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prisingly tight correlation exists between X-ray and B-band luminosities (LX/LB ≃ 10−7),
which has been interpreted as implying that the X-rays are due to a class of objects that
constitutes an approximately constant fraction of the population of all objects in spirals. The
suspected sources are X-ray binaries. It is probable that supernova remnants also contribute
to the X-ray emission.

Supermassive Black Holes

Observations of stellar and gas motions near the centers of some spirals strongly suggest
the presence of supermassive black holes. For instance, near the center of M31, M/L

exceeds 35 M⊙/L⊙, indicating a large amount of nonluminous matter confined to a small
region. Rotational-velocity measurements can be used to estimate the dynamical mass of
the central black hole of M31 in the same way it was done for Sgr A⋆ in the Galactic center.

A precise determination based on kinematic studies of the triple nucleus
of M31 (Fig. 13) gives a mass of 1.4+0.9

−0.3 × 108 M⊙ for the central supermassive black
hole.

Another (although less precise) method of determining the mass of a central supermassive
black hole uses the velocity dispersion to obtain a mass estimate via the virial theorem.

galaxy’s central region are related by

1
2

〈

d2I

dt2

〉

− 2 ⟨K⟩ = ⟨U⟩ ,

FIGURE 13 An HST image of the triple nucleus of theAndromeda galaxy (M31). Two groupings
of red stars are evident in this image. The brighter grouping of red stars on the left is P1, and the
dimmer grouping is P2. P1 and P2 are believed to be portions of an elongated disk of stars orbiting
the galaxy’s supermassive black hole. P1 is farthest from the black hole (the apocenter), and P2 is
nearest the black hole (the pericenter). A blue cluster of stars, known as P3, is superimposed on P2.
P3 is believed to be orbiting the galaxy’s supermassive black hole. [Courtesy of NASA, ESA, and T.
Lauer (NOAO/AURA/NSF).]

The time-averaged kinetic and potential energies of stars in the
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where I is the region’s moment of inertia. If the galaxy is in equilibrium, then ⟨d2I/dt2⟩ = 0,
resulting in the usual statement of the virial theorem,

−2 ⟨K⟩ = ⟨U⟩ .

Furthermore, for a large number of stars, the central bulge will look the same (in a statistical
sense) at any time, and the time-averaging can be dropped. So for N stars,

−2
N
∑

i=1

1
2
miv

2
i = U,

For simplicity, we restrict our attention to a spherical cluster of radius R with N stars,
each of mass m, so the total mass of the bulge is M = Nm. Dividing the above expression
by N produces

−m

N

N
∑

i=1

v2
i = U

N
. (12)

Of course, astronomers actually measure the radial component of the velocity vector (a
galaxy is too far away to allow for detection of proper motions). Moreover, an astronomer
is just as likely to see a star moving in the radial direction as in either of the other two
perpendicular directions. With the brackets denoting an average value,

〈

v2〉 =
〈

v2
r

〉

+
〈

v2
θ

〉

+
〈

v2
φ

〉

= 3
〈

v2
r

〉

,

so

1
N

N
∑

i=1

v2
i =

〈

v2〉 = 3
〈

v2
r

〉

= 3σ 2
r ,

where σr is the dispersion in the radial velocity Inserting this result into Eq. ( 12), and using
the (approximate) potential energy of a spherical distribution of total mass M and radius
R, leads to

−3mσ 2
r ≈ −3

5
GM2

NR
.

Using M = Nm and solving for the mass give

Mvirial ≈ 5Rσ 2
r

G
, (13)

where the mass obtained in this way is called the virial mass.

.
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It is important to note that in order to determine an accurate value for the mass, an
appropriate choice of R must be made. As the observations move farther from the black
hole, contributions to the total mass increase from surrounding stars and gas. R must be
chosen to be within the black hole’s “sphere of influence.”

Example 2.1. Equation ( 13) can be used to estimate a virial mass for the central
black hole of M32, a companion galaxy of M31. From Fig. 14, the central radial-velocity
dispersion is approximately 162 km s−1. This means that within 0.1′′ (approximately 0.4 pc)
of the center, there is a total mass of roughly

Mvirial ∼ 1 × 107 M⊙.

A more accurate estimate, based on the rotation curve, gives a value of between 1.5 ×
106 M⊙ and 5 × 106 M⊙.

It is important to note that central supermassive black holes are not restricted to late-type
galaxies. For example, based on observations made using the Hubble Space Telescope, it
appears that the giant elliptical galaxy M87 (NGC 4476) also contains a 3.2 ± 0.9 × 109 M⊙
black hole. HST was able to resolve a disk of material within M87 that has rotational
speeds reaching 550 km s−1; the disk itself is orbiting a central region no larger than
our Solar System. Given that the distance to M87 is nearly 20 Mpc, this is a remarkable
observation. (M87 is also known to have a relativistic jet that is believed to be powered by
the supermassive black hole at its center
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FIGURE 14 The stellar velocity dispersion and rotational velocities of stars near the center of
M32. Given the distance to M32 of 770 kpc, 1′′ corresponds to a linear distance from the center of
3.7 pc. (Data from Joseph, et al., Ap. J., 550, 668, 2001.)
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FIGURE 15 The relationship between the mass of a galaxy’s supermassive black hole and the
velocity dispersion, σ , of the galaxy’s spheroid. The data set includes elliptical, lenticular, and spiral
galaxies. (Data from Ferrarese and Ford, Space Science Reviews, 116, 523, 2005. The open symbol
represents the Milky Way with mass data from Ghez, et. al, Ap. J., 620, 744, 2005.)

As the number of known central supermassive black holes has increased, it has become
possible to look for relationships between the black holes and their host galaxies. A very
intriguing and useful correlation has been discovered between the mass of the supermassive
black hole in a galaxy’s center and the velocity dispersion of the stars within the galaxy.
The relationship is illustrated in Fig. 15 and is given by the best-fit power law,

Mbh = α(σ/σ0)
β, (14)

where σ is the velocity dispersion in units of km s−1, α = (1.66 ± 0.24) × 108 M⊙, β =
4.86 ± 0.43, and σ0 = 200 km s−1. The velocity dispersion is measured for the stellar pop-
ulation near the black hole. Correlations between the mass of supermassive black holes and
other bulk galaxy parameters, such as the luminosity of the bulge, have also been uncovered.
Apparently a fundamental link exists between the formation of the central supermassive
black hole in a galaxy and the overall formation of the galaxy itself. Just what that link is
remains to be determined.

Evidence continues to mount that supermassive black holes may exist in the centers of
most galaxies.

Specific Frequency of Globular Clusters

Finally, it is worth discussing the abundance of globular clusters in late-type galaxies,
which, when compared with the numbers of globular clusters in ellipticals, has important
implications for theories of galactic formation and evolution. It appears that galaxies that
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are more spheroidally dominant (i.e., earlier Hubble types) were more efficient at forming
globular clusters during their early histories.Although virtually all galaxies appear to contain
some globular clusters, the number of clusters within a galaxy seems to increase with total
galaxy luminosity and with progressively earlier Hubble type.

To compare cluster systems among Hubble types more directly, the globular-cluster
counts are usually normalized to a standard absolute magnitude for the parent galaxy of
MV = −15 mag (in the visual wavelength band). If Nt is the total number of globular
clusters in a galaxy, then the specific frequency of globular clusters is defined as

SN = Nt

L15

LV

= Nt 100.4(MV +15), (15)

where LV is the galaxy’s luminosity and L15 is the reference luminosity corresponding to
an absolute visual magnitude of MV = −15 mag

As can be seen in Fig. 16, for Sc galaxies and later, the average value ofSN

is in the range of 0.5 ± 0.2, while for Sa’s and Sb’s, ⟨SN ⟩ increases to 1.2 ± 0.2. ⟨SN ⟩ is
even larger for elliptical galaxies, meaning that they have more clusters per unit luminosity
than do spirals. In fact, by far the largest number of globular clusters per unit luminosity
belongs to the gigantic elliptical galaxies (cD’s) that are frequently found near the centers of
large clusters of galaxies (see Sections 4 and 3). It seems that the number of globular
clusters offers important clues to galaxy formation theories.

SN vs. Galaxy type
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FIGURE 16 The association of the specific frequency of globular clusters with Hubble type. cD
galaxies are the largest elliptical galaxies in the universe; dE’s are dwarf ellipticals. (Figure adapted
from Harris, Annu. Rev. Astron. Astrophys., 29, 543, 1991. Reproduced by permission from the Annual
Review of Astronomy and Astrophysics, Volume 29, ©1991 by Annual Reviews Inc.)

.

The Nature of Galaxies



3 SPIRAL STRUCTURE

Galaxies exhibit a rich variety of spiral structure, which may vary in number of arms and
how tightly wound they are, degree of smoothness in the distribution of stars and gas, surface
brightness, and the existence or lack of bars. The most majestic spiral galaxies, known as
grand-design spirals, usually have two very symmetric and well-defined arms. One of the
best-known examples of a grand-design spiral is M51 (NGC 5194), shown in Fig. 17.
Also called the Whirlpool galaxy, M51 has a companion galaxy (NGC 5195, visible in the
image) near the end of one of the spiral arms.

However, not all spirals are grand designs with two distinct arms. For instance, M101
[Fig. 5(c)] has four arms, and NGC 2841 (Fig. 18) has a series of partial arm fragments.
Galaxies like NGC 2841, which do not possess well-defined spiral arms that are traceable
over a significant angular distance, are called flocculent spirals. Only about 10% of all
spirals are considered grand-design galaxies, another 60% are multiple-arm galaxies, and
the remaining 30% are flocculent galaxies.

The optical images of spiral galaxies are dominated by their arms. This is because very
luminous O and B main-sequence stars and H II regions are found preferentially in the
arms. Since massive OB stars are short-lived objects relative to the characteristic rotation
period of a galaxy, spiral structure must correspond to regions of active star formation. (For
instance, the ages of OB stars are on the order of 10 Myr, compared to 230 Myr for the orbital
period of the local standard of rest in the Milky Way

FIGURE 17 The Whirlpool galaxy, M51 (NGC 5194), is an Sbc(s)I–II grand-design spiral
located in the constellation Canes Venatici (the Hunting Dogs of Boötes, just below Ursa Major).
Also visible is its companion NGC 5195, situated near the end of one of the spiral arms. (Image from
Sandage and Bedke, The Carnegie Atlas of Galaxies, Carnegie Institution of Washington, Washington,
D.C., 1994.)

.)
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FIGURE 18 The Sb galaxy NGC 2841 is an example of a flocculent spiral. (Image from Sandage
and Bedke, The Carnegie Atlas of Galaxies, Carnegie Institution of Washington, Washington, D.C.,
1994.)

(a) (b)

FIGURE 19 M51 as seen in (a) blue light and (b) red light. (Figures from Elmegreen, Ap. J.
Suppl., 47, 229, 1981.)

Careful inspection of the various images found in this chapter reveals that dust bands
are also evident in the spiral arms; M51 (Fig. 17) is a particularly good example. Notice
that the dust bands tend to reside on the inner (concave) edges of the arms. Observation of
21-cm H I emission indicates that gas clouds are also more prevalent near the inner edges
of the arms.

As Fig. 19 illustrates, when spiral galaxies are observed in red light, the arms become
much broader and less pronounced, although they still remain detectable. Since observations
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FIGURE 20 Trailing and leading spiral arm structures.

at red wavelengths emphasize the emission of long-lived, lower-mass main-sequence stars
and red giants, this implies that the bulk of the disk is dominated by older stars. However,
despite the dominance of lower-mass stars between the spiral arms, observations indicate
that there is still an increase in the number density of older stars (and an accompanying
increase in mass density) within the spiral arms.

Trailing and Leading Spiral Arms

Although the general appearance of spiral galaxies suggests that their arms are trailing,
meaning that the tips of the arms point in the opposite direction from the direction of rotation
(see Fig. 20), verifying this is not always a simple matter. Distinguishing between trailing
and leading spiral arms requires a determination of the orientation of the plane of the galaxy
relative to our line of sight so that radial-velocity measurements can be unambiguously
interpreted in terms of the direction of galaxy rotation. In almost all cases where such a
clear determination can be made, it does appear that spiral arms are trailing. However, in one
case, NGC 4622, two arms are going one way and another arm is winding in the opposite
direction; at least one of these arms must be leading. It has also been suggested that M31
(Andromeda) has one tightly wound leading arm. In each case it is likely that the cause of
the leading spiral is a tidal encounter with a retrograde-moving object (M32 in the case of
Andromeda).

The Winding Problem

Given that spiral galaxies are commonplace within the universe, it is natural to ask what
causes spiral structure, and whether spiral arms are long-lived (with lifetimes comparable
to the age of a galaxy) or transient.

One problem immediately arises when the nature of spiral structure is considered; ma-
terial arms composed of a fixed set of identifiable stars and gas clouds would necessarily
“wind up” on a timescale that is short compared to the age of the galaxy. This so-called
winding problem can be understood by considering a set of stars that are originally along a
single line, but at varying distances from the center of the galaxy, as shown in Fig. 21(a).
Since the disk of a spiral galaxy rotates differentially (except very near the center), the outer
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FIGURE 21 The winding problem for material arms. The arms become progressively more
tightly wound as time goes on. A flat rotation curve is assumed with RB = 2RA, RC = 3RA, and
RD = 4RA. (a) The stars start out in a line at time t = 0. (b) After star A has completed one orbit.
(c) After star A has completed two orbits.

stars will require more time to complete one orbit than will stars with smaller orbital radii.1
This effect will of course lead to a natural generation of trailing spiral arms. However, after
only a few orbits, the spiral arms will become too tightly wound to be observed; this situ-
ation is depicted in Figs. 21(b) and 21(c). Another mechanism is needed to explain
persistent spiral structure.

The Lin–Shu Density Wave Theory

In the mid-1960s, the American astronomers C. C. Lin and Frank Shu proposed that spiral
structure arises because of the presence of long-lived quasistatic density waves. Density
waves consist of regions in the galactic disk where the mass density is greater than average,
perhaps by 10% to 20%. Stars, dust, and gas clouds move through the density waves during
their orbits around the galactic center, much like cars slowly working their way through
a traffic jam on a highway. Lin and Shu suggested that when the galaxy is viewed in a
noninertial reference frame that is rotating with a specific angular speed *gp, known as
the global pattern speed, the spiral wave pattern appears to be stationary, as shown in
Fig. 22. This does not imply that the motions of the stars are also stationary in that
frame, however. Stars near the center of the galaxy can have orbital periods that are shorter
than the density wave pattern (or * > *gp) and so they will overtake a spiral arm, move
through it, and continue on until they encounter the next arm. Stars sufficiently far from
the center of the galaxy will be moving more slowly than the density wave pattern and will
be overtaken by it (* < *gp). At a specific distance from the center, called the corotation
radius (Rc), the stars and density waves will move together. In this noninertial reference
frame in which the density wave pattern is static, the stars with R < Rc will appear to pass
through the arms moving in one direction, while stars with R > Rc will appear to be moving
in the opposite sense.

The Lin–Shu hypothesis helps to explain many of the observations concerning spiral
structure that have been discussed—for instance, the ordering of H I clouds and dust bands

1 For flat rotation curves, the orbital velocities of stars are nearly independent of distance from the center, but the
angular velocity, * = v/R, still decreases with increasing distance.

0

0

The Nature of Galaxies



A A

B
B

C C

(a) (b)

S S¢
S¢

x

y

xp

yp
y p

WB

W C

W gp x p

W A

FIGURE 22 (a) A galaxy with trailing spiral arms as seen in an inertial reference frame S in
which a quasistatic density wave is moving with a global angular pattern speed *gp . Star A has an
angular speed *A > *gp , Star B has an angular speed *B < *gp , and Star C is corotating with the
density wave, meaning that*C = *gp . (b) The motions of the stars as seen in a noninertial reference
frame S ′, corotating with the density wave.

on the inner (trailing) edges of spiral arms, the existence of young, massive stars and H II
regions throughout the arms, and an abundance of old, red stars in the remainder of the disk.

⊙

the brightest and bluest new stars, the massive O and B stars, will result in the creation of
H II regions as the UV ionizing radiation moves through the interstellar medium. Because
massive stars have relatively short lifetimes, they will die before they can move entirely
out of the density wave in which they were born. Less massive, redder stars will be able
to live much longer (some longer than the current age of the galaxy) and so will continue
through the density wave and become distributed throughout the disk. Local maxima in
the number density of red dwarfs within spiral arms are due to the presence of the density
wave during a subsequent passage, which causes the stars to collect at the bottom of the
wave’s gravitational potential well. Of course, the same scenario could also occur on the
outer (leading) edges of spiral arms outside the corotation radius. However, it is likely that
less dust and gas will be found in these outer regions of the galaxy.

In principle, the density wave theory also suggests a solution to the winding problem.
The problem arose because we considered material arms (arms composed of a fixed set of
stars). If, instead, the stars are allowed to pass through a quasistatic density wave, then the
problem has been changed to one of establishing and maintaining the wave of enhanced
density. This has been the focus of considerable research since the Lin–Shu hypothesis was
proposed.

The Nature of Galaxies

Apparently, as dust and gas clouds within the corotation radius overtake a den-
sity wave, they are compressed by the effects of the increase in local mass  density. 
This causes some of the clouds to satisfy the Jeans criterion and begin to collapse, 
 resulting in the formation of new stars. Since this process takes some time (approxi-
mately 105 yr for a 15 M  star, the appearance of new stars will occur within the arm 
slightly “downstream” from dust and gas clouds at the edge of the wave. The birth of



Small-Amplitude Orbital Perturbations

We now turn our attention to developing the basic ideas of how the orbital motions of
individual stars about the galactic center can result in spiral-shaped regions of enhanced
density according to the Lin–Shu hypothesis. We begin by considering the general motion of
a star (or gas cloud) in an axially symmetric gravitational field that is also symmetric about
the galactic midplane. This implies that we are assuming here that density waves make an
insignificant contribution to the gravitational field, an assumption that may not be valid in
all spiral galaxies. However, the assumption does simplify the analysis considerably.

From Fig. 23, the position of a star at some general point above the galactic midplane
can be written in the form

r = RêR + zêz, (16)

where êR , êφ , and êz are the unit vectors in cylindrical coordinates.1 To convert between
rectangular and cylindrical coordinates, we see that

x = R cosφ, y = R sin φ, z = z,

and

êR = î cosφ + ĵ sin φ, êφ = −î sin φ + ĵ cosφ, êz = k̂.

For a star of mass M , Newton’s second law of motion in cylindrical coordinates is

M
d2r
dt2 = Fg(R, z),

y

x

z

r

$
R

FIGURE 23 The position vector of a star in cylindrical coordinates. The origin of the coordinate
system is at the center of the galaxy, and the x–y plane is in the galaxy’s midplane.

1

14Note that we have chosen to use a traditional right-handed coordinate system here. To avoid confusion, we will
use φ rather than θ to designate the azimuthal angle.
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where Fg is the gravitational force on the star, and the φ-dependence is neglected due to
the assumption of axial symmetry. Replacing the force with the negative of the gradient of
the gravitational potential energy, yields

M
d2r
dt2 = −∇U(R, z) = −∂U

∂R
êR − 1

R

∂U

∂φ
êφ − ∂U

∂z
êz.

Dividing both sides of the last expression by the star’s mass, writing the result in terms of
the gravitational potential , ≡ U/M , and noting that U is independent of φ give

d2r
dt2 = −∂,

∂R
êR − ∂,

∂z
êz. (17)

It is left as an exercise (Problem 13) to show that the star’s acceleration vector (the
left-hand side of Eq. 17) can be written in the form

d2r
dt2 =

(

R̈ − Rφ̇2) êR + 1
R

∂
(

R2φ̇
)

∂t
êφ + z̈êz, (18)

where the dots represent time derivatives. Comparing Eqs. ( 17) and ( 18), we see that
the motion in each coordinate is given by

R̈ − Rφ̇2 = −∂,
∂R

, (19)

1
R

∂
(

R2φ̇
)

∂t
= 0, (20)

z̈ = −∂,
∂z

. (21)

Because we have assumed axial symmetry, there is no component of the force vector
in the êφ direction and consequently no component of torque along the z-axis (recall that
τ = r × F). Therefore, the z component of the star’s orbital angular momentum (Lz) must be
constant since τz = dLz/dt = 0 (i.e., angular momentum is conserved throughout the star’s
motion). This is exactly what Eq. ( 20) implies, since R2φ̇ = Rvφ = Lz/M = constant.
Defining

Jz ≡ Lz/M = R2φ̇

to be the (constant) z component of the orbital angular momentum per unit mass of the star,
we have that

φ̇ = Jz

R2

and

Rφ̇2 = J 2
z

R3 .
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Substituting into Eq. (19) gives

R̈ = −∂,
∂R

+ J 2
z

R3 .

To simplify the expression, we can define an effective gravitational potential that incor-
porates a term representing the portion of the star’s kinetic energy per unit mass that is
associated with its azimuthal motion (vφ = Rφ̇ = Jz/R):

,eff (R, z) ≡ , (R, z) + J 2
z

2R2 . (22)

Now the radial and vertical equations of motion can be written in the forms

R̈ = −∂,eff

∂R
, (23)

z̈ = −∂,eff

∂z
, (24)

the later expression coming from Eq. ( 21) with the azimuthal term in ,eff being inde-
pendent of z.

To solve Eqs. ( 23) and ( 24) for the motion of the star through the galaxy, we must
first determine the behavior of ,eff . Specifically, it would be helpful to know where the
minima of the effective gravitational potential are located, since the star should attempt to
settle into an orbit of minimum possible energy. In other words, we want to find the values
of R and z for which

∂,eff

∂R
= 0, (25)

∂,eff

∂z
= 0. (26)

Given our assumption that the gravitational potential is symmetric about the midplane,
it is clear that the second condition is satisfied at z = 0, because ,, and therefore ,eff ,
must be either a local maximum or a local minimum there. Since, is always less than zero
and is assumed to be identically zero at infinity, it is necessary that ,eff be a minimum at
z = 0.

The physical significance of the minimum in ,eff with respect to R can be uncovered
by realizing that since Jz is a constant for the star’s motion,

∂,eff

∂R
= ∂,

∂R
− J 2

z

R3 = 0

for some radius Rm in the galaxy’s midplane (z = 0). This gives

∂,

∂R

∣

∣

∣

∣

(Rm,0)

= J 2
z (Rm, 0)

R3
m

. (27)
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But since Jz = Rvφ , the right-hand side of the last expression is just

J 2
z

R3
m

=
v2
φ

R

∣

∣

∣

∣

∣

Rm

,

the centripetal acceleration for perfectly circular motion. Furthermore, the left-hand side of
Eq. ( 27) is simply the radial component of the gradient of the true gravitational potential,
which is nothing more than the negative of the R component of the force per unit mass
exerted on the star. Therefore, the last expression is the familiar equation of perfectly circular
motion,

FR (Rm) = −
Mv2

φ

R

∣

∣

∣

∣

∣

Rm

,

and the minimum value for,eff occurs when the star is executing perfectly circular orbital
motion in the midplane of the spiral galaxy.

a peculiar motion with respect to the LSR, known as its solar motion. As a result, to learn
more about the motion of our Sun (or, more generally, about the motions of stars in the
plane of any spiral galaxy), it is necessary to explore deviations from the minimum value
of ,eff .

To understand these first-order effects, we will expand ,eff about its minimum position
(Rm, 0) by means of a two-dimensional Taylor series.
Letting

ρ ≡ R − Rm

and using the subscript m to indicate that the leading constant and partial derivatives are
being evaluated at the minimum position, we obtain

,eff (R, z) = ,eff ,m + ∂,eff

∂R

∣

∣

∣

∣

m

ρ + ∂,eff

∂z

∣

∣

∣

∣

m

z + 1
2
∂2,eff

∂R∂z

∣

∣

∣

∣

m

ρz

+ 1
2
∂2,eff

∂R2

∣

∣

∣

∣

m

ρ2 + 1
2
∂2,eff

∂z2

∣

∣

∣

∣

m

z2 + · · · . (28)

The first term on the right-hand side is the constant minimum value in ,eff , and the two
first-derivative terms are identically zero, since they were used to identify the point about
which the expansion is being carried out (see Eqs. 25 and 26). The mixed-partial-
derivative term is also identically zero because of the symmetry of ,eff about the z = 0
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This is precisely the assumption we made in the last chapter regarding the 
motion of the local standard of rest at the position of the Sun. However, the Sun 
itself does not actually execute perfectly circular motion, but it does exhibit



plane. Defining the constants

κ2 ≡ ∂2,eff

∂R2

∣

∣

∣

∣

m

, (29)

ν2 ≡ ∂2,eff

∂z2

∣

∣

∣

∣

m

, (30)

and neglecting the remaining higher-order terms, the effective gravitational potential be-
comes

,eff (R, z) ≃ ,eff ,m + 1
2
κ2ρ2 + 1

2
ν2z2. (31)

Finally, noting that ρ̈ = R̈ and recalling Eqs. ( 23) and ( 24), we arrive at two of
the three first-order expansions for the equations of motion about a perfectly circular orbit
in the galaxy’s midplane:

ρ̈ ≃ −κ2ρ, (32)

z̈ ≃ −ν2z, (33)

which are the familiar differential equations of simple harmonic motion. Physically,
Eqs. ( 32) and ( 33) represent the components of a star’s acceleration relative to a
point that is executing perfectly circular motion.

Equation (32) can be solved to give

ρ(t) = R(t) − Rm = AR sin κt, (34)

where κ is called the epicycle frequency.1 Rm is the radius of the energy-minimum circular
orbit, and AR is the amplitude of the radial oscillation. We have arbitrarily assumed that the
star is passing through equilibrium and moving outward at some time t = 0.

Equation ( 33) is identical to the result obtained for the sinusoidaloscillations of the
Sun above and below the Galactic midplane,with ν being the vertical oscillation frequency.
The star’s position along the z-axis is given by

z(t) = Az sin (νt + ζ ) , (35)

where Az is the amplitude of the oscillation in the z direction and ζ is a general phase shift
between ρ(t) and z(t).

To help visualize the relationship between ,eff , as given in Eq. ( 31) and the equa-
tions of motion (Eqs. 34 and 35), imagine that the star is located inside a grav-
itational well described by a surface in the three-dimensional “space” of (R, z,,eff ),
depicted in Fig. 24. (The shape is similar to that of a bed sheet held at its corners,
with (R = Rm, z = 0) located at the lowest point.) Now consider the special case where
the star is constrained to remain in the midplane (Az = 0) but can oscillate about the path

1 The choice of the term epicycle frequency will be described shortly.

2

2
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FIGURE 24 The effective gravitational potential well for a star that is executing a general first-
order simple harmonic oscillation about a perfectly circular orbit near the midplane of a disk galaxy.
In this case, the star is assumed to be oscillating about the equilibrium position (Rm = 8 kpc, z = 0).
$,eff ≡ ,eff −,eff ,m.

of perfectly circular motion. This implies that the star is able to move only along the R-axis
in Fig. 24. When the star is displaced from the minimum value of,eff , a restoring force
(given per unit mass by Eq. 32) will try to bring the star back toward equilibrium. Since
the force is always directed toward the position of minimum ,eff , the star will accelerate
toward the bottom of the potential well, overshoot the equilibrium position, and climb back
up the opposite side. The star will then turn around and fall back down toward the bottom
of the well again, continually executing simple harmonic motion. The same type of be-
havior would occur if the star were orbiting in a perfect circle projected onto the midplane
(AR = 0), but with superimposed vertical oscillations. However, since in general κ ̸= ν and
ζ ̸= 0, the general motion within the well can be quite complicated, as Fig. 24 illustrates.

We now have two expressions (Eqs. 34 and 35) that describe the motion of a
star about an equilibrium position (R = Rm, z = 0) that is moving in a circular orbit. To
complete our description of the approximate motion of the star, consider its azimuthal orbital
angular speed, given by

φ̇ = vφ

R(t)
= Jz

[R(t)]2 .

But R(t) = Rm + ρ(t) = Rm(1 + ρ(t)/Rm). Assuming that ρ(t) ≪ Rm, as is required of
our approximations, and using the binomial expansion theorem to first order,13

φ̇ ≈ Jz

R2
m

(

1 − 2
ρ(t)

Rm

)

.

1 For δ ≪ 1, (1 + δ)n ≈ 1 + nδ.3
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Substituting the expression for ρ(t) from Eq. ( 34) and integrating with respect to time,
we find that

φ(t) = φ0 + Jz

R2
m

t + 2Jz

κR3
m

AR cos κt = φ0 +*t + 2*
κRm

AR cos κt,

where* ≡ Jz/R
2
m. The first two terms in this expression correspond to the perfectly circular

orbit traced out by the equilibrium point, moving at a constant angular speed, *. The last
term represents the oscillation of the star about the equilibrium point in the φ direction.

Finally, defining

χ(t) ≡ [φ(t) − (φ0 +*t)] Rm

to be the difference in azimuthal position between the star and the equilibrium point, we
have

χ(t) = 2*
κ

AR cos κt. (36)

The three equations—( 34), ( 35), and ( 36)—represent the motions of the star in
the R, z, and φ coordinates, respectively, about an equilibrium position that is moving in a
perfect circle around the center of the galaxy and in the galactic midplane.
κ takes its name from an epicycle model for the first-order perturbation, as shown in

Fig. 25. In general, in an inertial reference frame the star’s orbit is not closed, but produces

x

y

%
c

Star

Wt

FIGURE 25 In an inertial reference frame a star’s orbital motion in the galactic midplane (solid
line) forms a nonclosing rosette pattern. In the first-order approximation, the motion can be imagined
as being the combination of a retrograde orbit about an epicycle and the prograde orbit of the center of
the epicycle about a perfect circle (dashed line). The dimensions of the epicycle have been exaggerated
by a factor of five to illustrate the effect.
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a rosette pattern. However, the star can be imagined as being located on an epicycle, with
the center of the epicycle corresponding to the equilibrium position. As the star moves in
a retrograde direction about the epicycle, it is carried alternately closer to and then farther
from the galactic center. The epicycle is also oval in shape and has an axial ratio that is
given by the ratios of the amplitudes of the oscillations in χ and ρ, or 2*/κ . The (χ , ρ)

coordinate system of the epicycle rotates about the galaxy’s center with the angular speed
* (the angular speed of the equilibrium point) and is indicated in Fig. 25.

Example . ur Sun is moving relative to the perfectly
circular motion of the LSR, as reflected in the Sun’s peculiar solar motion. Since u⊙ ̸= 0
(the R component of its peculiar motion), the Sun must have a nonzero epicycle frequency.
Information about the radial component of the Sun’s peculiar motion is also contained in
the Oort constants, since they involve derivatives of the Sun’s orbital speed, 40, with
respect to Galactocentric radius, R0.

From the condition for perfectly circular motion, Eq. (27) gives

∂,

∂R
= J 2

z

R3 = 42
0

R0
,

where the last expression arises because Jz = R040 for the orbital angular momentum per
unit mass at the solar Galactocentric distance. Substituting into the expression for the square
of the epicycle frequency (Eq. 29) and making use of Eq. ( 22), we find that the solar
epicycle frequency is

κ2
0 = 2

40

R0

[

40

R0
+ ∂40

∂R

∣

∣

∣

∣

R0

]

. (37)

Rewriting this in terms of the Oort constants produces

κ2
0 = −4B(A − B). (38)

P = 2π/κ0 = 170 Myr.
The ratio of the Sun’s epicycle frequency to its orbital angular speed (or orbital frequency,

*0 = 40/R0 = A − B is

κ0

*0
= 2

( −B

A − B

)1/2

= 1.35.

Therefore, the Sun executes 1.35 epicycle oscillations for every orbit around the Galactic
center.
1 This model bears a strong resemblance to the epicycle–deferent models of planetary motion devised by Hip-
parchus and Ptolemy However, in those ancient planetary models, the epicycles were assumed to be perfectly
circular.
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Using the values for the Oort constants A = 14.8 km s−1 kpc−1 and B = −12.4 km 
s−1 kpc−1, respectively, the epicycle frequency for our Sun is κ0 = 36.7 kms−1 
kpc−1 = 1.2 × 10−15 rad s−1. (Note that when kiloparsecs are converted to  kilom-
eters, κ0 has units of rad s−1.) This value for  the epicycle frequency corresponds 
to an oscillation period of



The axial ratio of the Sun’s epicycle is given by

χmax

ρmax
= 2*0

κ0
≃ 1.5.

Closed Orbits in Noninertial Frames

The number of oscillations per orbit about the galaxy’s center is equal to the ratio of the
star’s epicycle frequency to its orbital angular speed. If the ratio κ/* is a ratio of integers,
the orbit is closed. Like the Sun’s, however, most stellar orbits are not closed and a rosette
pattern results. But in a noninertial reference frame that is rotating with a local angular
pattern speed, *ℓp = *, relative to the inertial frame, the star’s path would appear to be
very simple, tracing out a closed orbit that is retrograde and centered at a distance Rm from
the galaxy’s center (see Fig. 25). Such a reference frame corresponds to the epicycle’s
own coordinate system in which the equilibrium point is stationary and the closed path
simply traces the epicycle itself.

To obtain a closed orbit in a noninertial reference frame, we need not necessarily choose
an angular pattern speed that equals the unperturbed orbital angular speed *. Instead, we
could choose to have the star complete n orbits as seen in the rotating frame while executing
m epicycle oscillations (where n and m are positive or negative integers), after which time
the star would be back at its starting point. That is, we could choose m(*−*ℓp) = nκ , or

*ℓp(R) = *(R) − n

m
κ(R). (39)

Note that this is a local pattern speed, so*ℓp is a function of R. Although in principle, there
are an infinite number of local pattern speeds at each R, only a small number of values for
n and m produce substantial enhancements in mass density.1

Figure 26 shows the rotation of a coordinate system for which the local pattern
speed corresponds to (n = 1, m = 2), together with the position of the star at one point.
Figure 27 shows the motion of the star as seen in four rotating reference frames with
(n, m) = (0, 1), (1, 2), (2, 3), and (1, 4). The position of the star that was indicated in
Fig. 26 corresponds to the same position in Fig. 27(a).

Now imagine a large number of stars at various distances R from the center of a spiral
galaxy, all observed in a reference frame rotating with the global angular pattern speed*gp.
If we consider the case (n, m) = (1, 2) and if the local pattern speed*ℓp = *(R) − κ(R)/2
is a constant for all values of R, then we can set*gp = *ℓp. Seen from the noninertial frame,
the resulting orbital patterns could be nested with their major axes aligned, as illustrated in
Fig. 28(a). The structure that results bears a significant resemblance to the bars present
in roughly two-thirds of all spiral galaxies. Of course, we could also orient each successive
oval-shaped orbit so that its major axis is rotated slightly relative to the one immediately
interior to it. In this example the result is a trailing two-armed grand-design spiral wave

1 This problem is analogous to situations encountered within the Solar System. For example, the orbital resonances
of Saturn’s moons (primarily Mimas) with particles in the planet’s ring system produce gaps in the rings. In addition,
small integer ratios between Jupiter’s orbital period and the orbital periods of asteroids result in either increases
or decreases in the number of asteroids having certain orbital radii.

5

5
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FIGURE 26 A noninertial coordinate system, (xp, yp), rotating within a fixed inertial frame
(x, y) with the local angular pattern speed *ℓp = *− κ/2, for which (n = 1, m = 2). The dashed
line corresponds to the perfectly circular motion of the equilibrium point, and the solid line represents
the orbital motion of the star in the galaxy’s inertial reference frame. The position of the star on the
diagram, along with the position of the noninertial coordinate system, corresponds to one-eighth of
the orbital period of the equilibrium point.

(2, 3)

(1, 4)

xpxp

ypyp

(0, 1)
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(a) (b)

FIGURE 27 Stars appear to trace out closed orbits in noninertial coordinate systems that rotate
with appropriately chosen angular pattern speeds. The motion of a star as it would appear in coordinate
systems having local angular pattern speeds corresponding to (n, m) values of (a) (0, 1) = solid line,
(1, 2) = dashed line, (b) (2, 3) = solid line, and (1, 4) = dashed line.
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(a) (b)

FIGURE 28 (a) Nested oval orbits with aligned major axes, as seen in a reference frame rotating
with the global angular pattern speed (n = 1, m = 2), or *gp = *− κ/2. The result is a bar-like
structure. (b) Each oval is rotated relative to the orbit immediately interior to it. The result is a
two-armed grand-design spiral density wave.

pattern, shown in Fig. 28(b). Twisting the ovals in the opposite sense would result in a
leading two-armed spiral. The two-armed spiral M51 (Fig. 17) is an example of a trailing-
arm, (n = 1, m = 2) pattern structure, while the four-armed spiral M101 [Fig. 5(c)] is
an (n = 1, m = 4) system. Patterns with m = 2 are the most common type of density wave
structure.

It is important to remember that the individual stars are following their own orbits in
an inertial reference frame and that these orbits appear only as simplified oval shapes in a
reference frame that is rotating with the local angular pattern speed. Furthermore, even in
the rotating frame the stars themselves are still moving along the oval orbits. Only the spiral
pattern appears to be static in that frame (if we still assume that*gp = *ℓp, independent of
R); in the nonrotating inertial frame the spiral pattern will appear to move with an angular
speed of *gp. It is the “traffic jam” of stars becoming packed together where their oval
orbits approach one another that leads to the density waves.

The stability of the structures shown in Fig. 28 depends crucially on whether *ℓp =
*(R) − κ(R)/2 is actually independent of R—that is, on whether there is an appropriate
global value of *gp. Figure 29 shows curves of *(R) − nκ(R)/m with several ratios
of n/m for one model of our Galaxy. Notice that *− κ/2 is nearly flat over a wide range
of values for R, a fact first realized by the Swedish astronomer Bertil Lindblad (1895–
1965). The same general behavior is exhibited by a large number of spiral galaxies and
probably accounts for the prevalence of two-armed spirals. Of course, *− κ/2 is not
exactly constant with respect to galactocentric radius, so some drifting of epicycle orbits
relative to one another does occur, leading once again to a winding problem. However, in
this case the winding occurs for density waves rather than material waves, and because the
relative drift is slower, the winding takes about five times longer to develop. If a means can
be found to stabilize the galaxy against this remnant winding effect, the original Lin–Shu
hypothesis of a quasistatic density wave will be realized.

Lindblad, Corotation, and Ultraharmonic Resonances

Since *− κ/2 is not exactly constant across the entire galactic disk, stars at varying radii
do not encounter the spiral arms at precisely the same point in their epicyclic paths on
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FIGURE 29 The Bahcall–Soneira model of our Galaxy has been used to construct the functions
*ℓp = *− nκ/m for various ratios of n/m. Note the nearly constant curve for n/m = 1/2 over
much of the Galactic disk. (Figure adapted from Binney and Tremaine, Galactic Astronomy, Princeton
University Press, Princeton, NJ, 1987.)

successive passages through the density waves. However, there are certain radii for which
this can happen and a resonance develops, analogous to the resonance that can occur when a
spring is forced to oscillate at its natural frequency. For instance, if a star is at its maximum
value ofχ (Eq. 36) each time it encounters a density wave, the perturbation it experiences
due to the local increase in density and gravitational potential will always be in the same
sense, and the effect will be cumulative. A similar argument applies to each of the local
pattern speeds, such as *ℓp = *(R) and *ℓp = *(R) + κ/2.

This amplification can occur at several radii in a galaxy, depending on its mass distribution
and its resulting rotation curve.An inner Lindblad resonance exists when the local angular
pattern speed of the star equals the global angular pattern speed of the density wave for the
case when*gp = *− κ/2 for n/m = 1/2. It is possible that either zero, one, or two inner
Lindblad radii may exist for a given galaxy, depending on the shape of the rotation curve. A
corotation resonance can occur if *gp = * for some value of R, and an outer Lindblad
resonance might exist if*gp = *+ κ/2. The ultraharmonic resonance may also develop
for*gp = *− κ/4. The inner rings of galaxies such as NGC 7096 and M81 [Figs. 5(a)
and (b)] are apparently due to either inner Lindblad resonances or ultraharmonic resonances,
while the outer rings of galaxies like NGC 4340 [Fig. 4(f)] are found at the outer Lindblad
resonance.The positions of the Lindblad and corotation resonances are depicted in Fig. 30
for two different rotation curves.

Resonances have the effect that epicycle oscillation amplitudes increase dramatically. As
a result, collisions of gas clouds should also increase significantly at resonance positions,
and energy will be dissipated. Consequently, resonance locations (if they exist in a specific
galaxy) can actually lead to damping of spiral waves unless other processes are capable of

Note that we are now going beyond the assumption made on page 969 that the density waves make an insignificant
contribution to the gravitational field.
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FIGURE 30 The existence of resonance radii depends on the global angular pattern speed of the
arms and the shape of the galaxy’s rotation curve. (a) A galaxy with a single inner Lindblad resonance
(ILR), a corotation resonance (CR), and an outer Lindblad resonance (OLR). (b) A galaxy with two
ILRs, a CR, and no OLR. Note that for sufficiently large values of *gp , there may not be any ILRs.

continually building the waves back up again. This situation is analogous to that of stellar
pulsation regions of partial ionization (primarily hydrogen and helium) drive pulsations,
while other regions of the star damp the oscillations.

Nonlinear Effects in Density Wave Theory

Despite a great deal of work, a complete understanding of density waves has not yet been
fully realized. For instance, various effects not considered in the simple model presented here
may play important roles, such as nonlinear (higher-order) terms in,eff (recall Eq. 28).
Also, the waves themselves alter the gravitational potential in which they originate so that
azimuthal symmetry breaks down.

One important driving mechanism in a number of grand-design spirals, including M51
(Fig. 17), is the presence of a companion galaxy that triggers spiral structure through tidal

Numerical N-Body Simulations

An important example of a nonlinear N -body simulation of a rotating disk is one that was
calculated in an early work by F. Hohl in 1971 (see Fig. 31). In that calculation, 105

stars were initially placed in axisymmetric orbits (t = 0), but as the simulation progressed,
Hohl’s model proved to be very unstable against the development of the m = 2 pattern (also
known as the m = 2 mode), and a two-armed spiral density wave developed (t = 2.0). As
the simulation continued, the disk became “hot,” meaning that the velocity dispersion of

;
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interactions. A more detailed discussion of the physical driving mechanisms that help 
to establish and maintain density waves is beyond the level of the current discussion, 
but it is worth pointing out that the techniques for studying spiral density waves have 
much in common with the theoretical procedures used to investigate stellar pulsation; 
both linear and nonlinear models have been employed in the investigation of spiral 
structure.



t = 0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 4.0 t = 5.0

t = 6.0 t = 8.0 t = 10.0

FIGURE 31 An early study of a rotating disk with an N -body simulation using 105 stars. The disk
began with complete axial symmetry and quickly developed an m = 2 mode instability. Eventually
the disk “heated up,” destroying the spiral arms but leaving a long-lived bar. (Figure from Hohl, Ap.
J., 168, 343, 1971.)

its stars became large relative to their orbital velocities, and the spiral structure dissipated.
Interestingly, a bar instability persisted throughout the rest of the simulation, and the final
structure bears a strong resemblance to an SB0 galaxy.

Such bar instabilities have proved themselves to be common features in N -body calcu-
lations. Apparently a rotating disk is highly susceptible to a bar-mode instability, at least on
computers. Of course, there is strong support for the idea that bar modes are favored in real
galaxies as well, since roughly two-thirds of all disk galaxies do exhibit bar-like structures
in their centers.

Hohl’s work does suggest one possible means of stabilizing disks against various mode
instabilities: the presence of high-velocity dispersions of its stars. In his original simulations,
Hohl’s bar heated the disk, destroying the m = 2 trailing-arm mode.

disks of spiral galaxies.
Tidal interactions and/or mergers may also play important roles in heating the
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In modern N -body simulations, models have also included the effects of highly cen-
tralized masses, such as the gravitational influence of supermassive black holes. Various
researchers have shown that the inclusion of sufficiently condensed and massive central
mass concentrations can weaken, and even destroy, the bar instability. Most studies find
that a mass on the order of a few percent of the mass of the galaxy’s disk is required in order
to affect the bar.

Stochastic, Self-Propagating Star Formation

Although most of the discussion found in this section has focused on the Lin–Shu hypothesis
of quasistatic density waves and the existence of grand-design spirals, many of the galaxies
observed in the universe are flocculent spirals. It may be that these objects are composed
of a linear combination of several stable density perturbations (somewhat reminiscent of
modes in stellar oscillations), along with sufficient patchiness in the interstellar medium to
give the appearance of less well-defined spirals. Alternatively, it may be that an entirely
different mechanism is responsible for the spiral structure seen in these galaxies.

In 1976 M. W. Mueller and W. David Arnett proposed a theory of spiral structure for
flocculent spirals known as stochastic, self-propagating star formation (SSPSF). In their
theory they imagine spiral structure arising from outbursts of star formation that propagate
across the galaxy. When one region of the galaxy undergoes a star formation episode, its
most massive stars will age rapidly, producing core-collapse supernovae. The supernovae
shock waves will travel through the interstellar medium, triggering the collapse of other
gas clouds in nearby regions, where further star formation will occur, allowing the process
to continue. This scheme has been compared to a forest fire, with the flames jumping from
tree to tree. Spiral structure arises when the differential rotation of the galaxy draws these
newly “lit” regions into trailing arms.

Although SSPSF has been successful in producing flocculent spiral structure in computer
simulations, it is unable to account for the transitions from dust lanes to OB stars to red stars
across the spiral arms of grand-design spirals, so it probably cannot explain those galaxies.
Of course, it may well be that we will need both of these theories (and perhaps others) to
understand the abundance of spiral structure found throughout the universe.

4 ELLIPTICAL GALAXIES

Although Hubble type correlates well with a wide variety of physical parameters for late-
type galaxies, thereby ensuring its continued usefulness for those systems, the Hubble-type
designation for early galaxies (which is based solely on apparent ellipticity) has shown
itself to be virtually irrelevant in terms of trying to categorize other characteristics. As a
result, subtype distinctions are made for ellipticals that are independent of the ellipticity,
focusing instead on other morphological features, such as the size, absolute magnitude, and
surface brightness of the image. Once thought to be the simplest of the major galaxy types,
since the 1980s ellipticals have come to be seen as remarkably diverse and complex.

environmental evolution,
possibly involving tidal interactions or mergers with neighboring galaxies.
Some of this complexity may arise, at least in part, from strong
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Morphological Classes of Elliptical Galaxies

Today a number of separate morphological classes are commonly used to distinguish among
the elliptical galaxies:

• cD galaxies are immense, but rare, bright objects that sometimes measure nearly
1 Mpc across and are usually found only near the centers of large, dense clusters of
galaxies. Their absolute B magnitudes range from less than −22 mag to −25 mag,
and they have masses of between 1013 and 1014 M⊙. cD galaxies are characterized
by having central regions with high surface brightnesses (µ = 18 B-mag arcsec−2)
and very extended, diffuse envelopes (µ = 26 to 27 B-mag arcsec−2). They may
also possess tens of thousands of globular clusters, with typical specific frequencies,
SN , of 15 (see Eq. 15). Furthermore, these galaxies are known to have very high
mass-to-light ratios, sometimes exceeding 750 M⊙/L⊙, implying large quantities of
dark matter.

• Normal elliptical galaxies are centrally condensed objects with relatively high
central surface brightnesses. They include the giant ellipticals (gE’s), intermediate-
luminosity ellipticals (E’s), and compact ellipticals (cE’s). The absolute B magnitudes
of normal E’s range from −15 to −23, masses of between 108 and 1013 M⊙, diame-
ters from less than 1 kpc to nearly 200 kpc, mass-to-light ratios from 7 to more than
100 M⊙/L⊙, and specific frequencies of globular clusters in the range of 1 to 10.
Lenticular galaxies (S0’s and SB0’s) are often grouped with normal E’s.

• Dwarf elliptical galaxies (dE’s) have surface brightnesses that tend to be much lower
than those of cE’s of the same absolute magnitude. The absolute B magnitudes of
dE’s fall between −13 and −19, they have typical masses of 107 to 109 M⊙, and their
diameters are on the order of 1 to 10 kpc. Their metallicities also tend to be lower
than for normal E’s. The average value of the specific frequency of globular clusters
is ⟨SN ⟩ = 4.8 ± 1.0, which is still higher than for spirals.

• Dwarf spheroidal galaxies (dSph’s) are extremely low-luminosity, low-surface-
brightness objects that have been detected only in the vicinity of the Milky Way.
Their absolute B magnitudes are only −8 to −15 mag, their masses are roughly 107

to 108 M⊙, and their diameters are between 0.1 and 0.5 kpc.

• Blue compact dwarf galaxies (BCD’s) are small galaxies that are unusually blue,
with color indices ranging from ⟨B − V ⟩ = 0.0 to 0.3. This corresponds to main-
sequence stars of spectral class A, indicating that these galaxies are undergoing
particularly vigorous star formation. They have absolute B magnitudes of −14 to
−17, masses on the order of 109 M⊙, and diameters of less than 3 kpc. As is ex-
pected for very active star formation, BCD’s also have a large abundance of gas, with
MH I = 108 M⊙ and MH II = 106 M⊙ constituting roughly 15% to 20% of the entire
mass of the galaxy. They also have correspondingly low mass-to-light ratios; in an
extreme case, ESO400−G43 has M/LB = 0.1 despite the dominance of dark matter
at large radii.
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TABLE 3 Characteristic Data for cD, Elliptical, and Lenticular Galaxies.

cD E S0/SB0
MB −22 to −25 −15 to −23 −17 to −22
M (M⊙) 1013–1014 108–1013 1010–1012

Diameter (D25, kpc) 300–1000 1–200 10–100
⟨M/LB⟩ (M⊙/L⊙) > 100 10–100 ∼ 10
⟨SN ⟩ ∼ 15 ∼ 5 ∼ 5

TABLE 4 Characteristic Data for Dwarf Elliptical, Dwarf Spheroidal, and Blue Compact
Dwarf Galaxies.

dE dSph BCD
MB −13 to −19 −8 to −15 −14 to −17
M (M⊙) 107–109 107–108 ∼ 109

Diameter (D25, kpc) 1–10 0.1–0.5 < 3
⟨M/LB⟩ (M⊙/L⊙) ∼ 10 5–100 0.1–10
⟨SN ⟩ 4.8 ± 1.0 — —

Tables 3 and 4 summarize some of the characteristics of early-type galaxies. Lentic-
ular galaxies have also been included in the list, since they appear to have much in common
with many ellipticals.

Surface Brightness Profiles

cD’s and normal ellipticals have surface brightness profiles that closely follow the r1/4 law
(Eq. 2). As an example, the brightness profile of NGC 3379, a gE galaxy, is shown in
Fig. 32. However, as the mass of the galaxy decreases, there is a fairly smooth transition
over to an exponential profile (Eq. 3). This is particularly true of dE’s and dSph’s.

Dust and Gas in Elliptical Galaxies

The low gravitational binding energy of dE’s and dSph’s means that it would be very difficult
for these galaxies to retain a significant amount of gas, which is indeed what is observed.
In fact, dSph’s are virtually devoid of gas. Consequently, dE’s and dSph’s are not actively
forming stars today. Moreover, they have very low metallicities, with values similar to those
found in globular clusters. It has been suggested that these systems lost most of their gas via
supernova-driven mass loss or by ram-pressure stripping as the galaxies passed through
the gas found in clusters of galaxie .

For many years it was believed that all elliptical galaxies had been largely stripped
of any dust or gas that had not yet formed into stars or, alternatively, that star formation
had proceeded very efficiently during the earliest history of these galaxies, depleting all
available gas. However, we have now come to realize that gas and dust are present within
most normal elliptical galaxies, albeit at somewhat diminished levels relative to spirals.

s
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FIGURE 32 The surface brightness profile of the giant elliptical galaxy NGC 3379 is well
represented by an r1/4 law. (Figure adapted from de Vaucouleurs and Capaccioli, Ap. J. Supp., 40,
699, 1979.)

The hydrogen gas that is present in E/S0’s is usually evident in several forms. A 107 K
X-ray-emitting hot-gas component of 108 to 1010 M⊙ makes up the majority of all the gas
that is present in a typical E/S0 galaxy. (Possible heating mechanisms include supernovae
and stellar winds.) A warm-gas component (104 to 105 M⊙ at 104 K), observable in Hα, is
also present in the form of H II regions. Furthermore, 107 to 109 M⊙ of cold H I (∼ 102 K) is
detectable at 21 cm. CO emission studies indicate that 107 to 109 M⊙ of molecular hydrogen
can be found in early-type galaxies as well.

Astronomers have also discovered that perhaps 50% of all elliptical galaxies contain
appreciable amounts of dust, with typical masses in the range of 105 to 106 M⊙. One in-
triguing observation is that there exist dust lanes that are essentially randomly oriented with
respect to their parent galaxy’s optical-light axes. Frequently, the dust is even found to be
counter-rotating relative to the rotation direction of other (stellar) components. Apparently,
much of this gas was acquired after the initial formation of the galaxy.

Metallicity Gradients and Color Gradients

As we saw in Fig. 12 during our discussion of spirals, the metallicity of elliptical galaxies
is well correlated with luminosity; brighter galaxies have higher overall metal content.
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Furthermore, as with spiral galaxies, metallicity gradients and color gradients also exist in
ellipticals. Generally, the central regions of E’s are redder and more metal-rich than are
regions at larger radii. This trend can be expressed in terms of the gradient of the mass
fraction of metals found in the distribution of stars; typically d log10 Z/d log10 r ≈ −0.13.
The same is also true for lenticular galaxies. In addition, the disks of S0’s are bluer than
their bulges, as is the case for galaxies of later Hubble type [for S0’s, (U − V )disk − (U −
V )bulge ∼ −0.1 to −0.5]. Any successful theory of galaxy formation must incorporate the
available observations concerning chemical enrichment.

The Faber–Jackson Relation

One relationship that dE’s, dSph’s, normal E’s, and the bulges of spirals all have in common
is the correlation between their central radial-velocity dispersion and MB . This relation
is shown in Fig. 33. To see why the relation arises, we begin with the result of the
virial theorem for the central radial-velocity dispersion of a spherically symmetric mass
distribution (Eq. 13). In that case we made the simple approximation that a mass M

was uniformly distributed throughout a volume of radius R. Now, if we further assume that
the mass-to-light ratio is essentially constant for all galaxies and that their average surface
brightnesses are all equal (assumptions that were also made in “deriving” the Tully–Fisher
relation), we arrive at the result

L ∝ σ 4
0 , (40)

where σr has been replaced by σ0 to signify that the central value for the radial-velocity
dispersion is being assumed. This relationship was first identified by Sandra Faber and
Robert Jackson and is now referred to as the Faber–Jackson relation. Expressing the
luminosity in solar units, taking the logarithm of both sides of the equation, and writing
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FIGURE 33 The Faber–Jackson relation represents a correlation between central velocity dis-
persion and luminosity. The relation is a consequence of the virial theorem. (Data from Bender et al.,
Ap. J., 399, 462, 1992.)
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log10(L/L⊙) as a difference in MB’s we find the linear relationship between log10 σ0 and
MB illustrated in Fig. 33, namely

log10 σ0 = −0.1MB + constant. (41)

[Note the resemblance to the Tully–Fisher relations given by Eqs. ( 5– 7) if those
expressions are solved for log10 Vmax.]

The Fundamental Plane

As is readily apparent by inspecting Fig. 33, there is considerable scatter in the data.
This is further reflected in the fact that the slope of the best-fit line through the data differs
slightly from the one found in Eq. ( 41). Apparently Eq. ( 40) is not strictly true, which
should not be surprising given the assumptions made in its development. Depending on the
sample set used, L ∝ σα0 , with 3 < α < 5.

In an effort to find a tighter fit to the data, astronomers have introduced a second parameter
into the expression, the effective radius. One representation of this fit is

L ∝ σ 2.65
0 r0.65

e . (42)

Here, galaxies are visualized as residing on a two-dimensional “surface” in the three-
dimensional “space” represented by the coordinates L, σ0, and re. Known as the fun-
damental plane, Eq. ( 42) combines the contributions of a galaxy’s gravitational well
(σ0) with its radius and luminosity. Alternatively, the fundamental plane can be written in
terms of the effective surface brightness of a galaxy at its effective radius:

re ∝ σ 1.24
0 I−0.82

e . (43)

The fundamental plane appears to represent the whole family of elliptical galaxies and
seems to imply something about the formation of these systems.

The Effects of Rotation

Parameterizations such as the fundamental plane do a much better job of classifying ellip-
ticals than Hubble’s original scheme based on ellipticity. But then, what is the source of a
galaxy’s shape? Although the answer is not yet entirely clear, it is evident that most ellip-
ticals are not purely oblate or prolate rotators with two axes, but are triaxial, meaning that
there is no single preferred axis of rotation. We have already encountered this situation in
the randomness of the dust lanes found in at least one-half of all ellipticals. Further evidence
exists in the frequent observations of counter-rotating stellar cores in as many as 25% of
larger ellipticals. It appears that in at least some of these cases, material in the form of gas,
dust, globular clusters, or dwarf galaxies has been captured sometime since the galaxy’s
formation.

When the rotational velocities of elliptical galaxies are measured, we find that the more
luminous ones have mean rotational velocities that are much less than their velocity disper-
sions, implying that the shapes of these galaxies are not due to rotation. Instead, their

,
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shapes are caused by the anisotropic velocity dispersion of stars in the galaxies. In
one particularly extreme case, the luminous E4 galaxy, NGC 1600 (MB = −22.87), has
Vrot = 1.9 ± 2.3 km s−1 and Vrot/σ < 0.013; it has no unique axis of rotation that is sta-
tistically significant.

If the ellipticity, ϵ (Eq. 1), of a galaxy were due to its being an ideal, oblate rotator
with an isotropic stellar velocity distribution, then it can be shown that

(

Vrot

σ

)

isotropic
≈
(

ϵ

1 − ϵ

)1/2

.

For NGC 1600 this means that if its ellipticity of ϵ = 0.4 were due to pure rotation, then
Vrot/σ should be approximately 0.8. Defining the rotation parameter (V/σ )∗ to be

(V/σ )∗ ≡ (Vrot/σ )observed

(Vrot/σ )isotropic

gives (V/σ )∗ < 0.016 for NGC 1600. Although the distinction is somewhat arbitrary, a
galaxy is considered to be primarily rotationally supported if (V/σ )∗ > 0.7.

Bright E’s and gE’s have typical values of ⟨(V/σ )∗⟩ ≈ 0.4 and are pressure-supported,
meaning that their shapes are due primarily to random stellar motions. In addition, the
diffuse, faint dwarf E’s have predominantly anisotropic velocity dispersions and are also
pressure-supported. On the other hand, galaxies for which −18 > MB > −20.5 mag have
⟨(V/σ )∗⟩ ≈ 0.9, implying that they are largely rotationally supported (this includes the
cE’s). Interestingly, the bulges of spiral galaxies tend to be rotationally supported as well.

Correlations with Boxiness or Diskiness

In 1988 Ralf Bender, Jean-Luc Nieto (1950–1992), and their collaborators proposed that
many of the characteristics of elliptical galaxies can be understood in terms of the degree
of boxiness or diskiness that their isophotal surfaces exhibit. As a means of quantifying
the deviation from an elliptical shape, the shape of an isophotal contour (defined for some
specific value of µ) is written in polar coordinates as a Fourier series of the form

a(θ) = a0 + a2 cos (2θ) + a4 cos (4θ) + · · · , (44)

where a is the contour’s radius and the angle θ is measured counterclockwise from the major
axis of the ellipsoid. The first term in the expansion represents the shape of a perfect circle,
the second term corresponds to the amount of ellipticity, and the third term is associated
with the degree of boxiness. If a4 < 0, the isophotal surface tends toward a “boxy” ap-
pearance, and if a4 > 0, the surface tends toward being “disky” (see Fig. 34). Typically,
|a4/a0| ∼ 0.01, with deviations from perfect ellipses routinely measured to an accuracy of
approximately 0.5%.

Figure 35 shows the correlations of various quantities with the isophotal Fourier
parameter a4, measured in units of 100a4/a0. The upper left-hand panel illustrates that
disky galaxies tend to be rotationally supported [with larger values of (V/σ )∗], while boxy

An anisotropic velocity distribution is one for which one or two directions of motion are preferred, rather than
being completely random in all three dimensions, as in an isotropic distribution.

17
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FIGURE 34 Two examples of galaxies with ϵ = 0.4. |a4/a0| has been set to the rather large
value of 0.03 to illustrate the effect. The solid line represents a “boxy” galaxy (a4/a0 < 0), and the
dashed line represents a “disky” galaxy (a4/a0 > 0).
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FIGURE 35 The correlations of various parameters with a4 (isophotal shape). “Disky” ellipticals
have a4 > 0, while “boxy” ellipticals have a4 < 0. (Figure adapted from Kormendy and Djorgovski,
Annu. Rev. Astron. Astrophys., 27, 235, 1989. Reproduced with permission from the Annual Review
of Astronomy and Astrophysics, Volume 27, ©1989 by Annual Reviews Inc.)
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galaxies are largely pressure-supported. The lower left-hand panel indicates the deviation
of the core mass-to-light ratio (measured in the V band) from the average value for galaxies
of the same luminosity; boxy galaxies tend to have higher-than-average ratios, while disky
galaxies have lower-than-average values. The panel in the lower right-hand corner shows
that boxy ellipticals tend to be much brighter at radio wavelengths than are disky galaxies.
However, the spread in the radio luminosities of boxy galaxies is quite large, while the
variation in radio luminosity for disky galaxies is much smaller. The same sort of correlation
is found in other wavelength regions as well (such as X-ray, UV, and Hα). For disky E’s, the
sources of X-rays tend to be consistent with compact sources only, as is the case for S0’s,
while boxy E’s show evidence of diffuse sources (i.e., hot gas). Finally, the upper right-
hand panel indicates that ellipticity (and therefore Hubble type) tends to increase with the
absolute value of a4 (|a4|). However, this suggests that two galaxies of identical Hubble type
could have very different characteristics when other physical parameters are considered. For
instance, for two E4 galaxies (ϵ = 0.4), one could be rotationally supported (a4 > 0) while
the other is pressure-supported (a4 < 0), and the former galaxy would probably have a core
mass-to-light ratio lower than average while the latter galaxy would have a higher-than-
average core mass-to-light ratio.Also, the former galaxy would have a low radio luminosity,
and the latter might have a much higher radio luminosity.

Other parameters also seem to be associated with the boxiness or diskiness of a galaxy.
Whereas rotationally supported disky galaxies have relatively large ratios of rotational an-
gular momentum to mass (specific angular momentum), pressure-supported boxy galaxies
have rather low ratios. Boxy galaxies are frequently observed to contain counter-rotating
cores, while disky galaxies rarely possess counter-rotating cores. Finally, disky galaxies
generally have rotational symmetries that are oblate, and boxy galaxies tend to be much
more triaxial.

Although it is likely that the degree of boxiness among galaxies represents a continuum
rather than two distinctly different classes of objects, apparently some 90% of all ellipticals
are generally disky in nature. It has been suggested that disky galaxies may simply represent
an extension of the sequence of S0’s to progressively smaller and smaller disk-to-bulge
ratios, and that some disky galaxies are actually misclassified S0’s. However, boxy galaxies
may well represent a tell-tale signature of some level of environmental evolution, such as
tidal interactions or merger

The Relative Numbers of Galaxies of Various Hubble Types

Before leaving the discussion of morphology, it is important to address the question of the
relative numbers of galaxies of various Hubble types. This is usually represented by the
luminosity function, φ(M) dM , defined to be the number of galaxies in a particular sample
that have absolute magnitudes between M and M + dM . Figure 36 shows luminosity
functions for two samples; the top graph is for galaxies located in the vicinity of the Milky
Way and the bottom graph is for a sample of galaxies in the Virgo cluster of galaxies.

The total luminosity function in either environment is the sum of the
individual luminosity functions of each Hubble type.

In an attempt to find a general analytic fit to galactic luminosity functions, Paul Schechter
proposed the functional form

φ(L) dL ∼ Lαe−L/L∗
dL, (45)

s.
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FIGURE 36 Luminosity functions for two samples of galaxies. The top panel is based on a
sample of galaxies near the Milky Way Galaxy, and the bottom panel is for galaxies located in the
Virgo cluster of galaxies. The zero point of the log10 φ(M) axis is arbitrary. (Figure adapted from
Binggeli, Sandage, and Tammann, Annu. Rev. Astron. Astrophys., 26, 509, 1988. Reproduced with
permission from the Annual Review of Astronomy and Astrophysics, Volume 26, ©1988 by Annual
Reviews Inc.)

which can also be written in the equivalent form

φ(M) dM ∼ 10−0.4(α+1)Me−100.4(M∗−M)

dM. (46)

In both forms, α and L∗ (or M∗) are free parameters that are used to obtain the best possible
fit to the available data. For the data in Fig. 36, α = −1.0 and M∗

B = −21 for the local
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field of galaxies near the Milky Way, while α = −1.24 ± 0.02 and M∗
B = −21 ± 0.7 for

the Virgo cluster. Although the values are similar, it is clear that there is not a universal
luminosity function. Instead, each luminosity function depends on the environment of the
particular sample of galaxies.

As can be seen for either environment depicted in Fig. 36, dE’s and dwarf irregulars
represent the largest fraction of all galaxies, even though S’s and E’s are the most prominent
in terms of both cluster luminosity and mass. Careful inspection of the figures also shows
another important detail: Although spirals represent the largest fraction of bright galaxies in
each case, there is a somewhat higher proportion of ellipticals in the Virgo cluster. When the
Virgo cluster is compared with the much larger and more densely populated Coma cluster,
the relative numbers of spirals and ellipticals change dramatically. In the Virgo cluster we
find 12% E’s, 26% S0’s, and 62% S+Ir, while in the Coma cluster, the proportions are 44%
E’s, 49% S0’s, and only 7% S+Ir. Once again there is evidence that environment plays a role
in galaxy formation and/or evolution
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PROBLEM SET

Using Shapley’s assumption that M101 has a diameter of 100 kpc, and adopting van Maanen’s
flawed observation of a measurable rotational proper motion, estimate the speed of a point at
the edge of the galaxy and compare it to the characteristic rotation speed of the Milky Way.

The Nature of Galaxies

1

2 (a) The absolute magnitude of M101, an Sc galaxy, is −21.51 in the B band. Using Eq. ( 11),
estimate its isophotal radius (R25) at 25 B-mag arcsec−2.

(b) Use the Tully–Fisher relation (Eq. 7) to estimate the rotational velocity of M101.

(c) Estimate the angular rotation speed of a star at R25, in units of arcsec yr−1.

(d) Could van Maanen have detected the rate of rotation of M101? How long would it take
for the galaxy to rotate through 1′′?

3 (a) From the data given in the table  below estimate MB for our Galaxy. Hint:
MB for the Sun in your calculations, not Mbol; see Appendi

(b) Using the Tully–Fisher relation, calculate the maximum rotation speed of the Galactic disk

Be sure to include
,

.

MB = −11.0 log10 Vmax + 3.31 (Sc).

4 Neglecting the effects of extinction and the K-correction, show that the surface brightness of
a galaxy is independent of its distance from the observer.

5 Prove that Eq. (2) follows directly from the following equation:

µ(r) = µe + 8.3268

[

(

r

re

)1/4

− 1

]

.

log10

[

I (r)

Ie

]

= −3.3307

[

(

r

re

)1/4

− 1

]

6 Prove that Eq. (3) follows directly from the  following equation:

µ(r) = µ0 + 1.09
(

r

hr

)

,

L(R, z) = L0e
−R/hR sech2(z/z0)

From Chapter 25 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.

log10 R25 = −0.249MB − 4.00 (11)

(7)

(2)

(3)

x:
Stellar Data.

.

.



7 (a) Show that the below equation can be written as

where b = 7.67.

(b) Integrating over the entire surface brightness profile, show that the luminosity of the galaxy
can be expressed in terms of re and Ie as

Ltot =
∫ ∞

0
2πr I (r) dr = 8! e7.67

(7.67)8
πr2

e Ie ≃ 7.22πr2
e Ie. (47)

Hint:
∫∞

0 e−xx7 dx = 7(8) = 7!.
(c) Recalling that Ie ≡ I (re), show that if the integration of Eq. ( 47) is carried over 0 ≤

r ≤ re rather than over 0 ≤ r < ∞, then the resulting luminosity is 1
2 Ltot , consistent with

the definition of re.

8 NGC 2639 is an Sa galaxy with a measured maximum rotational velocity of 324 km s−1 and
an apparent magnitude of B = 12.22 mag (after making corrections for extinction).

(a) Estimate its absolute magnitude in the B band from the Tully–Fisher relation.

(b) Determine the distance to NGC 2639 using its distance modulus.

(c) What is the galaxy’s radius (R25) at a surface brightness level of 25 B-mag arcsec−2?

(d) Find the mass of NGC 2639 that is interior to R25.

(e) What is the luminosity of the galaxy in the B band? (Refer to the hint in Problem 3.)

(f) Calculate the mass-to-light ratio for NGC 2639 in the B band, interior to R25.

9 Referring to the color indices (⟨B − V ⟩) given in Table 1 and Appendix: Stellar Data 
eestimate the average (or integrated) spectral classification of main-sequence stars in spiral

Sa, Sb, and Sc.

log10

[

I (r)

Ie

]

= −3.3307

[

(

r

re

)1/4

− 1

]

,

TABLE 1 Characteristics of Early Spiral Galaxies.

Sa Sb Sc
MB −17 to −23 −17 to −23 −16 to −22
M (M⊙) 109–1012 109–1012 109–1012
〈

Lbulge/Ltotal
〉

B
0.3 0.13 0.05

Diameter (D25, kpc) 5–100 5–100 5–100
⟨M/LB⟩ (M⊙/L⊙) 6.2 ± 0.6 4.5 ± 0.4 2.6 ± 0.2
⟨Vmax⟩ (km s−1) 299 222 175
Vmax range (km s−1) 163–367 144–330 99–304
pitch angle ∼ 6◦ ∼ 12◦ ∼ 18◦

⟨B − V ⟩ 0.75 0.64 0.52
〈

Mgas/Mtotal
〉

0.04 0.08 0.16
〈

MH2/MH I
〉

2.2 ± 0.6 (Sab) 1.8 ± 0.3 0.73 ± 0.13
⟨SN ⟩ 1.2 ± 0.2 1.2 ± 0.2 0.5 ± 0.2
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I (r) = Iee
−b[(r/re)

1/4−1],

galaxies of types



11 (a) From the data shown in Fig. 37 for the stellar rotational velocities near the center of
M31, estimate the amount of mass within 1′′ of the center of the galaxy. Compare your
answer with the value quoted in the text.

(b) Estimate the amount of mass within the central 1′′ based on the velocity dispersion data.
(c) Comment on the source of the asymmetries evident in Fig. 37. Recall Fig. 13.

10 Use the rotation curve data in Fig. 14 to estimate the mass within the central 1′′ of the center
of M32. Compare your answer with the value obtained using the velocity dispersion data in
Example 2.1     and with the estimated range quoted in that example.“The Nature of Galaxies”
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FIGURE 14 The stellar velocity dispersion and rotational velocities of stars near the center of
M32. Given the distance to M32 of 770 kpc, 1′′ corresponds to a linear distance from the center of
3.7 pc. (Data from Joseph, et al., Ap. J., 550, 668, 2001.)
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FIGURE 37 The stellar velocity dispersion and rotational velocities of stars near the center of
M31, measured along the major axis of the bulge. Given the distance to Andromeda of 770 kpc, 1′′

corresponds to a linear distance from the center of 3.7 pc. (Data from Bender et al., Ap. J., 631, 280,
2005.)
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16 Determine the epicycle axis ratio, χmax/ρmax, for a Keplerian orbit (a point mass orbiting a
central, spherically symmetric mass). Hint: Begin with Eq. (37).

17 Show that if the surface brightness of an elliptical galaxy follows the r1/4 law given by

re is given by

⟨I ⟩ = 3.607Ie.

15 (a) From the information given in the text, derive Eq. ( 37) for the square of the solar
epicycle frequency.

(b) Show that Eq. (38) follows directly from Eq. (37).

12 Beginning with the general expression for the position vector in rectangular coordinates

show that the vector can be represented in cylindrical coordinates by Eq. (16).

13 Show that the acceleration vector is given by Eq. ( 18) in cylindrical coordinates. Hint: Note
that the unit vectors êR and êφ are position-dependent and therefore time-dependent. You may
find their relationships with rectangular-coordinate unit vectors helpful.

14

d2r
dt2

=
(

R̈ − Rφ̇2) êR + 1
R

∂
(

R2φ̇
)

∂t
êφ + z̈êz,

κ2
0 = 2

40

R0

[

40

R0
+ ∂40

∂R

∣

∣

∣

∣

R0

]

.

κ2
0 = −4B(A − B).

κ2
0 = 2

40

R0

[

40

R0
+ ∂40

∂R

∣

∣

∣

∣

R0

]

.

log10

[

I (r)

Ie

]

= −3.3307

[

(

r

re

)1/4

− 1

]

,
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r = x î + y ĵ + zk̂,

r = RêR + zêz,

(16)

(18)

( )37

(38)

( )37

the below equation  then the average surface brightness over the area of a circular disk of
radius

κ2
0 = 2

40

R0

[

40

R0
+ ∂40

∂R

∣

∣

∣

∣

R0

]

. (37)

Estimate the amplitude of the Sun’s excursion in the radial direction relative to a perfectly 
circular orbit. Assume that the Sun is currently at the midpoint of its oscillation. Does your 
result represent a minimum or a maximum estimate of the actual deviation?



18 Show that the Holmberg radius of a galaxy obeying the r1/4 law is related to the galaxy’s
effective radius, re, and the corresponding isophotal surface brightness, µe, by

rH = re (4.18 − 0.12µe)
4 .

19 (a) Use the result of Problem 17 to show that ⟨µ⟩ = µe − 1.393 for an elliptical galaxy
that follows the r1/4 law.

(b) NGC 3091 has an effective radius of 10.07 kpc in the B band and an average surface
brightness within the effective radius of 52 B-mag arcsec−2. From this information,
determine µe in the B band.

(c) What is the Holmberg radius of NGC 3091? You may find the result of Problem 18
useful.

20 According to the virial theorem, the central radial-velocity dispersion is related to the mass
and size of the galaxy by σ 2

r ∝ M/R (see Eq. 13). Use arguments similar to those for the
Tully–Fisher relation to show that L ∝ σ 4

r , which is the Faber–Jackson relation, Eq. ( 40).

21 (a) From the data given in Fig. 33, estimate the slope of the curve that represents the best-fit
linear relationship.

(b) How does the slope in Fig. 33 compare with Eq. ( 41)? Why wouldn’t you expect
them to be exactly the same?

Mvirial ≈ 5Rσ 2
r

G
,

L ∝ σ 4
0 ,
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Hint: Begin by rewriting the r1/4 law in the form

I (r) = Iee
−α[(r/re)

1/4−1]

(13)
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FIGURE 33 The Faber–Jackson relation represents a correlation between central velocity dis-
persion and luminosity. The relation is a consequence of the virial theorem. (Data from Bender et al.,
Ap. J., 399, 462, 1992.)

You may also find it helpful to write your integral in such a way that the limits of integration 
extend from zero to infinity. This can be done by considering the definition of re.



24 Plot log10 φ(M), the logarithm of the Schechter luminosity function, for both the local field
of galaxies near the Milky Way and the Virgo cluster over the range −23 < MB < −12 (see
Eq. 46). Use the values of α and M∗ given in the text. To compare your results with those
given in Fig. 36, shift your data so that log 10 φ(−23) = 0 for both groups of galaxies.

The Nature of Galaxies: Problem Set

(b) Make a polar-coordinate plot of a as a function of θ for an E4 galaxy with a0 = 30 kpc and
a2 determined from the relationship found in part (a). Again assume that all higher-order
terms are identically zero.

(c) Make a polar-coordinate plot for the same E4 galaxy, but with a4 = 0.1a0.
(d) Make a polar-coordinate plot for the same E4 galaxy, but with a4 = −0.1a0.
(e) Comment on the general appearance of your last two plots. Which one looks more like a

lenticular galaxy?

22 (a) It is estimated that M31 has approximately 350 globular clusters. If its absolute visual
magnitude is −21.7, estimate the specific frequency for its clusters.

(b) NGC 3311 is a cD galaxy with an estimated 17,000 globular clusters and an absolute visual
magnitude of −22.4. Estimate the specific frequency of clusters in this galaxy.

(c) Discuss the problem of globular cluster statistics in the suggestion that cD galaxies are
due to mergers of already formed spiral galaxies.

23 (a) Find a general expression fora2, the coefficient of the first-order Fourier term in Eq. ( 44),
written in terms of a0 and ϵ (see Eq. 1).Assume that all higher-order terms are identically
zero for this part of the problem.

log10 σ0 = −0.1MB + constant.

a(θ) = a0 + a2 cos (2θ) + a4 cos (4θ) + · · · ,

ϵ ≡ 1 − β/α,

(41)

(44)

(1)
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FIGURE 36 Luminosity functions for two samples of galaxies. The top panel is based on a
sample of galaxies near the Milky Way Galaxy, and the bottom panel is for galaxies located in the
Virgo cluster of galaxies. The zero point of the log10 φ(M) axis is arbitrary. (Figure adapted from
Binggeli, Sandage, and Tammann, Annu. Rev. Astron. Astrophys., 26, 509, 1988. Reproduced with
permission from the Annual Review of Astronomy and Astrophysics, Volume 26, ©1988 by Annual
Reviews Inc.)

φ(M) dM ∼ 10−0.4(α+1)Me−100.4(M∗−M)

dM. (4 )6
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The Milky Way Galaxy

1 Counting the Stars in the Sky
2 The Morphology of the Galaxy
3 The Kinematics of the Milky Way
4 The Galactic Center

1 COUNTING THE STARS IN THE SKY

In this chapter we will explore the complex system of stars, dust, gas, and dark matter
known as the Milky Way Galaxy.1 Although it is possible to get at least a general idea
about the nature of other galaxies from our external viewpoint, studying our own Galaxy
has proved to be very challenging. As we will learn, we live in a disk of stars, dust, and gas
that severely impacts our ability to “see” beyond our relative stellar neighborhood when
we look along the plane of the disk. The problem is most severe when looking toward the
center of the Galaxy in the constellation Sagittarius. In Section 1 we will discover that
studying the distribution of stars while considering the effects of extinction provides us with
our first hint of what the Milky Way looks like from an outside perspective. In Section 2,
a detailed description of the many varying components of the Galaxy will be presented.

Much of what we know today about the formation and evolution of the Milky Way is
encoded in the motions of the Galaxy’s constituents, especially when combined with infor-
mation about variations in composition. Unfortunately, measuring the motions of the stars
and gas in the Galaxy is done from an observing platform (Earth) that is itself undergoing
a complex motion that involves the orbit of Earth around the Sun and the Sun’s elaborate
path around the Galaxy. In Section 3 we will investigate these motions, allowing us to
move from a description of motions relative to the Sun to motions relative to the center of

1Throughout the remainder of this text, we may refer to the Milky Way Galaxy alternately in the shortened forms
“the Galaxy” and “our Galaxy.”

Human beings have long looked up at the heavens and contemplated its vastness, propos-
ing various models to explain its form. In some civilizations the stars were believed to be 
located on a celestial sphere that rotated majestically above a fixed, central Earth.When 
Galileo made his first telescopic observations of the night sky in 1610, we started down a 
long road that has dramatically expanded our view of the universe.



the Galaxy. We will also be led to the remarkable conclusion that the luminous, baryonic
matter in the Galaxy is only a small fraction of what our Galaxy is composed of.

Finally, in Section 4, we will probe the center of the Milky Way and study the exotic
environment found there, including indisputable evidence for a supermassive black hole.

Way. We will also study the large-scale structure of the universe and trace our developing
understanding of the earliest moments of the universe and its ultimate fate.

Historical Models of the Milky Way Galaxy

As can be seen by even a casual observation of the dark night sky, an almost continuous
band of light appears to circle Earth, inclined about 60◦ with respect to the celestial equator
(see Fig. 1). It was Galileo who first realized that this Milky Way is a vast collection
of individual stars. In the mid-1700s, in order to explain its circular distribution across the
heavens, Immanuel Kant (1724–1804) and Thomas Wright (1711–1786) proposed that the
Galaxy must be a stellar disk and that our Solar System is merely one component within
that disk. Then, in the 1780s, William Herschel (1738–1822) produced a map of the Milky
Way based crudely on counting the numbers of stars that he could observe in 683 regions
of the sky (see Fig. 2). In his analysis of the data, Herschel assumed that (a) all stars

FIGURE 1 A mosaic of the Milky Way showing the presence of dust lanes. (Courtesy of The
Observatories of the Carnegie Institution of Washington.)

FIGURE 2 William Herschel’s map of the Milky Way Galaxy, based on a qualitative analysis of
star counts. He believed that the Sun (indicated by a larger star) resided near the center of the stellar
system. (Courtesy of Yerkes Observatory.)
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We will investigate other, more distant galaxies; we will study their 
morphologies and evolution, as well as the evolution of our own Milky



have approximately the same absolute magnitude, (b) the number density of stars in space
is roughly constant, (c) there is nothing between the stars to obscure them, and (d) he could
see to the edges of the stellar distribution. From his data, Herschel concluded that the Sun
had to be very near the center of the distribution and that the dimensions measured along
the plane of the disk were some five times greater than the disk’s vertical thickness.

Jacobus C. Kapteyn (1851–1922) essentially confirmed Herschel’s model of the Galaxy,
again using the technique of star counting. However, through the use of more quantitative
methods, Kapteyn was able to specify a distance scale for his model of the Galaxy. The
Kapteyn universe, as it is now called, was a flattened spheroidal system with a steadily de-
creasing stellar density with increasing distance from the center. A depiction of the Kapteyn
universe is shown in Fig. 3. In the plane of the Galaxy and at a distance of some 800 pc
from the center, the number density of stars had decreased from its central value by a factor
of two. On an axis passing through the center and perpendicular to the central plane, the
number density decreased by 50% over a distance of only 150 pc. The number density
diminished to 1% of its central value at distances of 8500 pc and 1700 pc in the plane and
perpendicular to the plane, respectively. Kapteyn concluded that the Sun was located 38 pc
north of the Galactic midplane and 650 pc from the center, measured along the Galactic
midplane.

To get some idea of how Kapteyn arrived at his nearly heliocentric (or Sun-centered)
model of the universe, recall the equation for the distance to a star whose absolute magnitude
is known

d = 10(m−M+5)/5.

Assuming a value for M (for instance, if the spectral class and luminosity class are known),
and measuring m at a telescope, the distance modulus m − M and the distance d are readily
obtained. And given the known coordinates of the star on the celestial sphere, its three-
dimensional position relative to Earth is determined.

In actuality, since the number of stars in any given region is so great, it is impractical to
estimate the distance to each individual star in the way just described. Instead, a statistical
approach is used that is based on counting the number of stars in a specified region down
to a predetermined limiting apparent magnitude. From this counting procedure, the number
density of stars at a given distance from the Sun can be estimated. We will discuss some

FIGURE 3 The Kapteyn universe. Surfaces of constant stellar number density are indicated
around the Galactic center. Note that the open circle does not represent the position of the Sun derived
by Kapteyn. Rather, the open circle was used as an estimate from which Kapteyn began his analysis
of the available data. (Figure from Kapteyn, Ap. J., 55, 302, 1922.)
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of the details of this method shortly. In his original study, Kapteyn used over 200 selected
regions of the sky.

During the years between 1915 and 1919, shortly before Kapteyn’s model was published,
Harlow Shapley (1885–1972) estimated the distances to 93 globular clusters using RR Lyrae

In analyzing his data, Shapley recognized that the globular clusters are not distributed
uniformly throughout space but are found preferentially in a region of the sky that is centered
in the constellation of Sagittarius, at a distance that he determined to be 15 kpc from the
Sun. Furthermore, he estimated that the most distant clusters are more than 70 kpc from the
Sun, over 55 kpc beyond the center. As a result, by assuming that the extent of the globular
clusters was the same as the rest of the Galaxy, Shapley believed that the diameter of the
Galaxy was on the order of 100 kpc, close to ten times the value proposed by Kapteyn.
Shapley’s picture of the Galaxy also differed from Kapteyn’s in another important way:
Kapteyn’s model located the Sun relatively near the center of the distribution of stars,
whereas Shapley’s Galactic center was much farther away.

We know today that both Kapteyn and Shapley were in error; Kapteyn’s universe was
too small and the Sun was too near the center, and Shapley’s Galactic model was too
large. Surprisingly, both models erred in part for the same reason: the failure to include in
their distance estimates the effects of interstellar extinction due to dust and gas. Kapteyn’s
selected regions were largely within the Galactic disk where extinction effects are most
severe; as a result, he was unable to see the most distant portions of the Milky Way, causing
him to underestimate its size. The problem is analogous to someone on Earth trying to
see the surrounding land while standing in a dense fog with limited visibility. Shapley, on
the other hand, chose to study objects that are generally found well above and below the
plane of the Milky Way and that are inherently bright, making them visible from great
distances. It is in directions perpendicular to the disk that interstellar extinction is least
important, although it cannot be neglected entirely. Unfortunately, errors in the calibration
of the period–luminosity relation used by Shapley led to overestimates of the distances to
the clusters. The calibration errors were traced to the effects of interstellar extinction

Interestingly, Kapteyn was aware of the errors that interstellar extinction could introduce,
but he was unable to find any quantitative evidence for the effect, even though researchers
suspected that dust might be responsible for the dark bands seen running across the Milky
Way (see Fig. 1). Further evidence for strong extinction could also be found in Shapley’s
own data; no globular clusters were visible within a region between approximately ±10◦ of
the Galactic plane, called the zone of avoidance. Shapley suggested that globular clusters
were apparently absent in the zone of avoidance because strong gravitational tidal forces
disrupted the objects in that region. In reality, interstellar extinction is so severe within the
zone of avoidance that the very bright clusters are simply undetectable. Clearly the problems
encountered by Kapteyn and Shapley in deducing the structure of our Galaxy point out the
difficulty of determining its general morphology from a nearly fixed location within the

.
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and W Virginis variable stars. Since these stars are easily identified in the clusters through 
their periodic variations in luminosity, it is a relatively simple matter to use their absolute 
magnitudes (obtained from a period–luminosity relation) to estimate their distances from 
the Sun. The distances to the variable stars correspond to the distances to the clusters in 
which they reside.



Galaxy’s disk. Unfortunately, given the immense distances involved, we are not likely to
be able to reach another, more favorable vantage point any time soon

The Effects of Interstellar Extinction

To see how interstellar extinction directly affects estimates of stellar distances,

we find

d = 10(mλ−Mλ−Aλ+5)/5 = d ′10−Aλ/5, (1)

where d ′ = 10(mλ−Mλ+5)/5 is the erroneous estimate of distance made when extinction is
neglected, and Aλ is the amount of extinction in magnitudes, and as a function of wavelength,
that has occurred between the star and Earth. Since Aλ ≥ 0 in all cases (after all, extinction
cannot make a star appear brighter), d ≤ d ′; the true distance is always less than the apparent
distance.

In the disk of the Milky Way the typical rate of extinction in visible wavelengths is
1 magnitude kpc−1, although that value can vary dramatically if the line of sight includes
distinct nebulae such as giant molecular clouds. Fortunately, it is often possible to estimate
the amount of extinction by considering how dust affects the color of a star (interstellar
reddening)

Example 1.1. Suppose that a B0 main-sequence star with an absolute visual magnitude
of MV = −4.0 is observed to have an apparent visual magnitude of V = +8.2. Neglecting
interstellar extinction (i.e., assuming naively that AV = 0), the distance to the star would
be estimated to be

d ′ = 10(V −MV +5)/5 = 2800 pc.

However, if it is known by some independent means (such as reddening) that the amount
of extinction along the line of sight is 1 mag kpc−1, then AV = kd mag, where k =
10−3 mag pc−1 and d is measured in pc. This gives

d = 10(V −MV −kd+5)/5 = 2800 × 10−kd/5 pc,

which may be solved iteratively or graphically, giving a true distance to the star of d =
1400 pc.

In this case the distance to the star would have been overestimated by almost a factor of
two if the effects of interstellar extinction were not properly accounted for.

Differential and Integrated Star Counts

As we have already mentioned, Kapteyn’s method of star counting was not based on directly
determining d for individual stars. Rather, the numbers of stars visible in selected regions
of the sky are counted over a specified apparent magnitude range. Alternatively, all stars
in the regions brighter than a chosen limit of apparent magnitude can be counted. These

.
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approaches are known as differential and integrated star counts, respectively. The tech-
nique of star counting is still used today to determine the number density of stars in the sky.
The distribution depends on a variety of parameters, including direction, distance, chemical
composition, and spectral classification. Such information is very helpful to astronomers in
their efforts to understand the structure and evolution of the Milky Way Galaxy.

Let nM(M, S,", r) dM be the number density of stars with absolute magnitudes be-
tween M and M + dM and attribute S that lie within a solid angle" in a specific direction
at a distance r from the observer (S could be composition or the Morgan–Keenan spectral

n(S,", r) =
∫ ∞

−∞
nM(M, S,", r) dM. (2)

If other specific information is also desired, those attributes could be included in S as well.
However, the amount of data required to carry out star count analyses is formidable and often
prohibitive; as the number of variables increases, so does the amount of data required. In
his original study, Kapteyn considered general star counts that tracked absolute magnitude
only, regardless of spectral class.

If the number density nM(M, S,", r) dM is integrated over the volume of a cone defined
by the solid angle " and extending from the observer at r = 0 to some distance r = d, the
result is NM(M, S,", d) dM , the total number of stars with absolute magnitudes in the
range M to M + dM that are found within that conical volume of space (see Fig. 4).
Using dV = "r2 dr in spherical coordinates, this is

NM(M, S,", d) dM =
[
∫ d

0
nM(M, S,", r)"r2 dr

]

dM. (3)

Equation ( 3) is the general expression for the integrated star count, written in terms of

d

W

Observer

FIGURE 4 An observer on Earth counting the number of stars within a specified range of
Morgan–Keenan spectral and luminosity types out to a distance d located within a cone of solid angle
". When the effects of interstellar extinction are considered, this is equivalent to counting the same
group of stars down to a corresponding apparent magnitude, m.

The Milky Way Galaxy

class, for example). According to the notation used here,  has units of pc−3mag−1, and the 
actual number density of stars having attribute S that lie within a solid angle Ω and located 
a distance r from the observer is given by

nM



the limiting distance, d . Note that this means that nM dM can be obtained from NM dM

(with limiting distance r) by differentiating:

nM(M, S,", r) dM = 1
"r2

dNM dM

dr
.

Of course, those stars sharing the same absolute magnitude will have different appar-
ent magnitudes because they lie at different distances from us. We can use Eq. ( 1)
to replace the limiting distance, d , with the apparent magnitude m. This results in
NM(M, S,", m) dM , the integrated star count written in terms of the limiting magni-
tude, m. (Note that the “bar” designation now indicates that the integrated star count is a
function of m rather than d .) Thus NM(M, S,", m) dM is the total number of stars with
absolute magnitudes in the range M to M + dM that appear brighter than the limiting
magnitude, m.

If the limiting magnitude is increased slightly, then the limiting distance becomes corre-
spondingly greater and the conical volume of space is extended to include more stars. The
increase in the number of included stars is

[

dNM(M, S,", m)

dm
dm

]

dM.

This defines the differential star count,

AM(M, S,", m) dM dm ≡ dNM(M, S,", m)

dm
dM dm, (4)

the number of stars with an absolute magnitude between M and M + dM that are found
within a solid angle" and have apparent magnitudes in the range between m and m + dm.

As a simple (and unrealistic) illustration of the use of integrated and differential
star counts, consider the case of an infinite universe of uniform stellar density [i.e.,
nM(M, S,", r) = nM(M, S) = constant] and no interstellar extinction (A = 0). Then
Eq. ( 3) becomes, after canceling dM ,

NM(M, S,", d) = nM(M, S)"

∫ d

0
r2 dr = " d3

3
nM(M, S).

(Note that when the last expression is considered over all directions, " = 4π and "d3/3
is just the volume of a sphere of radius d.) Expressing d in units of parsecs and writing it
in terms of the apparent magnitude m (Eq. 1), we have

NM(M, S,", m) = "

3
nM(M, S) 103(m−M+5)/5

= "

3
nM(M, S) eln 103(m−M+5)/5

= "

3
nM(M, S) e[3(m−M+5)/5] ln 10.
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Now, the differential star count formula is, from Eq. (4),

AM(M, S,", m) = dNM(M, S,", m)

dm

= ln 10
5
" nM(M, S) 103(m−M+5)/5

= 3 ln 10
5

NM(M, S,", m). (5)

If either NM(M, S,", m) or AM(M, S,", m) is known from observations, the equations
can be used to determine the spatial number density nM(M, S) dM .

Olbers’s paradox, a problem known since the time of Kepler but brought to the attention
of the general public by Heinrich Olbers (1758–1840). If we restrict our attention to the
Milky Way Galaxy only, the solution rests in its finite size and nonconstant stellar number
density. However, the resolution of Olbers’s paradox is not as simple when applied to the
universe as a whole

The modern process of gathering star count data involves the automated use of CCD
detectors to determine NM or AM . Traditionally, these data are then combined with stellar
number densities in the neighborhood of the Sun to estimate the number density of stars of
a given spectral type in other regions of the Galaxy. More recently, an iterative computer

2 THE MORPHOLOGY OF THE GALAXY

Armed with numerous examples of other galaxies beyond the Milky Way, together with the
data obtained from star counts and information gathered from various distance indicators,
abundance analyses, and so on, astronomers have been able to piece together a model of
the structure of our own Galaxy. However, it is important to point out that many of the
details of the model remain uncertain and may even change in significant ways as more
information becomes available. With that caveat, we will attempt to describe our current
understanding of the general morphology of the Galaxy in this section, leaving details of
its complex motions and fascinating nucleus until later in the chapter.

.
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The constant-density model just described suffers from a dramatic flaw. When it is 
used to calculate the amount of light received at Earth due to the stars contained in the 
solid angle Ω, the result diverges exponentially as m increases. This implies an infinite 
amount of light arriving from infinitely far away  This dilemma is one expression of

modeling approach has been used with some success. A general model, based in part on 
observations of other galaxies believed to be similar to the Milky Way, is superimposed 
on the data; through successive iterations, the density function, the amount of interstellar 
extinction, and variations in composition with position are fine-tuned until a satisfactory 
match to the original data is obtained. However, given the complexity of the data and 
analysis, significant uncertainties remain in our picture of stellar distributions within the 
Milky Way.



Distance to the Galactic Center

Just as Herschel and Kapteyn had believed, the Milky Way is a galaxy that possesses a
disk of stars, of which the Sun is one member. However, as Shapley had suspected, the Sun
does not reside near the center of the disk but is actually located roughly one-third of the
way out from the middle. As viewed from Earth, the center of the disk is in the direction of
the constellation of Sagittarius corresponding to a very compact emission source known as
Sgr A⋆ (see Section 4) at the J2000.0 equatorial coordinates

αSgr A⋆ = 17h45m40.0409s (6)

δSgr A⋆ = −29◦00′28.118′′. (7)

Face-on and edge-on diagrams of the Galaxy are given in Figs. 5 and 6, respectively.
Some of the details of the Galaxy’s components (to be discussed later) are presented in
Table 1.

The Sun’s distance from the center of the Galaxy, known as the solar Galactocentric
distance, R0, has been revised downward many times since Shapley’s first estimate of
15 kpc. In 1985 the International Astronomical Union (IAU) recommended a standardized
value of R0 = 8.5 kpc for the purpose of allowing direct comparisons of Galactic structure
among various researchers. (R0 is often used to normalize other distances in the Galaxy.)
However, a number of studies have found that the value of R0 is about 8 kpc. For example,
in 2003 Frank Eisenhauer and colleagues determined a value of 7.94 ± 0.42 kpc based on
astrometric and spectroscopic measurements of S2, the closest star to the Galactic center.
Given the remaining uncertainties in the distance to the Galactic center, and given the

FIGURE 5 An artist’s depiction of the Milky Way Galaxy seen face-on. The shapes of the spiral
arms and the length of the bar associated with the central bulge are based on currently available data.
The position of the Sun is shown. [Courtesy of NASA/JPL-Caltech/R. Hurt (SSC).]
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FIGURE 6 An edge-on diagram of the Galaxy, not strictly to scale; see Table 1.

common use of 8 kpc in the literature, in this text we will adopt a value of

R0 = 8 kpc (8)

for the solar Galactocentric distance.
The full diameter of the disk, including the dust, gas, and stars, is believed to be roughly

50 kpc, with estimates ranging from 40 to 50 kpc. Furthermore, it appears that the disk may
not be completely cylindrically symmetric. Rather, the disk may be somewhat elliptical,
with a ratio of the lengths of the minor and major axes of about 0.9. The Sun is probably
located near the major axis of the disk. The solar circle is defined to be a perfect circle of
radius R0.

The Structure of the Thin and Thick Disks

The disk is actually composed of two major components. The thin disk, which is composed
of relatively young stars, dust, and gas, has a vertical scale height of zthin ≃ 350 pc and is
the region of current star formation (recall that one scale height is the distance over which
the number density decreases by e−1). A portion of the thin disk (sometimes referred to
as the young thin disk) also corresponds to the central plane of the Galactic dust and gas
distribution; it has a scale height of perhaps 90 pc, although some researchers have found
a scale height as small as 35 pc. The thick disk, which is probably an older population of
stars, has a scale height of approximately zthick ≃ 1000 pc. The number of stars per unit
volume in the thick disk is only about 8.5% of that in the thin disk at the Galactic midplane.
When the thin and thick disks are combined, empirical fits to the stellar number density
derived from star count data give

n(z, R) = n0
(

e−z/zthin + 0.085e−z/zthick
)

e−R/hR , (9)

The Milky Way Galaxy



TABLE 1 Approximate Values for Various Parameters Associated with the Components of the
Milky Way Galaxy. Definitions and details are discussed in the text.

Disks
Neutral Thin Thick

Gas Disk Disk
M (1010 M⊙) 0.5a 6 0.2 to 0.4
LB (1010 L⊙)b — 1.8 0.02
M/LB (M⊙/L⊙) — 3 —
Radius (kpc) 25 25 25
Form e−z/hz e−z/hz e−z/hz

Scale height (kpc) < 0.1 0.35 1
σw (km s−1) 5 16 35
[Fe/H] > +0.1 −0.5 to +0.3 −2.2 to −0.5
Age (Gyr) ! 10 8c 10d

Spheroids
Central Stellar Dark-Matter
Bulgee Halo Halo

M (1010 M⊙) 1 0.3 190+360
−170

f

LB (1010 L⊙)b 0.3 0.1 0
M/LB (M⊙/L⊙) 3 ∼ 1 —
Radius (kpc) 4 > 100 > 230
Form boxy with bar r−3.5 (r/a)−1 (1 + r/a)−2

Scale height (kpc) 0.1 to 0.5g 3 170
σw (km s−1) 55 to 130h 95 —
[Fe/H] −2 to 0.5 < −5.4 to −0.5 —
Age (Gyr) < 0.2 to 10 11 to 13 ∼ 13.5
a Mdust/Mgas ≃ 0.007.
b The total luminosity of the Galaxy is LB,tot = 2.3 ± 0.6 × 1010 L⊙,

Lbol,tot = 3.6 × 1010 L⊙ (∼ 30% in IR).
c Some open clusters associated with the thin disk may exceed 10 Gyr.
d Major star formation in the thick disk may have occurred 7–8 Gyr ago.
e The mass of the black hole in Sgr A⋆ is Mbh = 3.7 ± 0.2 × 106 M⊙.
f M = 5.4+0.2

−3.6 × 1011 M⊙ within 50 kpc of the center.
g Bulge scale heights depend on age of stars: 100 pc for young stars, 500 pc for old stars.
h Dispersions increase from 55 km s−1 at 5 pc to 130 km s−1 at 200 pc.

where z is the vertical height above the midplane of the Galaxy, R is the radial distance2

from the Galactic center, hR > 2.25 kpc is the disk scale length, and n0 ∼ 0.02 stars pc−3

for the absolute magnitude range 4.5 ≤ MV ≤ 9.5. It should be pointed out that the relative
density coefficient, the scale heights, and the disk scale length are all somewhat uncertain;

2In general, we reserve the use of R to denote the cylindrical coordinate radius within the disk and the use of r to
represent the spherical coordinate radius, both measured from the Galactic center.
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different researchers give somewhat different values for these parameters. The Sun is a
member of the thin disk and is currently located about 30 pc above the midplane.

The luminosity density (the luminosity per unit volume) of the thin disk is often modeled
with the functional form

L(R, z) = L0e
−R/hR sech2(z/z0), (10)

where

sech(z/z0) = 2
ez/z0 + e−z/z0

is the hyperbolic secant function. For the thin disk z0 = 2zthin and L0 ≃ 0.05 L⊙ pc−3.

The Age–Metallicity Relation

The thin and thick disks not only are identifiable by separate scale heights and stellar
number densities but are further distinguished by the chemical compositions and kinematic
properties of their members. We will discuss composition effects now but will delay our
discussion of kinematics until the next section.

dance of heavier elements; Population I stars are metal-rich, with Z ∼ 0.02, Population II
stars are metal-poor, with Z ∼ 0.001, and Population III stars are essentially devoid of
metals, with Z ∼ 0. In reality, a wide range of metallicities exists in stars. At one end are
the extreme Population I stars, and on the other, the hypothetical Population III stars (if
they still exist). Between Population I and Population II stars are the intermediate (or,
alternatively and suggestively, disk) population stars.

To more carefully quantify the important parameter of composition, the ratio of iron
to hydrogen has become almost universally adopted by researchers because iron lines are
generally readily identifiable in stellar spectra. During a supernova detonation (particularly
of Type Ia), iron is ejected, enriching the interstellar medium. New stars can then be created
with a greater abundance of iron in their atmospheres than in their predecessors. As a result,
iron content should correlate with stellar age, the youngest, most recently formed stars
having the highest relative abundance of iron. The iron-to-hydrogen ratio in the atmosphere
of a star is compared with the Sun’s value through the expression

[Fe/H] ≡ log10

[

(NFe/NH)star

(NFe/NH)⊙

]

, (11)

a quantity often referred to as the metallicity
Stars with abundances identical to the Sun’s have [Fe/H] = 0.0, less-metal-rich stars have
negative values, and more-metal-rich stars have positive values. Values ranging from −5.4
for old, extremely metal-poor stars to about 0.6 for young, extremely metal-rich stars have
been measured in our Galaxy. According to studies of the main-sequence turn-off points in
clusters (both globular and galactic), metal-rich stars tend to be younger than metal-poor
ones of similar spectral type. The apparent correlation between age and composition is
referred to as the age–metallicity relation.

Stars are generally classified according to the relative abun-

.
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However, in many situations the correlation between age and [Fe/H] may not be as
reliable as first believed. For example, significant numbers of Type Ia supernovae do not
appear until roughly 109 years after star formation begins, and since Type Ia supernovae
are responsible for most of the iron production, iron is not available in large quantities
to enrich the interstellar medium. Furthermore, mixing of the interstellar medium after a
SN Ia event may not be complete. In other words, a local region of the ISM may become
enriched in iron after 109 years, while another region may not experience the same level of
enrichment. Therefore, according to the age–metallicity relation, the iron-rich region would
subsequently produce stars that appear younger, when in fact both regions are the same age.

A second measure of ISM enrichment (and age) is based on [O/H], defined in a way
completely analogous to Eq. ( 11). Since core-collapse supernovae appear after only 107

years following the onset of star formation (recall that they are the result of massive-star
evolution) and they produce a higher abundance of oxygen relative to iron, [O/H] may also
be used to determine the ages of Galactic components; some astronomers use [O/Fe] for
the same purpose.

To complicate matters further, accurate age estimates depend critically on precise values
for distance moduli, which are needed to determine cluster main-sequence turn-off points

Age Estimates of the Thin and Thick Disks

In the thin disk, typical values for the iron–hydrogen metallicity ratio are in the range
−0.5 < [Fe/H] < 0.3, while for the majority of stars in the thick disk, −0.6 < [Fe/H] <

−0.4 is more characteristic, although some thick-disk members may have metallicities at
least as low as [Fe/H] ∼ −1.6.

According to various age determinations, the stellar members of the thin disk are probably
significantly younger than their thick-disk counterparts. It appears that star formation began

several billion years. On the other hand, star formation in the thick disk appears to have
predated the onset of star formation in the thin disk by two to three billion years. It is
generally believed that the episode of thick-disk star formation spanned the time interval
between 10 and 11 Gyr ago.

Mass-to-Light Ratios

Based on data from star counts and orbital motions, the estimated stellar mass of the thin
disk is roughly 6 × 1010 M⊙ with another 0.5 × 1010 M⊙ of dust and gas. Furthermore,
the luminosity in the blue-wavelength band is LB = 1.8 × 1010 L⊙. When the first of these
parameters is divided by the second, the resulting mass-to-light ratio is M/LB ≈ 3 M⊙/L⊙.
This quantity gives us information about the kinds of stars responsible for the generation
of the light.

;
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errors of 0.1 in distance moduli lead to 10% errors in age. Needless to say, the important 
task of Galactic age determinations remains a major challenge in astronomy.

in the thin disk about 8 Gyr ago and is ongoing today. This conclusion is supported by 
the observations of white dwarf stars in the thin disk and theoretical estimates of their 
cooling times. There is also some evidence that star formation in the thin disk may not 
have been continuous over time but may have come in bursts with intervening gaps of



luminosity depends rather strongly on its mass, with

L

L⊙
=
(

M

M⊙

)α

, (12)

where α ≃ 4 above about 0.5 M⊙ and α ≃ 2.3 for less massive stars. Assuming that most
of the stars in the disk are main-sequence stars, an “average” stellar mass can be estimated.
Substituting the observed mass-to-light ratio and solving for the mass, we have

⟨M⟩ = 31/(1−α) M⊙.

Assuming that α ≃ 4, we find that ⟨M⟩ ≃ 0.7 M⊙. Apparently the total luminosity of the

fact that dwarf M stars are the most common class of stars in the vicinity of the Sun.
The B-band luminosity of the thick disk is about 2 × 108 L⊙, or 1% of the value of the

thin disk (which explains why the thick disk has been so difficult to detect). The mass of the
thick disk is probably about 2 to 4 × 109 M⊙, or approximately 3% of the thin-disk mass.

Spiral Structure

Significant structure exists within the disk itself. When neutral hydrogen clouds or relatively
young objects such as O and B stars, H II regions, and galactic (open) clusters are used as
tracers of Galactic structure, a spiral structure emerges, giving the disk the appearance of
a pinwheel. When other galaxies that possess distinct disks are observed in blue light (the
dominant visible-wavelength band of hot, bright, young, high-mass main-sequence stars),
these galaxies often exhibit similarly beautiful spiral structure. One such example is the
great spiral galaxy of Andromeda, shown in Fig. 7. However, when the galaxies are

in Fig. 8, the Sun seems to be located close to, but not actually in, one of the spiral arm
features known as the Orion–Cygnus arm, or simply the Orion arm (this feature is also
known as the Orion spur since it is probably not a full spiral arm structure). Spiral arms
get their names from the constellations in which they are observed.

The interstellar gas and dust clouds that plagued Kapteyn’s attempts at determining the
overall structure of the Galaxy and that are clearly evident in Fig. 1 are primarily located
near the midplane and found preferentially in the spiral arms. If it were possible to view our
Galaxy from a vantage point outside the disk but along the plane, it would probably appear
similar to NGC 891,3 the galaxy shown in Fig. 9.

3NGC is a designation indicating that the galaxy is a member of the New General Catalog

Along the main sequence, a star’s

.
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disk is dominated by stars somewhat less massive than the Sun. This should not be sur-
prising since the initial mass function indicates that many more low-mass than high-
mass stars are created out of the interstellar medium, which is consistent with the

viewed in the red light characteristic of older, low-mass stars, the spiral structure is 
less pronounced. It appears that spirals are associated with ongoing star formation and 
that older stars have had ample time to drift out of the spiral pattern. As we can see



FIGURE 7 The Andromeda galaxy (also known as M31 or NGC 224) is a spiral galaxy believed
to be much like our own. M31 is located 770 kpc from the Milky Way Galaxy. (From Sandage and
Bedke, The Carnegie Atlas of Galaxies, The Carnegie Institution of Washington, Washington, D.C.,
1994.)
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180
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FIGURE 8 The spatial distribution of young Galactic clusters and H II regions reveals the
presence of spiral arms within the disk of the Galaxy. The Sun is shown at the origin of the diagram
(the intersection of the degree tick marks). The Sun is located near the Orion–Cygnus arm. [Figure
adapted from Becker and Fenkart, The Spiral Structure of Our Galaxy, Becker and Contopoulos (eds.),
D. Reidel Publishing Company, Dordrecht, 1970.]
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FIGURE 9 NGC 891, seen edge-on, clearly shows a thin dust band in the plane of the disk. The
Milky Way Galaxy probably appears much like NGC 891 when viewed from a distant vantage point.
(From Sandage and Bedke, The Carnegie Atlas of Galaxies, The Carnegie Institution of Washington,
Washington, D.C., 1994.)

Interstellar Gas and Dust

within the Milky Way by measuring the effects of obscuration by and emissivity of dust,
as well as the location of 21-cm H I emission, and by using the CO molecule as a tracer of
H2. Molecular hydrogen and cool dust are found predominantly in the regions 3 to 8 kpc
and 3 to 7 kpc from the Galactic center, respectively (i.e., inside the solar circle), while
atomic hydrogen can be found in the region from 3 kpc out to the edge of the Galactic disk
(25 kpc). It appears that H2 and the dust are most tightly confined to the plane of the Galaxy,
with vertical scale heights above or below the midplane of perhaps 90 pc or less. This is
only about 25% of the value for stars in the thin disk and on the order of 9% of the scale
height of thick-disk stars. In the region near the Sun, the scale height for atomic hydrogen
is approximately 160 pc. The total mass of H I is estimated to be 4 × 109 M⊙ and the mass
of H2 is approximately 109 M⊙. In the solar neighborhood the total mass density of gas
is 0.04 M⊙ pc−3, of which atomic hydrogen accounts for approximately 77%, molecules
contribute 17%, and ions add an additional 6%.

At distances beyond 12 kpc from the center of the Galaxy, the scale height of H I increases
dramatically, reaching a value of more than 900 pc. In addition, the distribution of H I in the
outer reaches of the Galaxy is no longer strictly confined to the plane but, rather, exhibits
a well-defined warp that reaches a maximum angle of deviation from the plane of 15◦. A
map of the H I distribution at a Galactic radius of 13.6 kpc is shown in Fig. 10. The

The Milky Way Galaxy

Gas and dust clouds exist in the Milky Way with a range of masses, tempera-
tures, and densities. It is from these clouds that new stars are ultimately formed. 
Astronomers have been able to map out the overall distribution of dust and gas
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FIGURE 10 The H I warp in the Milky Way at a distance of 13.6 kpc from the Galactic center.
The Galaxy’s midplane is located at z = 0, and the direction toward the center of the Milky Way is at
0◦. (Figure adapted from Burton and te Lintel Hekkert, Astron. Astrophys. Suppl. Ser., 65, 427, 1986.)

line of sight toward the center of the Milky Way is labeled as 0◦ in the figure. Warped H I
distributions such as the one observed in our own Galaxy appear to be common features
in other spiral galaxies as well, including Andromeda (in some spiral galaxies the warp
angle can reach 90◦). Although we do not yet fully understand the dynamics that lead to the
creation of warps (they do not seem to be the result of simple gravitational perturbations
from one or more external galaxies, for example), they do seem to be associated with the
distribution of mass in the outer regions of the Galaxy, beyond where most of the luminosity
is produced.

Hydrogen clouds can also be found at high latitudes. Although some of these clouds have
positive radial velocities, implying that they are moving away from the disk, the majority
possess large negative radial velocities (up to 400 km s−1 or more), as measured by their
21-cm emission. There appear to be two types of sources responsible for these high-velocity
clouds. In one process, clouds of gas ejected from supernovae are driven to large values of
z, where they eventually cool and rain back down onto the Galactic plane. This suggestion
is known as the Galactic fountain model. It also appears that the Galaxy is accreting gas
from intergalactic space, as well as from a number of its small satellite galaxies; hence the
predominance of negative-radial-velocity clouds.

In addition, a very hot, tenuous gas exists at distances up to or exceeding 70 kpc from
the Galactic center. The Far Ultraviolet Spectroscopic Explorer (FUSE) has been able to
detect O VI absorption lines in the spectra of distant extragalactic sources and halo stars
produced when the light passes through the gas in the Galactic halo. Using O VI as a tracer
of the hydrogen gas, the strengths of the O VI absorption lines imply a number density of
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hydrogen of nH ∼ 10−11 m−3. Assuming that the distribution is approximately spherical
with a radius of R ∼ 70 kpc leads to an estimate of the mass of the gas of M ≃ 4 × 108 M⊙.
If the gas distribution is somewhat flattened, the total mass could exceed 109 M⊙. In order
to support the gas against gravitational collapse, the gas temperature must be every hot. It
is estimated that the temperature of this hot, tenuous gas is in excess of 106 K, with the
high gas temperature perhaps being due to collisions between infalling gas and existing gas
in the Galaxy. The gas is sometimes referred to as a coronal gas, suggestive of its high
temperature.

The Disruption of Satellite Galaxies

Another unusual high-latitude feature is the Magellanic Stream, a narrow band of H I
emission stretching more than 180◦ across the sky and trailing the Southern Hemisphere’s
Magellanic Clouds (recall that the Large and Small Magellanic Clouds are small satellite
galaxies of the Milky Way; the LMC and SMC are located 52 and 61 kpc from Earth,
respectively).4 The Magellanic Stream appears to be the result of a tidal encounter of the
Magellanic Clouds with the Milky Way some 200 Myr ago. It has also been suggested that
the Magellanic Stream may owe some of its structure to the interaction with our Galaxy’s
hot coronal gas.

Other satellite galaxies have also tidally interacted with the Milky Way, and still others
are currently doing so. For example, in 1995 Rodrigo Ibata and his colleagues announced
the discovery of a previously unknown dwarf spheriodal galaxy in Sagittarius. At a distance
of only 24 kpc from Earth and 16 kpc from the center of the Milky Way, the Sagittarius dwarf
spheroidal is the closest galaxy to Earth. It is clearly elongated with the long axis directed
toward the center of the Galaxy and, with a radial velocity of 140 km s−1, has had only
a few orbital encounters with the Milky Way. Evidently the Sagittarius dwarf spheroidal
galaxy, along with its globular clusters, is being incorporated into the Milky Way Galaxy.

Using the 2-Micron All Sky Survey (2MASS) catalog, researchers have also identified
an overdensity of stars in the constellation Canis Major near the plane of the Milky Way.
A group of globular clusters and open clusters are associated with this overdensity in both
position and radial velocity. This feature strongly suggests that another dwarf satellite galaxy
was integrated into the Milky Way in the past and may now be a part of the thick disk.

The unusual globular cluster ω Centauri also seems to be the remnant of a dwarf galaxy
that has been subsumed by the Milky Way.ωCen is the largest and brightest globular cluster
visible from Earth and has an unusually high surface brightness. It appears that this globular
cluster is the stripped core of another former satellite galaxy. (It has been suggested that the
globular clusters M54 and NGC 2419 were also once dwarf galaxies that suffered the same
fate as ω Cen.)

The Galactic Bulge

Although the vertical scale height of the thin disk is near 350 pc in the vicinity of the Sun,
that value increases somewhat toward the inner regions of the Galaxy, where the disk meets
the Galactic bulge. The bulge is not simply an extension of the disk but is an independent

4The LMC contains 30 Dorodus and SN 1987A.
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FIGURE 11 An infrared view of the Galaxy, as seen by COBE. The image was produced from
observations at 1.2 µm, 2.2 µm, and 3.4 µm, and extends 96◦ either side of the Galactic center.
(Courtesy of the COBE Science Working Group and NASA’s Goddard Space Flight Center.)

component of the Galaxy. The mass of the bulge is believed to be roughly 1010 M⊙ and
its B-band luminosity is near 3 × 109 L⊙. This gives a mass-to-light ratio of 3 M⊙/L⊙, a
value comparable to that found for the thin disk.

The boxy (or elongated) bulge is evident in the COsmic Background Explorer satel-
lite (COBE) image shown in Fig. 11. The image, which was produced by combining
observations at 1.2 µm, 2.2 µm, and 3.4 µm, should be compared to the optical picture
of NGC 891, shown in Fig. 9. Using the COBE data, together with observations of
RR Lyraes and K and M giants, we find that the variation in the number density of stars in
the bulge corresponds to a vertical scale height that ranges from 100 pc to 500 pc, depending
on the ages of the stars used to make the determination; younger stars yield smaller scale
heights.

The surface brightness, I , of the bulge (measured in units of L⊙ pc−2) exhibits an
approximate radial dependence of the form

log10

[

I (r)

Ie

]

= −3.3307

[

(

r

re

)1/4

− 1

]

, (13)

which is often referred to as a r1/4 law [the law was first formulated by Gerard deVaucouleurs
(1918–1995) in 1948 and is also referred to as a de Vaucouleurs profile]. re is a reference
radius (called the effective radius) and Ie is the surface brightness at re. Formally, re is
defined to be that radius within which one-half of the bulge’s light is emitted. At the infrared
wavelength of 12 µm, star count data from the InfraRed Astronomical Satellite (IRAS)
suggests an effective radius of about 0.7 kpc. Similar results were found by COBE. (We
will find that the de Vaucouleurs profile is a general distribution for relaxed, spheroidal
systems.)

A serious difficulty in observing the properties of the bulge rests in the large amount of
extinction at visible wavelengths due to the dust between the Sun and the Galactic center.
The total amount of extinction within several degrees of the center can be more than 30
magnitudes. However, a number of lines of sight exist for which the amount of extinction
is minimal. The most well known of these is Baade’s window, which Walter Baade (1893–
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1960) discovered in 1944 while observing the globular cluster NGC 6522. Baade realized
that by observing in that region of the sky, he was able to see RR Lyraes that were actually
beyond the Galactic center. Baade’s window is 3.9◦ below the Galactic center, and the line
of sight passes within 550 pc of the center. It is believed that NGC 6522 is located within
the bulge.

From the observational evidence, the chemical abundances of stars in the bulge vary
significantly, ranging from quite metal-poor to very metal-rich; −2 < [Fe/H] < 0.5. In fact,
based on the chemical abundances, it appears that three somewhat distinct age groupings
exist in the central bulge. One set of stars appear to be very young, with ages less than
200 Myr, a second set has ages between 200 Myr and 7 Gyr, and the third set tends to be
older than 7 Gyr (perhaps up to 10 Gyr or older).

In a trend that on initial reflection appears to be counterintuitive, the oldest stars in the
bulge tend to have the highest metallicities, while the youngest stars have a fairly uniform
distribution of metallicities across the range from −2 to 0.5. This pattern is probably due
to a burst of massive star formation when the Galaxy was young. Apparently core-collapse
supernovae enriched the interstellar medium early in the life of the bulge, implying that
subsequent generations of stars contained an enhanced abundance of heavier elements. The
more uniform distribution of metallicity in recent generations of stars could be the result
of fresh, infalling material. It is this type of complication that must be considered carefully
when employing the age–metallicity relation

The Milky Way’s Central Bar

Although it was originally thought to be essentially spheroidal in nature, a number of
observing campaigns and database studies have determined that the budge contains a distinct
bar.5 The Milky Way’s central bar is clearly depicted in the artist’s drawing of the Galaxy
shown in Fig. 5. The bar has a radius (one-half length) from the galactic center of
4.4 ± 0.5 kpc and is oriented at an angle of φ = 44◦ ± 10◦ with respect to the line-of-sight
angle from Earth to the Galactic center. It also seems that the bar is somewhat thicker in the
plane of the Galaxy than in the z direction; the dimension ratios are approximately 1:0.5:0.4.

ars are dynamically stable structures and common features of many spiral galaxies.)

The 3-kpc Expanding Arm

A unique feature in the inner regions of the Galaxy that is most easily observed at the 21-cm
wavelength of H I is the 3-kpc expanding arm, a gas cloud that is moving toward us at
roughly 50 km s−1. Once believed to be the product of a gigantic explosion in the center of
the Galaxy, the rapidly moving structure is now thought to be a consequence of the presence
of the stellar bar. Rather than being driven away from the center in an explosive event that
would require an unrealistic 1052 J of energy, the gas cloud is merely in a very elliptical
orbit about the Galactic center resulting from gravitational perturbations from the bar.

5One such database study is the analysis of the GLIMPSE (Galactic Legacy Mid-Plane Survey Extraordinaire)
point source catalog of some 30 million infrared sources in the direction of the inner Galaxy, produced by the
Spitzer Space Telescope. The Galactic bulge is much more transparent to infrared wavelengths than to visible
wavelengths.
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The Stellar Halo and Globular Cluster System

The last luminous component of the Galaxy is the stellarhalo (or simply the halo), composed
of the globular clusters and those field stars (stars that are not members of clusters) that have
large velocity components perpendicular to the Galactic plane. These field stars are often
referred to as high-velocity stars since, as we will learn in the next section, their velocity
components differ significantly from those of the Sun. Most of the globular clusters and the
high-velocity stars can reach positions that are far above or below the plane of the Galaxy.

Although it appeared to Shapley that all of the known globular clusters were distributed
nearly spherically about the Galactic center, it has become apparent that two distinct spatial
distributions exist, delineated by metallicity. Older, metal-poor clusters whose members
have [Fe/H] < −0.8 belong to an extended spherical halo of stars, while younger clusters
with [Fe/H] > −0.8 form a much flatter distribution and may even be associated with the
thick disk. The spatial distribution of the two metallicity groups is shown in Fig. 12.
The notable exception is the well-studied globular cluster 47 Tucana (47 Tuc; also known
as NGC 104), which is located 3.2 kpc below the Galactic plane and has an unusually high
metallicity of [Fe/H] = −0.67. Some astronomers have argued that 47 Tuc is a member
of the halo population, while others consider 47 Tuc to be a member of the thick disk.

Our Galaxy is known to contain at least 150 globular clusters with distances from the
center of the Milky Way ranging from 500 pc to 120 kpc. The youngest globular clusters
appear to be about 11 Gyr old, and the oldest are probably a little over 13 Gyr old.6 It now
appears that a significant age spread of two billion years or so exists between the youngest
and oldest members of the halo.
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FIGURE 12 Metal-poor globular clusters form a nearly spherical distribution about the Galactic
center, while more metal-rich clusters are found preferentially near the plane of the Galaxy, possibly
associated with the thick disk. (Figure adapted from Zinn, Ap. J., 293, 424, 1985.)

6Krauss and Chaboyer, Science, 299, 65, 2003, find a best-fit age for the globular clusters of 12.6 Gyr, with
lower and upper limits of 10.4 Gyr and 16 Gyr, respectively, at 95% confidence levels. Gratton et al., Aston.
Astrophys., 408, 529, 2003, find ages for NGC 6397, NGC 6752, and 47 Tuc of 13.9 ± 1.1 Gyr, 13.9 ± 1.1 Gyr,
and 11.2 ± 1.1 Gyr, respectively. For comparison, the age of the universe is 13.7 ± 0.2 Gyr.
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Although 144 of the globular clusters are found within 42 kpc of the Galactic center, 6
globular clusters have been found between 69 and 123 kpc of the Galactic center. Some
astronomers have suggested that those six most distant clusters may have been captured by
the Milky Way or may be dwarf spheroidal galaxies, much as ω Cen and the Sagittarius
dwarf galaxy may have been. If we do not include these very remote objects, the metal-poor
clusters seem to be confined to a halo with a radius of approximately 42 kpc. However, the
detection of extremely distant and luminous field stars suggests that a stellar halo radius of
50 kpc may be more appropriate.

The number density profile of the metal-poor globular clusters and the field stars in the
halo has the form

nhalo(r) = n0,halo(r/a)−3.5, (14)

where n0,halo ≃ 4 × 10−5 pc−3 is roughly 0.2% of the thin disk’s midplane value (see
Eq. 9). The scale length (a) of the number density distribution is several thousand
parsecs. At visible wavelengths, the effective radius of the halo r1/4 law (Eq. 13) is
re = 2.7 kpc.

Metal-rich globular clusters seem to have many characteristics in common with thick-
disk field stars, including spatial distribution. Just like the thick-disk field stars, the vertical
scale height of these clusters is on the order of 1 kpc, unlike the much larger scale length
of the metal-poor clusters.

However, based on studies that use RR Lyraes as tracers of other field stars in the halo,
there is some question about whether field stars actually share the same spatial distribution
pattern as the corresponding metal-poor clusters. Instead, the field stars may occupy a
volume that is appreciably flattened, perhaps as much as c/a ∼ 0.6, where c is the minor
axis of a spheroid in the direction perpendicular to the Galactic plane, and a is the major
axis (see Fig. 13). Such a discrepancy in distributions, if real, could have a significant
influence on an ultimate model of Galaxy formation and evolution. On the other hand, other
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FIGURE 13 The general shape of a triaxial spheroidal system, where the three axes of the
spheroid are assumed to have a ≥ b ≥ c. The Galactic disk (shown foreshortened by perspective) is
roughly circular.
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astronomers believe that a single value of 0.8 ≤ c/a ≤ 0.9 probably applies to the field stars
and clusters alike.

Based largely on star counts, the total stellar mass density in the solar neighborhood
is approximately 0.05 M⊙ pc−3. Of that total, the contribution due to high-velocity halo
stars is on the order of 0.2%, or 1 × 10−4 M⊙ pc−3. Combining this with the spatial density
power law yields a total estimated mass of the stellar halo on the order of 1 × 109 M⊙, of
which roughly 1% is the combined mass of the globular clusters; the remainder is locked
up in field stars. The B-band luminosity of the halo is estimated to be 1 × 109 L⊙, giving a
mass-to-light ratio on the order of unity (the exact value is quite uncertain).

When all of the components of the Galaxy are considered together, its total B-band lumi-
nosity is LB,tot = 2.3 ± 0.6 × 1010 L⊙. However, approximately one-third of the Galaxy’s
emission is in the infrared part of the electromagnetic spectrum and is primarily associated
with interstellar dust. Including IR emissions, the bolometric luminosity of the Galaxy is
Lbol = 3.6 × 1010 L⊙.

The Dark Matter Halo

When the masses of all of the luminous components of the Galaxy are combined (the thin
and thick disks, the interstellar dust and gas, the Galactic bulge, the stellar halo, and the
bar), the total mass of luminous matter in the Galaxy is estimated to be 9 × 1010 M⊙. As
we shall see in the next section, this value is in good agreement with the orbital motion
of the Sun about the Galactic center, but it does not explain the orbits of stars and gas
at Galactocentric distances much greater than R0. Apparently there is still another crucial
component to the overall structure of our Galaxy. Along with influencing orbital motions,
this unseen element of Galactic structure may also be responsible for the generation of the
warps seen in the H I distribution near the outer edges of the luminous disk.

This dark matter halo seems to be roughly spherically distributed, enveloping the stellar
halo and extending out to at least 230 kpc. Based on its gravitational influence over luminous
matter, the dark matter halo has an apparent mass distribution of the form

ρ(r) = ρ0

(r/a) (1 + r/a)2 , (15)

where ρ0 and a are chosen by fitting the mass distribution in the dark matter halo
This functional dependence behaves as 1/r

when r ≪ a and as 1/r3 when r ≫ a. The mass of the dark matter halo may be as great as
5.4 × 1011 M⊙ within 50 kpc of the Galactic center and 1.9 × 1012 M⊙ within 230 kpc of
the Galactic center. It appears that the dark matter halo accounts for about 95% of the entire
mass of the Galaxy. [The empirical justification for a dark matter density distribution such
as Eq. (15) will be discussed ]

The composition of the dark matter halo is still a mystery. It cannot be in the form
of interstellar dust, because dust betrays its presence through the extinction of starlight.
Furthermore, the dark matter halo cannot be composed of gas, because absorption lines
would be apparent when observing halo stars. One possible class of candidates are referred
to as weakly interacting massive particles (WIMPs). WIMPs would not contribute to
the overall luminosity of the Galaxy, but they would affect it through their gravitational

.
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FIGURE 14 Gravitational lensing (focusing) of starlight produced by an intervening MACHO.

interactions. In support of a WIMP-dominated Galaxy, theoretical considerations related
to the formation and subsequent evolution of the universe suggest that nonbaryonic matter
(constituents of matter other than protons, neutrons, and related massive particles) may
constitute the majority of the dark matter halo’s mass

It had been suggested that neutrinos (which are leptons)
fill the bill, although it now appears that they aren’t massive enough to explain the amount
of mass that must be present in the dark matter halo. Perhaps currently hypothetical (and
undetected) particles are responsible, such as the suggested supersymmetric particles known
as neutralinos that are implied in some grand unified theories of particle physics.

A competing hypothesis for the possible makeup of dark matter suggests that massive
compact halo objects (MACHOs) may be responsible. MACHOs that could supply the
unseen mass may be in the form of white dwarfs, neutron stars, black holes, or less ex-
otic red dwarfs or brown dwarfs. Some searches for MACHOs have been based on the
general-relativistic prediction that starlight is deflected as it passes near a massive object.

tale signature of temporary brightening that is predicted to occur when a MACHO passes
through the line of sight. Figure 15 shows the light curves of one event that lasted for 33
days. From a statistical analysis of the small number of such events, it appears that there
are too few MACHOs to account for a significant fraction of the mass contained in the dark
matter halo.

That conclusion is also supported by searches for white dwarfs and small red dwarf stars,
carried out using the Hubble Space Telescope. In those studies, the number of stars detected
is too small to constitute a major component of the dark matter in the Galaxy. Based on the
faintest (deepest) searches yet conducted at the time of writing, white dwarfs can contribute
no more than 10% of the dark matter halo’s mass, and red dwarfs no more than 6% of it.

The Galactic Magnetic Field

Like many other astrophysical environments, the Galaxy possesses a magnetic field. The
orientation and strength of the field can be measured in a variety of ways, including the
Zeeman effect and the polarization of visible- and radio-wavelength electromagnetic radi-
ation by reflection from interstellar grains aligned with the field. It appears that within the
disk, the field tends to follow the Galaxy’s spiral arms and has a typical strength of 0.4 nT.
The field strength in the stellar halo may be an order of magnitude weaker than in the disk,
and the field strength near the Galactic center may reach 1 µT (see Section 4).

Although the global Galactic magnetic field is quite weak relative to the magnetic field
near the surface of Earth (about 50 µT), it probably plays a significant role in the structure

.
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If a MACHO is located between a distant star and Earth, the light from the star 
can be focused with the MACHO acting as a gravitational lens. In 1993, while 
observing stars in the Large Magellanic Cloud, astronomers detected the tell-
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FIGURE 15 The light curve of a star in the LMC brightened over a period of 33 days, apparently
because a MACHO passed through the line of sight. The data are shown for (a) blue light, (b) red
light, and (c) the ratio of blue light to red light. (Figure adapted from Alcock et al., Nature, 365, 621,
1993. Reprinted with permission, © 1993, Macmillan Magazines Limited.)

and evolution of the Milky Way. This can be seen by considering its energy density, which
appears to be comparable (perhaps equal) to the thermal energy density of gas within the
disk

3 THE KINEMATICS OF THE MILKY WAY

One of the great challenges in understanding the nature of our Galaxy lies in determining
its internal kinematics. In this section, we will discuss how astronomers have been able
to uncover the complexities of motions in the Milky Way from our vantage point in orbit
around a moving Sun.

The Galactic Coordinate System

The Galactic midplane is not aligned with the plane of the celestial equator but is inclined
at an angle of 62.87◦ to it. As a result, rather than using the Earth-based equatorial coordi-

.

The Milky Way Galaxy



nate system, it is more convenient to introduce a new coordinate system when discussing
the structure and kinematics of the Milky Way Galaxy. The Galactic coordinate system
exploits the natural symmetry introduced by the existence of the Galactic disk.

The intersection of the midplane of the Galaxy with the celestial sphere forms what is
very nearly a great circle, known as the Galactic equator.7 This orientation is depicted in
Fig. 16. Galactic latitude (b) and Galactic longitude (ℓ) are defined from a vantage
point taken to be the Sun, as shown in Fig. 17. Galactic latitude is measured in degrees

62.6
Observer

NGP

NCP

Ecliptic

NEP

Galactic equator

Celestial equator

Galactic
ascending node

Galactic center

Vernal equinox

FIGURE 16 The relative orientations of the celestial equator, the ecliptic, and the Galactic
equator as they appear on the celestial sphere. Note that from the vantage point depicted in the figure,
the north celestial pole (NCP), the north ecliptic pole (NEP), and north Galactic pole (NGP) are all
on the front of the celestial sphere.

Star

Galactic center

To NGP

Rotation

Sun

b
!

FIGURE 17 The definition of the Galactic coordinates ℓ and b. The direction of rotation of the
Galaxy is also labeled.

7Technically, the Galactic midplane does not exactly trace out a great circle, because the Sun is not precisely in
the midplane; however, the deviation is very small. Recall from Section 2 that the Sun is located just 30 pc
above the plane.

The Milky Way Galaxy



north or south of the Galactic equator along a great circle that passes through the north
Galactic pole. Galactic longitude (also in degrees) is measured east along the Galactic
equator, beginning near the Galactic center, to the point of intersection with the great circle
used to measure Galactic latitude.

By international convention, the J2000.0 equatorial coordinates of the north Galactic
pole (b = 90◦) are

αNGP = 12h51m26.28s

δNGP = 27◦7′41.7′′,

and the origin of the Galactic coordinate system (ℓ0 = 0◦, b0 = 0◦) corresponds to

α0 = 17h45m37.20s

δ0 = −28◦56′9.6′′.

Note that the center of the Galaxy (αSgr A⋆ , δSgr A⋆) given by Eqs. ( 6) and ( 7) is very
close to, but not exactly aligned with, (ℓ0 = 0◦, b0 = 0◦).

Two other useful positions on the sky are also worth specifying in both coordinate
systems. The location of the north celestial pole (δNCP = 90◦), given in J2000.0 Galactic
coordinates, is

ℓNCP = 123◦55′55.2′′

bNCP = 27◦7′41.7′′.

And the intersection of the celestial equator with the Galactic equator moving eastward from
negative to positive declination (the ascending node) is given in equatorial coordinates by

αascending = 18h51m24s

δascending = 0◦

and in Galactic coordinates by

ℓascending = 33.0◦

bascending = 0◦.

The transformations between equatorial and Galactic coordinates involves the applica-
tion of the methods of spherical trigonometry. To make the transformation from equatorial
to Galactic coordinates (assuming epoch J2000.0):

sin b = sin δNGP sin δ + cos δNGP cos δ cos(α − αNGP) (16)

cos b sin(ℓNCP − ℓ) = cos δ sin(α − αNGP) (17)

cos b cos(ℓNCP − ℓ) = cos δNGP sin δ − sin δNGP cos δ cos(α − αNGP). (18)
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For transformations from Galactic to equatorial coordinates (again assuming epoch
J2000.0):

sin δ = sin δNGP sin b + cos δNGP cos b cos(ℓNCP − ℓ) (19)

cos δ sin(α − αNGP) = cos b sin(ℓNCP − ℓ) (20)

cos δ cos(α − αNGP) = cos δNGP sin b − sin δNGP cos b cos(ℓNGP − ℓ). (21)

Note that care must be taken in inverting these expressions to solve for α or ℓ, because
computers and electronic calculators may return the wrong (default) quadrant when the
calculation of an inverse trigonometric function is performed. A graphical form of the
transformations that does not suffer from this multiplicity is presented in Fig. 18.

A Cylindrical Coordinate System for Galactic Motions

The motions of stars in the solar neighborhood allow us to glean important clues regarding
the large-scale structure of the Galaxy. Although the Galactic coordinate system is useful
for representing the locations of objects within the Galaxy as seen from Earth, it is not the
most convenient choice for studying kinematics and dynamics. One reason is that the Sun,
which is the origin of the Galactic system, is itself moving about the center of the Galaxy. In
addition, a coordinate system centered on the Sun constitutes a noninertial reference frame
with respect to Galactic motions.

Therefore, to complement the Galactic coordinate system, a cylindrical coordinate sys-
tem is used that places the center of the Galaxy at the origin. In this system the radial
coordinate R increases outward, the angular coordinate θ is pointed in the direction of ro-
tation of the Galaxy, and the vertical coordinate z increases to the north (see Fig. 19).
Furthermore, the corresponding velocity components are traditionally labeled

- ≡ dR

dt
, . ≡ R

dθ

dt
, Z ≡ dz

dt
. (22)

It is worth noting that this set of directional choices results in a left-handed coordinate
system instead of a more conventional right-handed one. This occurs because, when viewed
from the north Galactic pole, the Galaxy rotates clockwise, rather than counterclockwise.
(Fortunately, we are not going to be concerned with cross products in this analysis. Recall
that cross products are right-handed by definition.)

Peculiar Motions and the Local Standard of Rest

Since all of our observations are made from Earth (or at least relatively near it, in the case
of satellites), and because we can transform those observations to Sun-centered ones by
removing any effects resulting from the rotational and orbital motions of Earth or motions
of the spacecraft, we will consider the Sun as the site of all observations of the Galaxy.
In particular, since the Earth–Sun distance is very small when compared to any distances
on a Galactic scale, we need not concern ourselves with the change in position, only with
changes in velocity.

The Milky Way Galaxy



FIGURE 18 A chart for converting between equatorial and Galactic coordinates. (From Kraus,
Radio Astronomy, Second Edition, Cygnus- uasar Books, 1986, used by permission.)
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FIGURE 19 The cylindrical coordinate system used to analyze Galactic kinematics. (Note that
some authors define the radial coordinate to be positive toward the Galactic center. It should also be
noted that the coordinate system defined here is not a right-handed coordinate system.)

Before we can hope to make a final transformation from the Sun to the center of the
Galaxy, however, we must also understand the Sun’s motion. In fact, the Sun does not
follow a simple planar orbit or even a closed nonplanar orbit; instead, as it moves about the
Galactic center, it is also currently moving slowly inward (in the negative-R direction) and
farther north, away from the midplane (positive-z direction).

To investigate the motion of the Sun and the other stars in the solar neighborhood, we
will first define the dynamical local standard of rest (dynamical LSR) to be a point that
is instantaneously centered on the Sun and moving in a perfectly circular orbit along the
solar circle about the Galactic center. An alternative definition for the LSR known as the
kinematic local standard of rest is based on the average motions of stars in the solar
neighborhood. Although with the right choice of reference stars, dynamical and kinematic
LSRs agree quite well, it can be shown that the kinematic LSR systematically lags behind
the dynamical LSR. Throughout the remainder of this text, “the LSR” will always refer to
the dynamical LSR.

The velocity components of the LSR must be

-LSR ≡ 0, .LSR ≡ .0, ZLSR ≡ 0,

where .0 ≡ . (R0) and R0 is the solar Galactocentric distance. Note that once the LSR is
chosen, the Sun immediately begins to drift away from it, implying that we would effectively
need to redefine the reference point constantly. In reality this is not a significant problem
because (fortunately) the 230-Myr orbital period of the LSR is very long compared to the
time since modern telescopic observations began (and even longer compared to the lifetime
of a typical research grant); consequently, there has not been sufficient time for the effect
to become noticeable.

The velocity of a star relative to the LSR is known as the star’s peculiar velocity and is
given by

V = (VR, Vθ , Vz) ≡ (u, v, w) , (23)
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where

u = -−-LSR = -, (24)

v = .−.LSR = .−.0, (25)

w = Z − ZLSR = Z. (26)

The Sun’s peculiar velocity relative to the LSR is generally referred to simply as the solar
motion.

The average of u and w for all stars in the solar neighborhood, excluding the Sun, should
be nearly zero if we assume an axisymmetric Galaxy. The reason is that with symmetries
about both the rotation axis and the midplane, there should be as many stars moving inward
as outward, and there should be as many stars moving toward the north Galactic pole as
toward the south Galactic pole. In reality this is not quite true because the Galaxy is not
precisely axisymmetric, but the error is not significant for our purposes here. As a result,
we shall assume that, summing over a sample of N nearby stars,

⟨u⟩ = 1
N

N
∑

i=1

ui ≃ 0, (27)

⟨w⟩ = 1
N

N
∑

i=1

wi ≃ 0. (28)

The same assumption cannot be made for the v component, however. To see why, consider
the situations depicted in Fig. 20. Stars with different average orbital radii must follow
paths that bring them very close to the LSR if they are to be considered members of the
solar neighborhood and eligible for inclusion in the calculation of ⟨v⟩. If we consider the
special case that u = 0 and w = 0 for all stars in our sample, then the stars must be at either
their most distant point from the Galactic center (apogalacticon) or their closest approach
to the Galactic center (perigalacticon) when they coincide with the LSR; this is true of A

and B, respectively. Then, for the two stars to follow their specified orbits, it is necessary

Current LSR CA
R0 B
Galactic
center

FIGURE 20 The orbits of three hypothetical stars intersecting at the LSR. A and B represent
stars in elliptical orbits with semimajor axes aA < R0 and aB > R0, respectively. C represents a star
following the perfectly circular path of the LSR.
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that.A (R0) < .0 and.B (R0) > .0. This implies that vA < 0 and vB > 0. Finally, since
more stars reside inside the solar Galactocentric distance than beyond it (see, for example,
Eq. 9),

⟨v⟩ < 0. (29)

(This explains why the kinematic LSR systematically lags behind the dynamical LSR, as
mentioned previously.)

The velocity that is measured for a particular star relative to the Sun is just the difference
between the star’s peculiar velocity and the solar motion with respect to the LSR, or

/u ≡ u − u⊙, /v ≡ v − v⊙, /w ≡ w − w⊙.

Using the average values of the stellar peculiar velocity components given by Eqs. ( 27),
(28), and (29), and solving for the solar motion, we have

u⊙ = −⟨/u⟩ , (30)

v⊙ = ⟨v⟩ − ⟨/v⟩ , (31)

w⊙ = −⟨/w⟩ . (32)

The u and w components of the solar motion simply reflect the averaged relative velocities
of the other stars with respect to the Sun in the R and z directions. ualitatively, these stars
appear to be “streaming” past the Sun as it moves through space

To find thev component of the solar motion, we must first determine the average value of v

for stars in the solar neighborhood. Unfortunately, this requires a theory of Galactic motion
that is beyond the scope of the present argument. However, qualitatively the procedure
involves deriving an analytical expression for ⟨v⟩ in terms of the radial variation in the
number density of stars in the solar neighborhood. The justification for this relationship
lies in the argument made concerning the lag of stellar motions behind the LSR due to
the increase in number density with decreasing Galactocentric distance. The result is an
equation of the form

⟨v⟩ = Cσ 2
u ,

where C is a constant and

σu ≡
〈

u2〉1/2

measures the spread in the R components of the peculiar velocities of stars in the solar
neighborhood with respect to the LSR; of course, σ 2

u = ⟨-2⟩.
Note that σu is related to the standard deviation of the velocity distribution, defined as

standard deviation ≡ 1√
N

[

N
∑

i=1

(u − ⟨u⟩)2

]1/2

.

.
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In the special case that ⟨u⟩ = 0, then σu = ⟨u2⟩1/2 is identical to the standard deviation. σu

is known as the velocity dispersion in u.
Turning again to Fig. 20, we can see why σu should correlate with ⟨v⟩. A stellar

sample that produces a larger dispersion in u means that a wider range of elliptical orbits
are included. This results in a more negative average value of v for the sample because of
the larger fraction of the stellar population with R < R0; there are more stars in the sample
with v < 0 than with v > 0. Alternatively, as σ 2

u decreases, fewer stars will have orbits that
are appreciably noncircular and ⟨v⟩ will approach zero. From Eq. (31),

⟨/v⟩ = Cσ 2
u − v⊙

and −v⊙ is simply the ordinate intercept on a graph of ⟨/v⟩ versus σ 2
u .

C is the slope of the linear relationship.
The components of the Sun’s peculiar velocity are

u⊙ = −10.0 ± 0.4 km s−1, (33)

v⊙ = 5.2 ± 0.6 km s−1, (34)

w⊙ = 7.2 ± 0.4 km s−1, (35)

so that relative to the LSR, the Sun is moving (a) toward the Galactic center, (b) more rapidly
in the direction of Galactic rotation, and (c) north out of the Galactic plane. Overall, the
solar motion is approximately 13.4 km s−1 toward a point in the constellation of Hercules.
The point toward which the Sun is moving is called the solar apex; the point away from
which the Sun is retreating is the solar antapex (located in Columba). It is important to
note, however, that the exact value for the solar motion and the location of the solar apex
depend on the choice of reference stars.

Now that the solar motion is known, the velocities of stars relative to the Sun can
be transformed into peculiar motions relative to the LSR. It is then possible to plot one
component of peculiar motion against another for a specified sample of stars in the solar
neighborhood in order to obtain important information about their kinematics. Such plots
result in patterns known as velocity ellipsoids. As depicted in a diagram of u versus v

(Fig. 21), when young, metal-rich main-sequence A stars are used, the range in velocities
about the LSR is fairly limited (a small dispersion), for older K giants a wider variation in
both u and v is observed, and when old, metal-poor red dwarfs are plotted, the spread is
even larger (a large dispersion). The same general behavior is seen in plots of w versus v,
whereas a much more symmetric diagram results when w is plotted against u.

Specific features of Fig. 21 are worth discussing in more detail. First is the very notice-
able relationship between metallicity and velocity dispersion, called a velocity–metallicity
relation. When the velocity–metallicity and age–metallicity relations are combined, the ve-
locity ellipsoids suggest that the oldest stars in the Galaxy have the widest range of peculiar
velocities, a trend that is evident in all three coordinates. Because stars with the smallest
peculiar velocities do not drift away from the LSR as quickly, they must occupy orbits that
are similar to that of the LSR, implying that these young stars are members of the thin disk.
On the other hand, the stars with the largest peculiar velocities follow very different paths
about the center of the Galaxy. In particular, stars with large |w| must be passing through

The Milky Way Galaxy
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FIGURE 21 A schematic diagram of the peculiar velocity components v and u for stars in the
solar neighborhood. The innermost contour represents metal-rich main-sequence A stars, the middle
contour depicts older K giants, and the outer contour indicates very metal-poor red dwarfs. The LSR
is located at (v, u) = (0, 0). An enveloping circle with an approximate radius of 300 km s−1 and
centered at v = −220 km s−1 reveals the orbital velocity of the LSR.

the solar neighborhood on trajectories that will carry them to great distances above and
below the disk. These old, metal-poor stars are the high-velocity stars that were mentioned
in the last section as being members of the stellar halo.

A second common feature of peculiar velocity diagrams is the clear asymmetries in the
velocity ellipsoids along the v-axis as a function of metallicity or age (this effect is known
as asymmetric drift). Few stars are observed with v > +65 km s−1, but there are metal-
poor RR Lyraes and subdwarfs with v < −250 km s−1. In fact, as suggested by the dashed
line in Fig. 21, a nearly circular “envelope” with a radius of roughly 300 km s−1 can
be drawn around the high-velocity stars. The center of the velocity envelope appears to be
near v = −220 km s−1 for both u–v and w–v diagrams. If on average the stellar halo is
rotating very slowly (if at all), then the orbital velocity of the LSR should reveal itself as
a point of symmetry along the v-axis. This is because halo stars with . ≃ 0 (no velocity
component in the direction of Galactic rotation) should exhibit peculiar v velocities that
simply reflect the motion of the LSR (i.e., v ≃ −.0). Stars that have orbital components
that are in the opposite sense from the overall Galactic rotation direction have v < −.0.
By this argument it appears that the orbital speed of the LSR is

.0 (R0) = 220 km s−1, (36)

the presently accepted IAU standard. This value has also been measured using groups of
external galaxies for reference.8

8Kuijken and Tremaine (1994) have suggested that the IAU value of .0 may be too large. Based on a set of
self-consistent solutions to various Galactic parameters, they argue for .0 = 180 km s−1.
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Example 3.1. An estimate of the mass of the Milky Way Galaxy interior to the solar
Galactocentric distance can be made using Kepler’s third law, together with R0 and .0.
Using R0 = 8 kpc and .0 = 220 km s−1, the orbital period of the LSR is

PLSR = 2πR0

.0
= 230 Myr.

Assuming that the mass of the Galaxy within the solar circle is much greater than the mass
of a test particle orbiting along with the LSR, and that the bulk of the Galaxy’s mass is
distributed spherically symmetrically, Kepler’s third law gives

MLSR = 4π2R3
0

GP 2
LSR

= 8.8 × 1010 M⊙.

This value compares well with the estimate of the mass of luminous matter quoted on

matter halo is included.

In 1927, Jan Oort (1900–1992) proposed that since no stars had been observed with
v > +65 km s−1, the escape velocity of the Galaxy must be.0 + 65 km s−1 ∼ 300 km s−1

relative to the Galactic center. In fact, we know today that a small number of extremely high-
velocity stars do exist in the solar neighborhood with speeds of ∼ 500 km s−1 relative to the
center of the Galaxy. Since these stars have not escaped from the Galaxy, it seems that the
strong asymmetry near v ∼ +65 km s−1 simply points to a deficiency in very high-velocity
stars.

Differential Galactic Rotation and Oort’s Constants

In 1927 Jan Oort also derived a series of relations that have become the framework with
which astronomers have attempted to determine the differential rotation curve of the Galactic
disk. To simplify the discussion, we will assume that all motions are circular about the center
of the Galaxy.

Consider the situation depicted in Fig. 22. Assume that the Sun (at O) and a star or
some other object (at S) are orbiting the Galactic center (at C) in the Galactic midplane. The
velocity vector that is measured between the Sun and the star at point S is the relative velocity
between the two objects. Therefore, in order to compare the observed-velocity vector to
the object’s true velocity with respect to the Galactic center, it is necessary to consider the
difference between the star’s motion and the Sun’s motion. Of course, in practice it is not
the relative space motion that is measured directly but the radial velocity and the proper
motion, with the proper motion being converted into the transverse velocity if the distance
d to the star is known.

If the line of sight is in the direction of the Galactic longitude ℓ, and if.(R) is the orbital
velocity curve as a function of distance from the Galactic center, then the relative radial
and transverse velocities of the star are, respectively,

vr = . cosα −.0 sin ℓ,

vt = . sin α −.0 cos ℓ,

earlier, but it is much less than the total mass estimate of the Galaxy when the dark
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FIGURE 22 The geometry of analyzing differential rotation in the Galactic plane. The Sun is
at point O, the center of the Galaxy is located at C, and the star is at S, located a distance d from the
Sun. ℓ is the Galactic longitude of the star at S, and α and β are auxiliary angles. The directions of
motion reflect the clockwise rotation of the Galaxy as viewed from the NGP.

where.0 is the orbital velocity of the Sun in the idealized case of perfectly circular motion
(actually the orbital velocity of the LSR) and α is defined in the figure. Defining the angular-
velocity curve to be

"(R) ≡ .(R)

R
,

the relative radial and transverse velocities become

vr = "R cosα −"0R0 sin ℓ,

vt = "R sin α −"0R0 cos ℓ.

Now, by referring to the geometry of Fig. 22 and considering the right triangle/OT C,
we find

R cosα = R0 sin ℓ,

R sin α = R0 cos ℓ− d.

Substituting these relations into the previous expressions, we have

vr = ("−"0) R0 sin ℓ, (37)

vt = ("−"0) R0 cos ℓ−"d. (38)
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Equations ( 37) and ( 38) are valid as long as the assumption of circular motion is
justified.

Although the Sun’s motion around the Galactic center is not perfectly circular, its peculiar
velocity relative to the LSR is small compared to .0 (only about 6%). As a result, to a
first approximation, Eqs. ( 37) and ( 38) provide a reasonable estimate of " = "(R)

if the other parameters are known. However, d is in general very difficult to measure
unless the object is close enough to yield to trigonometric parallax, or perhaps some other
reasonably reliable distance estimate may be applicable (for instance, the star may be a
Cepheid variable).

Another complication arises because of the effects of interstellar extinction. Our ability
to observe Galactic structure to great distances is severely limited at visual wavelengths.
Unless we are making observations in relatively unobscured directions such as Baade’s
window, we are restricted to seeing stars out to a few thousand parsecs from the Sun. One
important exception to this constraint (to be discussed in more detail below) is the 21-cm-
wavelength band of H I; virtually the entire Galaxy is optically thin to 21-cm radiation,
making that wavelength band a valuable tool for studying Galactic structure.

Because of the distance limitation at optical wavelengths, Oort derived a set of ap-
proximate equations for vr and vt that are valid only in the region near the Sun. Despite
this restriction, these alternative formulae are still able to provide a surprising amount of
information about the large-scale structure of the Galaxy.

We make the assumption here that"(R) is a smoothly varying function of R so that the
Taylor expansion of "(R) about "0 (R0) is given by

"(R) = "0 (R0) + d"

dR

∣

∣

∣

∣

R0

(R − R0) + · · · .

Thus, to first order, the difference between " and "0 is

"−"0 ≃ d"

dR

∣

∣

∣

∣

R0

(R − R0) ,

and the approximate value of " is

" ≃ "0.

If we also make use of the identity" = ./R, Eqs. ( 37) and ( 38) become (after some
rearrangement)

vr ≃
[

d.

dR

∣

∣

∣

∣

R0

− .0

R0

]

(R − R0) sin ℓ,

vt ≃
[

d.

dR

∣

∣

∣

∣

R0

− .0

R0

]

(R − R0) cos ℓ−"0d.

From Fig. 22 it is clear that

R0 = d cos ℓ+ R cosβ ≃ d cos ℓ+ R,
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the latter result being due to the small-angle approximation cos β ≃ 1, since d ≪ R0 implies
that β ≪ 1 radian. Finally, using the appropriate trigonometric identities and defining the
Oort constants

A ≡ −1
2

[

d.

dR

∣

∣

∣

∣

R0

− .0

R0

]

,

B ≡ −1
2

[

d.

dR

∣

∣

∣

∣

R0

+ .0

R0

]

,

(39)

(40)

we have

vr ≃ Ad sin 2ℓ, (41)

vt ≃ Ad cos 2ℓ+ Bd. (42)

To understand the functional dependence of the Oort formulae on Galactic longitude,
consider the orbits of nearby stars shown in Fig. 23(a). For stars in the directions ℓ = 0◦

and ℓ = 180◦, the lines of sight are perpendicular to their motions relative to the LSR. As
a result, the radial velocity must be zero. For ℓ = 90◦ or 270◦, the stars being observed are
in essentially the same circular orbit as the Sun and are moving with the same speed, so
again vr = 0 km s−1. At intermediate angles the situation is somewhat more complicated,
however. For instance, if we assume that in the neighborhood of the Sun,"(R) is monoton-
ically decreasing outward, then at ℓ = 45◦, the star being observed is closer to the Galactic
center and is “outrunning” the Sun; hence a positive radial velocity would be measured.
For ℓ = 135◦, the Sun is “overtaking” the star and a negative radial velocity results. At
ℓ = 225◦, the Sun is moving away from the star, producing a positive radial velocity, and at
ℓ = 315◦, the star is gaining on the Sun, causing the observed radial velocity to be negative.

of the vr and vt curves (Eqs. 41 and 42, respectively) give A, and the vertical offset
in vt gives B.

It is now possible to derive several important relationships between the Oort constants A

and B, and the local parameters of Galactic rotation, R0,.0,"0 = .0/R0, and (d./dR)R0 .
For instance, from Eqs. (39) and (40), we immediately find that

"0 = A − B, (43)

d.

dR

∣

∣

∣

∣

R0

= −(A + B). (44)

Yet another useful relation can be found by considering the largest radial velocity seen
along the line of sight at a constant Galactic longitude ℓ. Turning again to Fig. 22, the
star with the maximum observable radial velocity will be located at point T , the position

The Milky Way Galaxy

The overall result is the double sine function shown in Fig.  23(b). A similar analy-
sis shows that the transverse-velocity curve is a double cosine function plus an ad-
ditive constant. For a sample of stars, all with similar distances d, the amplitudes
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where α = 0◦. It is at this tangent point that the distance to the center of the Galaxy will be
a minimum and .(R) will be a maximum (if we can assume that .(R) is monotonically
decreasing from the center outward). Moreover, the orbital-velocity vector is directed along
the line of sight at that position. This minimum distance from the center of the Galaxy is
given by

Rmin = R0 sin ℓ,

and the maximum radial velocity is

vr,max = . (Rmin) −.0 (R0) sin ℓ.

If we now restrict our observations to Galactic longitudes near but less than 90◦, or near
but greater than 270◦ (i.e., inside the solar circle), then d ≪ R0, R ∼ R0, and.(R) can be
expressed in terms of a Taylor expansion about .0:

. (Rmin) = .0 (R0) + d.

dR

∣

∣

∣

∣

R0

(Rmin − R0) + · · · .

Substituting into the expression for vr,max, retaining first-order terms, and making use of
Eq. (39), we find

vr,max ≃ 2AR0 (1 − sin ℓ) . (45)

One last relation, which we will not attempt to derive here but merely include for com-
pleteness, associates A and B with the dispersions of peculiar velocities in the R and θ
directions:

−B

A − B
= σ 2

v

σ 2
u

. (46)

Equations ( 43– 46) place additional constraints on the values of R0 and.0 beyond
the direct observations discussed above. In fact, because A and B provide critical infor-
mation about Galactic differential rotation in the solar neighborhood, considerable effort
has gone into determining these constants. Based on results from the Hipparcos astrometry
mission, values of

A = 14.8 ± 0.8 km s−1 kpc−1 (47)

B = −12.4 ± 0.6 km s−1 kpc−1 (48)

appear to be consistent with the available data, although there remains debate over the best
choices for A and B.

Hydrogen 21-cm Line as a Probe of Galactic Structure

To determine the large-scale velocity structure of the Galactic disk, we must return to the
more general expressions forvr and vt that do not rely on first-order Taylor series expansions.

The Milky Way Galaxy
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FIGURE 24 (a) A typical 21-cm H I line profile. (b) The line profile is produced by observing
several gas clouds along a particular line of sight. Because of differential Galactic rotation, each cloud
has a different radial velocity relative to the Sun.

As has already been mentioned, 21-cm emission from H I is able to penetrate virtually the
entire Galaxy, making it an indispensable tool in probing the structure of the Milky Way.
By measuring vr as a function of ℓ, the Galactic rotation curve can be determined from
Eq. ( 37), provided that the distance of the emitting region from the Sun can be found.

Figure 24(a) shows a typical intensity distribution for the 21-cm emission line of
H I along a particular line of sight. When a specific cloud is encountered along the line
of sight, the wavelength of the radiation from that cloud is Doppler shifted because of the
effects of differential Galactic rotation. Furthermore, the intensity of the radiation at a given
wavelength (or velocity) is proportional to the number of hydrogen atoms along the line of
sight in the cloud. The peaks of the line profile shown in Fig. 24(a) correspond to the
clouds shown in Fig. 24(b).

The principal difficulty in using 21-cm radiation to determine "(R), and hence .(R),
lies in measuring d . This problem can be overcome by selecting the largest radial veloc-
ity measured along each line of sight, which must originate in the region Rmin from the
Galactic center, implying that d = R0 cos ℓ. By measuring vr,max for 0◦ < ℓ < 90◦ and
270◦ < ℓ < 360◦, we can determine the rotation curve within the solar Galactocentric ra-
dius. Unfortunately, this technique does not work for Galactic longitudes 90◦ < ℓ < 270◦

because there is no unique orbit for which a maximum radial velocity can be observed. The
method also tends to break down near ℓ = 90◦ and ℓ = 270◦ because vr becomes rather
insensitive to changes in distance from the Sun. For longitudes within approximately 20◦ of
the Galactic center, further problems develop; clouds that have markedly noncircular mo-
tions exist in that region, perhaps because of the gravitational perturbations of the central
bar, so the assumptions underlying the preceding analysis are not valid.

The Flat Rotation Curve and Evidence of Dark Matter

To measure .(R) for R > R0, we must rely on objects available in the Galactic plane,
such as Cepheids, for which we can directly obtain distances. These data suggest that the

The Milky Way Galaxy
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FIGURE 25 The rotation curve of the Milky Way Galaxy. The 1985 IAU standard values of
R0 = 8.5 kpc and.0 = 220 km s−1 have been assumed. (Figure adapted from Clemens, Ap. J., 295,
422, 1985.)

rotation curve of the Galaxy does not decrease significantly with distance beyond R0 and
may actually increase somewhat (meaning that for the Oort constants, A < −B near R0).
Combining all of the available data, a possible form for the rotation curve of the Galaxy is
shown in Fig. 25.

It came as a great surprise to astronomers to discover that the Galactic rotation curve is
essentially constant beyond R0. According to Newtonian mechanics, if most of the mass
were interior to the solar circle, the rotation curve should drop off as. ∝ R−1/2, a behavior

The data for the Milky Way are supported by observations of other spiral galaxies, such
as those obtained by Vera Rubin and her collaborators in the late 1970s. Figure 26
shows a spectrograph slit superimposed on NGC 2998, a galaxy in the constellation of Ursa
Major, 96 Mpc from Earth. Below that image is a portion of the spectrum in a wavelength
region near Hα. The left side of the slit recorded blueshifted light, and the light on the right
side was redshifted. The Doppler shifts were then translated into radial velocities, and a
corresponding rotation curve was determined.

Similar rotation curves have also been measured for a number of other spiral galaxies (see
Fig. 27). With the exception of the innermost regions (to be discussed in Section 4 for
the Milky Way), there is a rapid rise in rotation speed with distance out to a few kiloparsecs
from the center. This type of rotation is referred to as rigid-body rotation because when
. ∝ R," = ./R is a constant and all stars have the same orbital period about the Galactic

The Milky Way Galaxy

referred to as Keplerian motion. The fact that it does not implies that a significant amount 
of mass exists in the Galaxy beyond R0. This result was particularly unexpected since most 
of the luminosity in the Galaxy is produced by matter residing inside the solar Galacto-
centric radius.
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center, just as a rigid object would. Beyond a few kiloparsecs, nearly flat rotation curves
continue out to the edge of the measurements.

Since Galactic rotation depends on the distribution of mass, a great deal can be learned
about the matter in galaxies by studying these curves. For instance, rigid-body rotation near
the Galactic center implies that the mass must be roughly spherically distributed and the

The Milky Way Galaxy

density nearly constant. On the other hand, flat rotation curves suggest that the bulk of the 
mass in the outer portions of the Galaxy are spherically distributed with a density law that 
is proportional to r −2.
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To see this, assume that.(r) = V , where V is a constant.9 Then, from the equation for
centripetal force and Newton’s law of gravity, the force acting on a star of mass m due to
the mass Mr of the Galaxy interior to the star’s position at r is

mV 2

r
= GMrm

r2 ,

if spherical symmetry is assumed. Solving for Mr ,

Mr = V 2r

G
, (49)

and differentiating with respect to the radius of the distribution,

dMr

dr
= V 2

G
.

If we now borrow the equation for mass conservation in a spherically symmetric system
from stellar structure theory, Eq. (10.7),

dMr

dr
= 4πr2ρ,

9We are using r for a spherically symmetric mass distribution here, rather than R for cylindrical rotation in the
Galactic plane. However, to obtain a rotation curve within the Galactic plane, we need only consider the special
case of r = R.

The Milky Way Galaxy



we see that the mass density in the outer regions of the Galaxy must vary as

ρ(r) = V 2

4πGr2 . (50)

This r−2 density dependence is very different from the form determined by star counts
in the portion of the Galaxy beyond the solar Galactocentric radius. Recall from Eq. ( 14)
that the number density of stars in the luminous stellar halo is believed to vary as r−3.5, a
much more rapid drop-off than is evident from the flat rotation curve. It was this discrepancy
that so surprised astronomers.As we mentioned at the end of Section 2, it appears that the
majority of the mass in the Galaxy is in the form of nonluminous (dark) matter. Only through
its gravitational influence on the luminous component of our Galaxy and satellite galaxies
like the LMC and the SMC, and through gravitational lensing of light from background
sources, does the dark matter make its presence known.

One modification to Eq. ( 50) that has been made by many researchers is to force the
density function to approach a constant value near the center, rather than diverge. Such a
model is also consistent with the observational evidence of rigid-body rotation. As a result,
one commonly used density profile for the Milky Way’s dark matter halo is assumed to be
of the form

ρ(r) = ρ0

1 + (r/a)2 , (51)

where ρ0 and a are chosen as parametric fits to the overall rotation curve. Note that for
r ≫ a, the r−2 dependence is obtained, and ρ ∼ constant when r ≪ a. A similar profile is
often used for modeling other galaxies as well, with different choices for ρ0 and a.

It is important to point out that Eq. ( 51) cannot be correct to arbitrarily large values
of r . The reason for this is that the total amount of mass in the Galaxy would increase
without bound since Mr ∝ r . As a result, the density function for the dark matter halo
must eventually terminate or at least decrease sufficiently rapidly that the mass integral
∫∞

0 ρ(r) 4πr2 dr remains finite.
An alternative form of the dark matter halo density distribution was proposed by Julio

Navarro, Carlos Frenk, and Simon White in 1996. Using a commonly assumed form of
dark matter dynamics known as cold dark matter (CDM), Navarro, Frenk, and White ran
numerical simulations of the formation of dark matter halos over a wide range of size and
mass scales, ranging from dwarf galaxies to rich clusters of galaxies. Their simulations
revealed that a “universal” profile of the form

ρNFW(r) = ρ0

(r/a)(1 + r/a)2 (52)

was applicable over an enormous range with appropriate choices of ρ0 and a (this is the
profile first given by Eq. 15). The NFW density profile behaves approximately like a
1/r2 profile over much of the halo but is shallower (∼ 1/r) near the center and steeper
(∼ 1/r3) near the edge of the halo. Even though the NFW profile decreases more rapidly
than Eq. ( 51) with increasing r , it can be shown that the total mass contained within the

The Milky Way Galaxy



A Component Model of the Milky Way Galaxy

Based on the mass density functions from star counts and kinematics, astronomers have
been able to construct approximate models of the overall rotation curve of the Galactic
disk. One such model is shown in Fig. 28. Note that the observational data show that
the rotation curve is decreasing slightly in the solar neighborhood (R0); hence the negative
value for d./dR = −(A + B) near the Sun. Although the model does not reproduce all
of the fine structure that is present in the velocity data (which may be due to local density
variations in the thin disk, such as spiral arms), the overall correspondence between the
model and observations is quite good. Notice in particular the rigid-body rotation near the
center, the local maximum due to the combined effects of the central bulge, the stellar halo
and the dark matter halo, and the eventual flat rotation at large values of R.

Some Methods for Determining Distances

Before leaving the topic of Galactic kinematics, it is appropriate to discuss motion-based
methods of determining distances within the Milky Way, the most important of which is
the moving cluster method. Since in a stellar cluster the stars are gravitationally bound to
one another, they move through space collectively. By recording the changing positions of
members of the group over time due to the cluster’s bulk motion, it is possible to determine
their directions of motion. After removing the effects of the Sun’s peculiar motion, tracing
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FIGURE 28 One model of the rotation curve of the Galaxy. The mass distribution of each Galac-
tic component contributes to the overall velocity structure of the disk. The dots represent observational
data. Note that the “spheroid” represents the bulge and stellar halo combined and the “corona” rep-
resents the dark matter halo. (Figure adapted from Gilmore, King, and van der Kruit, The Milky Way
as a Galaxy, University Science Books, Mill Valley, CA, 1990.)
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NFW profile is still not bound. In reality, other galaxies exist in our universe besides the 
Milky Way, and their mass density functions may overlap our own. As a result, although 
galaxies appear to be separate luminous objects, their dark matter halos may actually 
merge in intergalactic space.
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these directional vectors through space gives the appearance that each star is moving toward
(or coming from) a common point known as the convergent point. This is simply the illusion
that parallel lines appear to converge at infinity, a phenomenon familiar to anyone who has
looked down the length of a long, straight set of railroad tracks. A diagram of the motion
of the Hyades galactic cluster, found in the constellation of Taurus, is shown in Fig. 29.

From the geometry illustrated in Fig. 30, the angle between the cluster and the con-
vergent point, as seen from the Sun, must be the same as the angle between the line of
sight to the cluster and its space velocity vector, v (this statement is valid only because the
convergent point is taken to be at infinity). Now, decomposing the space velocity into its
perpendicular components, the radial velocity is given by vr = v cosφ, and the transverse
velocity is vt = v sin φ. Combining yields

vt = vr tan φ.

Since the transverse velocity is observed as the proper motion, µ = vt/d, the distance to
the cluster can be determined from knowledge of the direction to the convergent point φ,

The Milky Way Galaxy
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the average radial velocity of the cluster members, and the average of their proper motions.
Solving for d, we get

d = ⟨vr⟩ tan φ
⟨µ⟩ , (53)

where standard SI units have been used for d, vr , and µ. Expressing d , vr , and µ in the
more commonly used units of pc, km s−1, and arcsec yr−1, respectively, Eq. ( 53) can be
written as

d (pc) = ⟨vr⟩ tan φ
4.74 ⟨µ′′⟩ . (54)

This technique has been used to determine the distances to several clusters, including
the Hyades with its approximately 200 members, the Ursa Major group (60 stars), and the
Scorpio–Centaurus group (100 stars); the most important of these is the Hyades.The distance
to the Hyades is found to be 46 ± 2 pc, in excellent agreement with other determinations
such as those made by trigonometric parallax (the Hipparcos space astrometry mission data
yielded a value of 47 pc to the center of the Hyades).

Once the distance to the Hyades was determined, the absolute magnitudes of its members
could be found, providing an important calibration of its main sequence. By comparing the
apparent magnitudes of other cluster H–R diagram main sequences to the Hyades, it is pos-
sible to find the distance moduli of those clusters, as illustrated schematically in Fig. 31.

The Milky Way Galaxy

Assuming that the amount of interstellar extinction is known (from reddening data, for 
instance), the distances to those clusters can be determined. This distance technique 
is known as main-sequence fitting and is similar to the method of spectroscopic par-
allax. However, main-sequence fitting is a more precise procedure because it relies on 
a large number of stars along the main sequence rather than on a single object, sig-
nificantly reducing statistical errors. Identifying RR Lyraes in clusters of known dis-
tances then provides a means of determining the intrinsic luminosities of these stars 
more accurately. Once the luminosities of the RR Lyraes have been calibrated, they 
can be used to determine other distances, such as to globular clusters. Historically, 
the Hyades provided the foundation for virtually all distance estimates, both Galac-
tic and extragalactic, beyond about 100 pc from Earth, although this is changing with 
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space astrometric missions such as the European Space Agency’s Hipparcos (1989–1993)
and Gaia (launch 2011) missions, and NASA’s SIM Planet uest (launch 2011).

One last distance determination technique worth mentioning is secular parallax.

.

2.8 AU yr−1; allowing the effect to build up for several years provides a significantly larger
baseline than is available from Earth’s annual orbit about the Sun. This larger baseline can
then be used to determine an average distance to the group of stars. However, it is important
to remember that the measured solar motion does depend on the group of stars used as a
reference. We will not discuss the details of the method in this text.

4 THE GALACTIC CENTER

Observations of the center of our Galaxy pose a particular challenge. This is because the
abundance of gas and dust in the Galactic plane results in more than 30 magnitudes of
extinction at visible wavelengths. Located only 30 pc above the midplane and 8 kpc from
the center, the line of sight from the Sun to the center traverses nearly the maximum
possible amount of interstellar material. It is interesting to note, however, that because the
solar peculiar velocity has an appreciable component perpendicular to the Galactic plane
(w⊙ = 7.2 km s−1), the Sun will reach a height of approximately 85 pc above the
plane in 15 million years; this will place it above most of the obscuring material.

The Milky Way Galaxy

The ability to measure distances directly from the motion of Earth around the Sun 
relies on the 2-AU diameter of Earth’s orbit. If the length of the baseline could 
be increased, it would be possible to extend the method to objects farther away. 
This is accomplished by using the peculiar motion of the Sun with  respect to a 
group of stars having similar properties, such as similar spectral types, distanc-
es, and space motions. The overall solar motion of 13.4 km s−1 is equivalent to

.



If humanity is still inhabiting Earth at that time, our descendants will enjoy a spectacular
view of a dense stellar cluster near the center of our Galaxy.

The Mass Distribution Near the Galactic Center

To peer into the central regions of the Galaxy today, we are forced to make most of our
observations in wavelengths longer than about 1 µm (i.e., infrared, microwave, and radio),
or in X-rays and gamma rays. Despite our difficulty of clearly seeing the center of the
Galaxy in visible wavelengths, we have been able to construct an image of the Galactic
nucleus that depicts a history of violent events and exotic phenomena.

One IR wavelength band commonly used for investigations of the core of our Galaxy
is centered at 2.2 µm, the so-called K band. This wavelength band is employed because
the large number of old Population I K and M giant stars (Te ∼ 4000 K) that exist in the
central region of the Galaxy are readily observable at 2.2 µm. When we use the K band to
study the brightness distribution of the central cluster and use an appropriate mass-to-light
ratio (∼ 1 M⊙/L⊙), it appears that the mass density of stars rises toward the center as r−1.8

down to a radius of between 0.1 pc and 1 pc. This is roughly the type of distribution that
would be expected on dynamical grounds (the central region of the Galaxy is interior to the
region of “rigid-body” rotation).

Since these stars are very close together, particularly when compared with the distance
between stars in the solar neighborhood, close encounters are fairly frequent, occurring on
average once every 106 years or so. Because of the gravitational perturbations produced
by these close encounters, the constant exchange of mechanical energy between stars has
generated a nearly isothermal velocity distribution; in other words, the stars in the sample
have a velocity distribution just like the particles in an isothermal gas, meaning that the
velocity distribution is approximately Maxwellian. In a truly isothermal stellar gas, the
mass density distribution is r−2, close to the r−1.8 variation that is observed. Recall that
this is also the spherical density distribution required for flat rotation curves [when all stars
have the same orbital velocity and Mr ∝ r; Eq. ( 49)].

The observed density distribution from the isothermal stellar gas is inconsistent with
measurements of the velocities of stars within 2 pc of the center, however. Kristen Sellgren,
Martina T. McGinn, and their colleagues made one such set of observations in the late
1980s using the 2.3-µm molecular absorption band of CO found in the spectra of the cool
K and M giants. They found that although the velocity distribution is fairly isothermal from
several hundred parsecs down to a couple of parsecs from the center, velocities begin to
increase significantly as the distance to the center continues to decrease. This suggests that
either the stellar density must rise substantially faster than r−2 toward the center (at least
as steeply as r−2.7) or there must be a great deal of mass occupying a very small volume
near the middle of the cluster.

More recently, Rainer Schödel, Reinhard Genzel, and their research group were able to
follow the orbits of stars very close to the Galactic center. In particular, the star known as
S2 has an orbital period of 15.2 yr, an orbital eccentricity of e = 0.87, and a perigalacticon
distance of 1.8 × 1013 m = 120 AU (17 light-hours). This size is only a few times the
semimajor axis of Pluto’s orbit Figure 32 shows the orbit of S2 against the central
stellar cluster of the Galaxy.

The Milky Way Galaxy



FIGURE 32 The orbit of S2 about the center of the Milky Way Galaxy. The center is designated
as Sgr A⋆. (Courtesy of Reinhard Genzel and Rainer Schödel.)

Example 4.1. The semimajor axis of S2’s orbit is

aS2 = rp

1 − e
= 1.4 × 1014 m.

From Kepler’s third law, the mass interior to S2’s orbit must be about

M = 4π2a3
S2

GP 2 ≃ 7 × 1036 kg ≃ 3.5 × 106 M⊙.

A more precise calculation gives

M = 3.7 ± 0.2 × 106 M⊙.

Figure 33 shows estimates of the amount of mass interior to r based on measurements
of objects at varying distances from the center.

The luminosity distribution of the stars near the center of the Galaxy peaks within a
few arcseconds (∼ 0.1 pc) of an infrared object known as IRS 16 (for infrared source).
It was during a lunar occultation that IRS 16 was resolved into at least 15 very luminous
point-like sources that are most likely individual stars. These sources appear to be hot stars
with brightnesses in excess of 106 L⊙. They may be O and B stars, but with luminosities

The Milky Way Galaxy

that are much greater than expected for normal stars. Furthermore, their ultravio-
let fluxes are absorbed by the surrounding gas and dust and reradiated in the infrared. 
It has been suggested that these objects may be Wolf–Rayet stars, which are extremely 
rare in other parts of the Galaxy. Since Wolf–Rayets are massive stars, they must have 
evolved to their present states very rapidly. If these stars are in fact Wolf–Rayets, then
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a burst of star formation must have occurred within the past 10 million years. However, an
episode of recent star formation seems to contradict the facts that the density of gas and dust
is very low and that there is no evidence of ongoing star formation in that region today. On
the other hand, in further support of the Wolf–Rayet idea is the presence of high-velocity
gas near IRS 16 (∼ 700 km s−1), which some researchers suggest may have been ejected as
a stellar wind by one of the stars. As an alternative explanation, other astronomers point out
that it is also possible that the high-velocity gas could simply be falling in toward the center
of the Galaxy rather than being ejected from it.10 The velocity structure of the gas does not
appear to be consistent with the acceleration expected of Wolf–Rayet winds with increasing
distance from the star; instead, the gas velocity appears to decrease with distance.

IRS 16 does not appear to have sufficient mass to account for the rise in orbital ve-
locities near the center. It seems that whatever the origin of this extremely localized mass
distribution, it must have an overall luminosity that remains below our threshold of de-
tectability. One possibility is that the mass is composed of a very dense cluster of brown
dwarfs and/or more massive neutron stars. Even in the case of neutron stars, however,

10Determining whether the gas is falling in toward the center of the Galaxy or being ejected from it requires
information about the orientation of the gas trajectories relative to the line of sight, something that is often difficult
to determine.
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interactions with high-mass stars would eject the lower-mass neutron stars from the center
in less than 108 years. This would have the additional effect that the most massive members
of the cluster would “sink” to the center of the Galaxy’s gravitational well, which is not
observed.

Radio Sources in Sagittarius

It was Karl Jansky (1905–1950) who, in the 1930s, first discovered that a radio source was
located in the direction of Sagittarius, but extensive observations of the radio Galaxy were
delayed until after World War II.11 Since that time the Galactic center has been the site of
numerous studies at radio wavelengths.

Radio observations of H I clouds reveal a nuclear disk of neutral gas occupying a region
between a few hundred parsecs and about 1 kpc from the center. The disk appears to be tilted
slightly with respect to the Galactic plane and contains clouds with significant noncircular
motions. Observations of the nuclear disk are responsible for the mass estimates of the
Galactic center beyond 100 pc that are shown in Fig. 33.

Galactic lobes of ionized gas have also been observed within the central few hundred
parsecs. Elongated, with dimensions of 10 pc by 200 pc, the lobes are oriented nearly
perpendicular to the Galactic plane and may represent material being ejected from the
center. However, the data may also be consistent with infalling material.

One of the more unusual features of the radio emission originating in the central region
of the Galaxy is the set of filaments that stretch for 20 pc from the center in a direction
perpendicular to the Galactic plane and then make an almost right-angle turn; see Fig. 34.
Even a casual inspection of this 20-cm radio structure, located near ℓ ∼ 0.18◦, suggests that
magnetic fields may be responsible for the unusual pattern. In fact, the radiation is linearly

FIGURE 34 A view of the central 60 pc × 60 pc of the Galaxy. This image was made using
20-cm radiation produced by synchrotron radiation. Sgr A is the central, radio-bright region. (Figure
from Yusef-Zadeh, Morris, and Chance, Nature, 310, 557, 1984, and NRAO.)

11Major advances in radio and microwave electronics that occurred during World War II helped to advance radio
astronomy in the years that followed.
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polarized and appears to be synchrotron emission. From the intensity of the radiation and
the amount of polarization, the strength of the Galactic magnetic field in that region is
probably between 10−8 and 10−6 T, roughly two to four orders of magnitude weaker than
Earth’s magnetic field.

A similar feature has also been discovered south of the Galactic plane. Together, these
structures seem to be part of a “halo” of streamers and filaments that may correspond to mass
outflow from the center of the Galaxy. A satisfactory model of the source of the relativistic
electrons that are spiraling around the magnetic field lines, or of the source of the field itself,
has not yet been developed.

The inner 8 pc of the Galaxy contains the radio source designated as Sagittarius A
(Sgr A). With the increase in resolving power provided by the technique of very long
baseline interferometry and the use of telescopes such as the Very Large Array, it has
become possible to study the structure of the Sgr A complex down to angular resolutions
of 0.2 milliarcsecond, corresponding to linear dimensions of less than 2 AU.

The largest feature of the complex is the molecular circumnuclear ring, a doughnut-
shaped structure with an inner radius of 2 pc and an outer radius of 8 pc that is inclined some
20◦ with respect to the Galactic plane. The inner edge of the ring exhibits some warping,
and the ring thickness increases from 0.5 pc at its inner edge to 2 pc at a Galactocentric
distance of 7 pc. This molecular ring has been observed at various wavelengths associated
with several atoms and molecules, including H I, H2, C II, O I, OH, CO, HCN, and CS. The
ring is rotating about the Galactic center at a speed of approximately 110 km s−1, a value
that is nearly independent of radius. From the collisional excitation of the molecules and
the intensity of the emission, the estimated mass of the portion of the ring located between 2
and 5 pc is 1 × 104 M⊙ to 3 × 104 M⊙.

It is apparent that the ring is unlike any other molecular region known to exist in our
Galaxy. For instance, the temperatures of individual molecular clouds that exist throughout
much of the ring increase from less than 300 K near 4.5 pc to more than 400 K near the
inner edge. At the same time, the number density of hydrogen molecules increases from
1.5 × 1010 m−3 to 5 × 1010 m−3 over the same distance. These values should be compared
with those of more typical molecular clouds, such as the giant molecular clouds discussed
in Section 12.1. In GMCs that are located several kiloparsecs from the center of the Galaxy,
T ∼ 15 K and nH2 ∼ 108 m−3.

The circumnuclear ring also shows evidence that some violent event occurred near the
Galactic center in the relatively recent past. The inner edge of the ring is very sharp; the num-
ber density of particles inside the central cavity is 10 to 100 times less than in the ring
itself. Such a strong density discontinuity cannot be an equilibrium feature of the ring
because the ring’s internal turbulence would destroy the discontinuity in less than 105 years.
Furthermore, the gas within the cavity is largely ionized while the gas in the ring is in the
form of neutral atoms and molecules. It is estimated that the amount of energy required to
clear out the cavity is on the order of 1044 J, a value characteristic of a supernova explosion.

The ring shows other evidence of some past violent episode as well. For instance, material
in the ring is very clumpy, a situation that cannot be maintained indefinitely because of the
relatively rapid smoothing effects of cloud–cloud collisions. Also, a study of the hydroxyl
molecule (OH) in portions of the ring indicates that the temperature of nearly 2000 K is
consistent with strong shocks that rapidly heated the molecules to temperatures well above
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the values seen elsewhere in the ring. Furthermore, OH radicals can be produced when
water molecules (H2O) are torn apart by energetic events such as shocks.

Besides the circumnuclear ring, several other components have also been discovered
within the Sgr A complex. Sgr A East is a nonthermal source with a shell-like appearance
(a “nonthermal” source is one that does not emit its electromagnetic radiation in the form
of a blackbody spectrum; one type of nonthermal emission is synchrotron radiation). It is
generally accepted that Sgr A East is a young supernova remnant that may be between 100
and 5000 years old. Sgr A West, which is located 1.5′ from the center of Sgr A East, is an
unusual H II region (a thermal source) that looks very much like a “mini-spiral.” Finally,
Sgr A⋆ (pronounced “Sagittarius A star”) is a strong, unresolved radio point source that is
located near the center of Sgr A West. A radio image of Sgr A West and Sgr A⋆ is shown in
Fig. 35(a).

The location of the Sgr A complex corresponds very closely with the brightness peak
of the central stellar cluster, suggesting strongly that this region marks the center of the
Galaxy. In fact, one component of IRS 16 (named IRS 16 Center) is only about 1′′ west of
Sgr A⋆. If the two objects are the same distance from Earth and not simply aligned along the
line of sight, then their angular separation translates into a linear separation of only 0.04 pc.
For reasons we will soon discuss more fully, it now appears that Sgr A⋆ is the actual center
of the Milky Way.

Although Sgr A West appears superficially to be much like the large-scale spiral pattern
seen in the disk of the Milky Way, it is fundamentally very different. The western arc is
just the ionized inner edge of the circumnebular ring, which is rotating about the center at
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FIGURE 35 (a) A VLA 6-cm image of the inner 40′′ of the Galaxy, showing the Sgr A West
mini-spiral. Sgr A⋆ (a radio point source) is the bright oval at the center of the image. (Figure from
Lo, Science, 233, 1394, 1986.) (b) An intensity contour map of the Sgr A West region. Radial-velocity
measurements of the gas are also indicated on the map (in units of km s−1). (Figure from Genzel and
Townes, Annu. Rev. Astron. Astrophys., 25, 377, 1987. Reproduced with permission from the Annual
Review of Astronomy and Astrophysics, Volume 25, ©1987 by Annual Reviews Inc.)
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110 km s−1. The velocities recorded on the map in Fig. 35(b) are the measured radial
velocities. Portions of the arc that are moving nearly along the line of sight record the largest
radial velocities (positive or negative), and the parts of the arc that are moving perpendicular
to the line of sight have no radial-velocity components.

The other components of Sgr A West appear to be ionized filaments of matter that may
be both rotating about and falling in toward the central “bar” and the vicinity near Sgr A⋆.
These features may also be associated with a central magnetic field that has an estimated
strength of 30 nT.

As was seen for the stellar velocities, the velocities of the ionized gas within the cavity
increase dramatically toward the center, from 110 km s−1 at the inner edge of the circum-
nebular ring to 700 km s−1 at 0.1 pc.

Example 4.2. The motion of gas in the central regions of the Galaxy can be used to
estimate the amount of mass interior to the location of the gas. A gas cloud 0.3 pc from
the center has a measured velocity of 260 km s−1. If the cloud is in orbit about the center,
Eq. (49) gives

Mr = v2r

G
= 4.7 × 106 M⊙.

An X-Ray Source in Sgr A

To within the positional error bars, the radio Sgr A West region (including Sgr A⋆) also
coincides with a small continuous X-ray source.Although the estimates are highly uncertain
due to extensive absorption along the line of sight, the X-ray source appears to have a
characteristic temperature of T ∼ 108 K and luminosities of 1028 W in the 2–6 keV energy
band (“soft” X-rays) and 2 × 1031 W between 10 keV and 10 MeV (“hard” X-rays). Because
the X-ray source is also highly variable, it must be composed of one or a few objects whose
diameters are less than about 0.1 pc. The upper limit on the linear size is derived from the
minimum amount of time required for information to travel across the object, assuming
that the information travels at the speed of light. If one side of the source begins changing
brightness, the opposite side can learn about the change and begin contributing to it only
after a time /t ≥ d/c, where d is the diameter; measuring /t places the upper limit of
0.1 pc on d .

The Supermassive Black Hole in Sgr A⋆

As we saw in Example 4.1, it has been possible to follow the orbits of individual stars
to within about 120 AU of Sgr A⋆, providing us with critical data for accurately calculating
the mass in the innermost region of the Galactic center. It has also been possible to place an
upper limit of less than 2 AU on the size of Sgr A⋆. From these data, it appears that Sgr A⋆
can only be a supermassive black hole with a mass of

MSgr A⋆ = 3.7 ± 0.2 × 106 M⊙.
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This implies that the Schwarzschild radius of the black hole is

RSgr A⋆ = 2GMbh

c2 = 0.08 AU = 16 R⊙,

which remains below the roughly 2-AU resolution limit of current observations.
Producing the infrared radiation detected from the ring and maintaining the degree of

ionization seen inside the cavity require an ultraviolet luminosity of 107 L⊙ with an effective
blackbody temperature of 35,000 K; the temperature is deduced from the strengths of the IR
emission lines of S IV, O III, and Ar III. The gas absorbs some of the UV radiation, ionizing
it and producing the unusual H II region, Sgr A West. The dust absorbs the remainder of
the UV photons and reradiates the light at IR wavelengths.

Could a supermassive black hole be responsible for the luminosity? Observations of the
number density of particles and the velocity structure inside the cavity of the circumnuclear
ring suggest that matter is accreting onto the Galactic center at a rate of Ṁ = 10−3 to
10−2 M⊙ yr−1. This matter must release gravitational potential energy as its distance from
the center decreases.

It is possible to make a rough estimate of the luminosity that could be produced by an
accreting supermassive black hole in Sgr A⋆. If we consider a Newtonian view of energy
released when a particle of mass M spirals in through an accretion disk from an initial
radius of ri to a final radius of rf , then according to the virial theorem, the amount of
energy radiated should be one-half the change in potential energy, or

E = 1
2

(

GMbhM

rf

− GMbhM

ri

)

,

where Mbh is the mass of the black hole. Assuming that ri ≫ rf and rf = RS (the Schwarz-
schild radius), then

E = 1
2

GMbhM

RS

.

Taking the luminosity as L = dE/dt and the mass accretion rate as Ṁ = dM/dt , and
substituting the expression for the Schwarzschild radius, we have

L = 1
4
Ṁc2, (55)

a result that is independent of both the mass and the radius of the black hole. Now, the
minimum mass-accretion rate required to generate 107 L⊙ is

Ṁ = 4L

c2 = 1.7 × 1017 kg s−1 = 2.7 × 10−6 M⊙ yr−1.

The observed accretion rate of 10−3 to 10−2 M⊙ yr−1 is more than sufficient to produce
the luminosity seen in Sgr A West and Sgr A⋆. Curiously, high-resolution observations of
the Sgr A⋆ region alone suggests an upper limit of luminosity from Sgr A⋆ of less than
3 × 104 L⊙.
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Assuming that there is a supermassive black hole at the center of Sgr A⋆ and that it
is actually at the center of our Galaxy’s gravitational well, then it should remain nearly

Furthermore, relative to other objects in the Galactic center, Sgr A⋆ has moved at most
a small fraction of its diameter over a period of more than a decade, a rate that is much
slower than for any other object in the region. Given the gravitational tugs that it certainly
receives from stars and large clouds in that region, this extremely sluggish motion implies
that Sgr A⋆ is very massive.

Very high-resolution VLA maps at 2 cm reveal what appear to be large clouds of ionized
gas only 0.06 pc from Sgr A⋆. From the orientation of the clouds, it appears that they were
ejected from the center in opposite directions. There is also evidence of a trail of hot, ionized
gas coming from IRS 7, a red supergiant star less than 0.3 pc from the center. The direction
of the stream points away from Sgr A⋆, suggesting that a strong wind or perhaps intense
UV radiation from the center is blowing the material away from the star.

As has already been mentioned, although the Galactic center appears relatively quiet
today, it must have experienced rather violent episodes in the recent past. One possible
mechanism that could produce these periodic events would be the tidal disruption of a
passing star and the subsequent infall of matter. As the matter falls toward the supermassive
black hole in the center, it collects onto an accretion disk, releasing a tremendous amount
of gravitational potential energy accompanied by a dramatic increase in luminosity

The entire episode may last for only a few years, but if such events occurred
on the order of every 104 to 105 years, enough energy would be released to keep the central
cavity ionized and the circumnuclear disk turbulent.

Sgr A⋆ is not entirely inactive, however. From studies of the Galactic center using the
Chandra X-Ray Observatory and the XMM-Newton Observatory, it appears that flares occur
on average about once per day. Lasting for up to an hour or so, luminosities can reach peak
values of 3.6 × 1028 W, more than 160 times the quiescent X-ray level of Sgr A⋆.

Many other galaxies (Andromeda, for example) appear to have supermassive black

High-Energy Emission Lines from Near the Galactic Center

Before leaving the discussion of the Galactic center, it is worth mentioning the detection of
two significant high-energy emission lines that originate in the region of the Sgr A complex.
The first of these results from an electron colliding with a positron, causing their mutual
annihilation and the corresponding production of two photons, each of energy 511 keV.12

Since it is believed that black holes can help produce positrons in the space surrounding

12511 keV is the rest mass energy of an electron or a positron.

.
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them, the presence of the 511-keV line seemed to support the existence of a black hole in
Sgr A⋆. However, the efficient production of positrons in the numbers needed to explain the
enormous flux of 1044 photons per second (L511 ∼ 5 × 104 L⊙) requires a black hole smaller
than the one envisioned for the Galactic center (perhaps only a few hundred solar masses).
This is because high accretion-disk temperatures are required for the production of the
particles, and the temperature of the disk increases with decreasing radius (see Eq. 18.19).

Due to the poor angular resolution of the original detections, it was unclear whether SgrA⋆
could properly be considered the source of the 511-keV photons. On October 13–14, 1990,
the Soviet spacecraft GRANAT, with its higher-resolution imaging capability, discovered
that the source of the 511-keV photons was not SgrA⋆ but a previously known X-ray emitter,
1E1740.7−2942, first detected by the Einstein satellite in 1979.13 Nicknamed “the Einstein
source,” 1E1740.7−2942 is located some 45′ from SgrA⋆, more than 300 pc from the center.
With its accretion-disk plasma temperature of 109 K and variable luminosity, the Einstein
source appears to be a very strong candidate for a stellar black hole.

The second high-energy emission line detected in the region of the Galactic center is the
1.8-MeV line produced by the decay of 26

13Al to 26
12Mg. Since 26

13Al has a half-life of 716,000
years and is produced only in relatively small amounts in supernovae, novae, and possibly
Wolf–Rayet stars, the presence of an estimated ∼ 5 M⊙ of the radioactive isotope seems to
suggest that a large number of supernovae have occurred in that region over the past 105 to
106 years. The Galactic center is clearly an extremely dynamic environment.
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1 Approximately how many times has the Sun circled the center of the Galaxy since the star’s
formation?

2 (a) What fraction of the total B-band luminosity of the Galaxy is produced by each of the
stellar components? Refer to Table 1.
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PROBLEM SET

TABLE 1 Approximate Values for Various Parameters Associated with the Components of the
Milky Way Galaxy. Definitions and details are discussed in the text.

Disks
Neutral Thin Thick

Gas Disk Disk
M (1010 M⊙) 0.5a 6 0.2 to 0.4
LB (1010 L⊙)b — 1.8 0.02
M/LB (M⊙/L⊙) — 3 —
Radius (kpc) 25 25 25
Form e−z/hz e−z/hz e−z/hz

Scale height (kpc) < 0.1 0.35 1
σw (km s−1) 5 16 35
[Fe/H] > +0.1 −0.5 to +0.3 −2.2 to −0.5
Age (Gyr) ! 10 8c 10d

Spheroids
Central Stellar Dark-Matter
Bulgee Halo Halo

M (1010 M⊙) 1 0.3 190+360
−170

f

LB (1010 L⊙)b 0.3 0.1 0
M/LB (M⊙/L⊙) 3 ∼ 1 —
Radius (kpc) 4 > 100 > 230
Form boxy with bar r−3.5 (r/a)−1 (1 + r/a)−2

Scale height (kpc) 0.1 to 0.5g 3 170
σw (km s−1) 55 to 130h 95 —
[Fe/H] −2 to 0.5 < −5.4 to −0.5 —
Age (Gyr) < 0.2 to 10 11 to 13 ∼ 13.5

a Mdust/Mgas ≃ 0.007.
b The total luminosity of the Galaxy is LB,tot = 2.3 ± 0.6 × 1010 L⊙,

Lbol,tot = 3.6 × 1010 L⊙ (∼ 30% in IR).
c Some open clusters associated with the thin disk may exceed 10 Gyr.
d Major star formation in the thick disk may have occurred 7–8 Gyr ago.
e The mass of the black hole in Sgr A⋆ is Mbh = 3.7 ± 0.2 × 106 M⊙.
f M = 5.4+0.2

−3.6 × 1011 M⊙ within 50 kpc of the center.
g Bulge scale heights depend on age of stars: 100 pc for young stars, 500 pc for old stars.
h Dispersions increase from 55 km s−1 at 5 pc to 130 km s−1 at 200 pc.
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3 The globular cluster IAU C0923−545 has an integrated apparent visual magnitude of V =
+13.0 and an integrated absolute visual magnitude of MV = −4.15. It is located 9.0 kpc from
Earth and is 11.9 kpc from the Galactic center, just 0.5 kpc south of the Galactic midplane.
(a) Estimate the amount of interstellar extinction between IAU C0923−545 and Earth.
(b) What is the amount of interstellar extinction per kiloparsec?

4 Using the differential star count formula for an infinite universe of constant stellar number
density and no interstellar extinction (Eq. 5), show that the amount of light arriving at Earth
from a cone of solid angle" diverges exponentially as the length of the cone increases without
bound (or, equivalently, as m approaches infinity). Assume that all stars in the field have the
same absolute magnitude M .

5 (a) From Eq. ( 5), derive an expression for log10 AM(m) as a function of m for stars of
the same absolute magnitude and M–K spectral classification, assuming a constant stellar
number density.

AM(M, S,", m) = dNM(M, S,", m)

dm

= ln 10
5
" nM(M, S) 103(m−M+5)/5

= 3 ln 10
5

NM(M, S,", m).

(5)

AM(M, S,", m) = dNM(M, S,", m)

dm

= ln 10
5
" nM(M, S) 103(m−M+5)/5

= 3 ln 10
5

NM(M, S,", m).

(5)

(b) If observations are made in apparent magnitude bins separated by one (i.e., δm = 1),
calculate

/ log10 AM(m) ≡ log10 AM(m + 1) − log10 AM(m).

(c) If the results of observations show that/ log10 AM(m) is always less than the result found
in part (b), what can you conclude about the distribution of stars in the region under
investigation? [Recall that Eq. ( 5) applies to the case of an infinite universe of constant
stellar number density and no interstellar extinction.]

6 (a) Plot log10 AM as a function of V for the hypothetical data given in Table 2. Assume
that all stars included in the differential star counts are main-sequence A stars of absolute
visual magnitude MV = 2.
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(b) What is the amount of interstellar extinction per kiloparsec?



(b) Assuming a constant density of stars out to at leastV = 11, how much interstellar extinction
is present to that limit (express your answer in magnitudes)? Hint: Consider the slope of
the curve. You may also find the results of Problem 5 helpful.

(c) What is the distance to the stars corresponding to V = 11?
(d) If the solid angle over which the data were collected is 0.75 square degrees, or 2.3 × 10−4 sr,

estimate the number density nM(M, S) of A stars out to V = 11.
(e) Give two possible explanations for the change in slope between V = 11 and V = 15.

7 (a) Assume that a cloud of gas and dust is encountered along the line of sight for the data given
in Table 2 and plotted in the table in Problem 6. Assume also that the stellar number

Hint: How would the graph change if
the cloud were not present? The cloud’s presence may be revealed through reddening.

(b) If the density of gas and dust in the cloud leads to an extinction rate of 10 mag kpc−1, what
is the length of the cloud along the line of sight?

TABLE 2 Hypothetical Differential Star Count Data.

V log10 AM V log10 AM

4 −2.31 12 2.24
5 −1.71 13 2.59
6 −1.11 14 2.94
7 −0.51 15 3.29
8 0.09 16 3.89
9 0.69 17 4.49

10 1.29 18 5.09
11 1.89 19 5.69

Graphs of log10 AM vs. m that demonstrate changes in slope and then resume the
original slope at larger values of m are referred to Wolf diagrams, after Maximilian Wolf
(1863–1932), who first used them to explore the properties of interstellar clouds.

density found in Problem 6 is constant along the entire line of sight. Estimate the amount
of extinction (in magnitudes) that is due to the cloud.

(b) Prove that for z ≫ z0,

L(R, z) ≃ 4L0e
−R/hR e−2z/z0

and so z0 = 2zthin is the effective scale height of the luminosity density function.

9 (a) From the data given in Table 1, and, using a typical value for the temperature of
hydrogen in the interstellar medium of 15 K, estimate the average thermal energy density
of hydrogen gas in the disk of the Galaxy. For this problem, assume that the disk has a
radius of 8 kpc and a height of 160 pc.

8 (a) Plot the old thin disk’s luminosity density (Eq. 10) as a function of z for R = 8 kpc.

L(R, z) = L0e
−R/hR sech2(z/z0),

The MilkyWay Galaxy: Problem Set
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TABLE 1 Approximate Values for Various Parameters Associated with the Components of the
Milky Way Galaxy. Definitions and details are discussed in the text.

Disks
Neutral Thin Thick

Gas Disk Disk
M (1010 M⊙) 0.5a 6 0.2 to 0.4
LB (1010 L⊙)b — 1.8 0.02
M/LB (M⊙/L⊙) — 3 —
Radius (kpc) 25 25 25
Form e−z/hz e−z/hz e−z/hz

Scale height (kpc) < 0.1 0.35 1
σw (km s−1) 5 16 35
[Fe/H] > +0.1 −0.5 to +0.3 −2.2 to −0.5
Age (Gyr) ! 10 8c 10d

Spheroids
Central Stellar Dark-Matter
Bulgee Halo Halo

M (1010 M⊙) 1 0.3 190+360
−170

f

LB (1010 L⊙)b 0.3 0.1 0
M/LB (M⊙/L⊙) 3 ∼ 1 —
Radius (kpc) 4 > 100 > 230
Form boxy with bar r−3.5 (r/a)−1 (1 + r/a)−2

Scale height (kpc) 0.1 to 0.5g 3 170
σw (km s−1) 55 to 130h 95 —
[Fe/H] −2 to 0.5 < −5.4 to −0.5 —
Age (Gyr) < 0.2 to 10 11 to 13 ∼ 13.5

a Mdust/Mgas ≃ 0.007.
b The total luminosity of the Galaxy is LB,tot = 2.3 ± 0.6 × 1010 L⊙,

Lbol,tot = 3.6 × 1010 L⊙ (∼ 30% in IR).
c Some open clusters associated with the thin disk may exceed 10 Gyr.
d Major star formation in the thick disk may have occurred 7–8 Gyr ago.
e The mass of the black hole in Sgr A⋆ is Mbh = 3.7 ± 0.2 × 106 M⊙.
f M = 5.4+0.2

−3.6 × 1011 M⊙ within 50 kpc of the center.
g Bulge scale heights depend on age of stars: 100 pc for young stars, 500 pc for old stars.
h Dispersions increase from 55 km s−1 at 5 pc to 130 km s−1 at 200 pc.

(b) Using the below equation, estimate the energy density of the magnetic field in the spiral

10 What are the J2000.0 Galactic coordinates of Sgr A⋆?

um = B2

2µ0
.

arms. Compare your answer with the thermal energy density of the gas. Would you expect
the magnetic field to play a significant role in the structure of the Galaxy? Why or why not?
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11 Use Eqs. ( 16– 18) to determine the Galactic coordinates of the following objects. (You
may wish to refer to Fig. 18 to verify your answers.)
(a) The north celestial pole
(b) The vernal equinox
(c) Deneb (see Appendi )

12 (a) Estimate the height (z) above or below the Galactic plane for both M13 (ℓ = 59.0◦, b =
40.9◦) and the Orion nebula (ℓ = 209.0◦, b = −19.4◦). M13 and the Orion Nebula are
7 kpc and 450 pc from Earth, respectively.

(b) To which components of the Galaxy do these objects probably belong? Explain your
answers.

13 (a) Consider a sample of stars that lie in the Galactic plane and are distributed in a circle about
the LSR, as shown in Fig. 36. For the purpose of this problem, assume also that these
stars are at rest with respect to the LSR (of course, this could not actually occur in such a

B

A

H

D

E

F

G

C

Sun

FIGURE 36 A set of stars distributed in a circle about the LSR. The circle is assumed to be in
the Galactic plane, and the stars are at rest with respect to the LSR. The solar motion is in the direction
of Star A.

sin b = sin δNGP sin δ + cos δNGP cos δ cos(α − αNGP)

cos b sin(ℓNCP − ℓ) = cos δ sin(α − αNGP)

cos b cos(ℓNCP − ℓ) = cos δNGP sin δ − sin δNGP cos δ cos(α − αNGP).

dynamic system). With the Sun located at the position of the LSR and the solar motion in
the direction of Star A as indicated, sketch the velocity vectors associated with the apparent
motion of each star, as seen from the Sun. Label the apex and antapex on your diagram.

(b) Sketch the radial-velocity and transverse-velocity components of each star’s apparent
motion on the diagram used in part (a).

(c) Describe how you might locate the apex of the solar motion given the radial-velocity data
of a large sample of stars in the solar neighborhood.

(d) How would you identify the solar apex from proper motion data of stars in the solar
neighborhood?

(16)

(17)

(18)

The MilkyWay Galaxy: Problem Set
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14 Figure 37 illustrates older data derived from a kinematic study of the Milky Way. From the
data presented, what was the estimate of v⊙ in the early 1960s?

15 (a) Assuming (incorrectly) that the high-velocity stars known to Oort in 1927 are near the
escape speed from the Galaxy, estimate the mass of the Milky Way. For simplicity, take
the directions of the velocity vectors to be radially away from the Galactic center and
assume that all of the mass is spherically distributed and is interior to R0. (This calculation
is meant only to be an order-of-magnitude estimate.) Compare your answer with the mass
estimate given in Example 3.1. in h 

(b) Repeat your calculation using the extremely high-velocity stars discussed in section 3

(c) Comment on the difficulty of determining the true mass of the Galaxy on the basis of
observations of stars in the solar neighborhood.

16 Starting with Eqs. ( 37) and ( 38), derive Eqs. ( 41) and ( 42), showing each step
explicitly.

17 Referring to Eq. ( 42) and Fig. 23, explain the functional dependence of transverse ve-
locity on Galactic longitude for stars near the Sun.

vr = ("−"0) R0 sin ℓ,

vt = ("−"0) R0 cos ℓ−"d.

vr ≃ Ad sin 2ℓ,

vt ≃ Ad cos 2ℓ+ Bd.

“T e         Milky        Way           Galaxy.”

of What could account for the extra mass compared to your
answer in part (a)?

h “T e         Milky        Way           Galaxy.”
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FIGURE 37 Each point represents a different sample of objects, including for instance super-
giants, carbon stars, white dwarfs, Cepheids, and planetary nebulae. (Data from Delhaye, Galactic
Structure, Blaauw and Schmidt (eds.), University of Chicago Press, Chicago, 1965.)

(37)

(38)

(41)

(42)
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FIGURE 23 (a) The differential rotation of stars near the Sun is revealed through the dependence
of radial and transverse velocities on Galactic longitude. (b) Radial velocity is proportional to sin 2ℓ
(solid line), and transverse velocity is a function of cos 2ℓ (dashed line). The curves depict stars
located 100 pc from the Sun with A = 14.8 km s−1 kpc−1 and B = −12.4 km s−1 kpc−1.

18 (a) Beginning with Kepler’s third law , derive an expression for .(R), assuming
that the Sun travels in a Keplerian orbit about the center of the Galaxy.

(b) From your result in part (a), derive analytic expressions for the Oort constants A and B.
(c) Determine numerical values for A and B in the solar neighborhood, assuming R0 = 8 kpc

and .0 = 220 km s−1. Express your answers in units of km s−1 kpc−1.

see below

P 2 = 4π2

G (m1 + m2)
a3.
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19 (a) Estimate d./dR in the solar neighborhood, assuming that the Oort constants A and B

are +14.8 and −12.4 km s−1 kpc, respectively. What does this say about the variation of
. with R in the region near the Sun?

(b) If A and B were +13 and −13 km s−1 kpc, respectively, what would the value of d./dR

be? What would this say about the shape of the rotation curve in the solar neighborhood?

20 (a) Show that rigid-body rotation near the Galactic center is consistent with a spherically
symmetric mass distribution of constant density.

(b) Is the distribution of mass in the dark matter halo (Eq. 51) consistent with rigid-body
rotation near the Galactic center? Why or why not?

21 Using the result of the “back-of-the-envelope” calculation for the density of dark matter
(Eq. 50), estimate the mass density of dark matter in the solar neighborhood. Express
your answer in units of kg m−3, M⊙ pc−3, and M⊙ AU−3. How does your answer compare
with the stellar mass density in the solar neighborhood?

22 (a) Assuming that Eq. ( 51) is valid for any arbitrary distance from the center of the Galaxy,
show that the amount of dark matter interior to a radius r is given by the expression

(b) If 5.4 × 1011 M⊙ of dark matter is located within 50 kpc of the Galactic center, determine
ρ0 in units of M⊙ kpc−1. Repeat your calculation if 1.9 × 1012 M⊙ is located within 230 kpc
of the Galactic center. Assume that a = 2.8 kpc.

23 Using Eq. (52) for the density profile of the dark matter halo, show that
(a) ρNFW ∝ r−1 for r ≪ a and ρNFW ∝ r−3 for r ≫ a.
(b) the integral of the mass from r = 0 to r → ∞ is infinite.

24 Using data provided in the text for the mass of the dark matter halo interior to 50 kpc and
interior to 230 kpc, estimate the values for the constants ρ0 and a in the NFW version of the
dark matter halo density profile (Eq. 52). Hint: You may need to use a numerical method
to solve for a.

25 (a) From the information given in Table 1 and in the text, determine the approximate
mass-to-light ratio of the Galaxy interior to a radius of 25 kpc from the center.

(d) Do your answers in part (c) agree with the measured values for the Milky Way Galaxy?
Why or why not?

ρ(r) = ρ0

1 + (r/a)2
,

ρ(r) = V 2

4πGr2
.

ρ(r) = ρ0

1 + (r/a)2
,

ρNFW(r) = ρ0

(r/a)(1 + r/a)2

ρNFW(r) = ρ0

(r/a)(1 + r/a)2

Mr = 4πρ0a
2
[

r − a tan−1
( r

a

)]

.

(51)

(50)

(51)

(52)
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26 The r−2 dependence of Coulomb’s electrostatic force law allows the construction of Gauss’s
law for electric fields, which has the form

∮

E · dA = Qin

ϵ0
,

TABLE 1 Approximate Values for Various Parameters Associated with the Components of the
Milky Way Galaxy. Definitions and details are discussed in the text.

Disks
Neutral Thin Thick

Gas Disk Disk
M (1010 M⊙) 0.5a 6 0.2 to 0.4
LB (1010 L⊙)b — 1.8 0.02
M/LB (M⊙/L⊙) — 3 —
Radius (kpc) 25 25 25
Form e−z/hz e−z/hz e−z/hz

Scale height (kpc) < 0.1 0.35 1
σw (km s−1) 5 16 35
[Fe/H] > +0.1 −0.5 to +0.3 −2.2 to −0.5
Age (Gyr) ! 10 8c 10d

Spheroids
Central Stellar Dark-Matter
Bulgee Halo Halo

M (1010 M⊙) 1 0.3 190+360
−170

f

LB (1010 L⊙)b 0.3 0.1 0
M/LB (M⊙/L⊙) 3 ∼ 1 —
Radius (kpc) 4 > 100 > 230
Form boxy with bar r−3.5 (r/a)−1 (1 + r/a)−2

Scale height (kpc) 0.1 to 0.5g 3 170
σw (km s−1) 55 to 130h 95 —
[Fe/H] −2 to 0.5 < −5.4 to −0.5 —
Age (Gyr) < 0.2 to 10 11 to 13 ∼ 13.5

a Mdust/Mgas ≃ 0.007.
b The total luminosity of the Galaxy is LB,tot = 2.3 ± 0.6 × 1010 L⊙,

Lbol,tot = 3.6 × 1010 L⊙ (∼ 30% in IR).
c Some open clusters associated with the thin disk may exceed 10 Gyr.
d Major star formation in the thick disk may have occurred 7–8 Gyr ago.
e The mass of the black hole in Sgr A⋆ is Mbh = 3.7 ± 0.2 × 106 M⊙.
f M = 5.4+0.2

−3.6 × 1011 M⊙ within 50 kpc of the center.
g Bulge scale heights depend on age of stars: 100 pc for young stars, 500 pc for old stars.
h Dispersions increase from 55 km s−1 at 5 pc to 130 km s−1 at 200 pc.

(b) Repeat your calculation for a radius of 100 kpc. What can you conclude about the effect
that dark matter might have on the average mass-to-light ratio of the universe?

The MilkyWay Galaxy: Problem Set



where the integral is taken over a closed surface that bounds the enclosed charge, Qin. Because
Newton’s gravitational force law also varies as r−2, it is possible to derive a gravitational
“Gauss’s law.” The form of this gravitational version is

∮

g · dA = −4πGMin, (56)

where the integral is over a closed surface that bounds the mass Min, and g is the local ac-
celeration of gravity at the position of dA. The differential area vector (dA) is assumed to be
normal to the surface everywhere and is directed outward, away from the enclosed volume.

Show that if a spherical gravitational Gaussian surface is employed that is centered on and
surrounds a spherically symmetric mass distribution, Eq. ( 56) can be used to solve for g.
The result is the usual gravitational acceleration vector around a spherically symmetric mass.

27 We learned in Sections 2 and 3 of that the Sun is currently located 30 pc
north midplane and moving away from it with a velocity w⊙ = 7.2 km s−1. The z

gravitational accelerationvector is directed toward the midplane, so the Sun’s
peculiar velocity inthe zdirection must be decreasing. Eventually the direction of motion will
reverse and the Sun will pass through the midplane heading in the opposite direction. At that

of the z component of the gravitational acceleration vector will also reverse,
causing the Sun to move northward again. This oscillatory behavior above and below

midplane has a well-defined period and amplitude that we will estimate in this problem.
Assume that the disk of the Milky Way has a radius that is much larger than its thickness.

In this case, as long as we confine ourselves to regions near the midplane, the disk appears
to be infinite in the z = 0 plane. Consequently, the gravitational acceleration vector is always
oriented in the ±z direction. We will neglect the radial acceleration component in this problem.
(a) By constructing an appropriate Gaussian surface and using Eq. ( 56), derive an expres-

sion for the gravitational acceleration vector at a height z above the midplane, assuming
that the Sun always remains inside the disk of constant density ρ.

(b) Using Newton’s second law, show that the motion of the Sun in the z direction can be
described by a differential equation of the form

d2z

dt2
+ kz = 0.

Express k in terms of ρ and G. This is just the familiar equation for simple harmonic
motion.

(c) Find general expressions for z and w as functions of time.
(d) If the total mass density in the solar neighborhood (including stars, gas, dust, and dark

matter) is 0.15 M⊙ pc−3, estimate the oscillation period.
(e) By combining the current determinations of z⊙ and w⊙, estimate the amplitude of the solar

oscillation and compare your answer with the vertical scale height of the thin disk.
(f) Approximately how many vertical oscillations does the Sun execute during one orbital

period around the Galactic center?

28 Show that

d = ⟨vr⟩ tan φ
⟨µ⟩ ,

leads to Eq. (54) with the appropriate change in units.

“ ”

ultimately
the directiontime

componentof the
of the Galactic

the

d (pc) = ⟨vr⟩ tan φ
4.74 ⟨µ′′⟩ .
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29 Refer to the data in Appendix: The Brightest Stars, for this problem.
(a) What angle does Altair’s space motion vector make with its radial-velocity vector?
(b) Find Altair’s transverse velocity and space motion relative to the Sun.

30 Using Newtonian gravity, estimate the amount of energy required to move 107 M⊙ from a
position just above the event horizon of the supermassive black hole at the center of the
Galaxy to 3 kpc, the present location of the expanding arm. Compare your answer to the
amount of energy liberated in a typical Type II supernova.

31 If the accretion rate at the Galactic center is 10−3 M⊙ yr−1 and if it has remained constant over
the past 5 billion years, how much mass has fallen into the center over that period of time?
Compare your answer with the estimated mass of a possible supermassive black hole residing
in the center of our Galaxy.

32 (a) Compute the lowest possible density of Sgr A⋆ based on the data obtained from the orbit
of S2. Assume a spherically symmetric mass distribution.

(b) Assuming a mass of 3.7 × 106 M⊙ and a radius of 1 AU (roughly the current limit of
resolution of the center of the Milky Way), estimate the density of Sgr A⋆. Express your
answer in kg m−3, M⊙ AU−3, and M⊙ pc−3.

33 Using the data found in the text, calculate the speed of S2 when it is closest to Sgr A⋆.

34 Using Newtonian gravity, estimate the Roche limit of a supermassive black hole of mass
3.7 × 106 M⊙ (assume that a 1 M⊙ main-sequence star is tidally disrupted). How does your
answer compare with the black hole’s Schwarzschild radius? Hint: Begin with the 

substituting the appropriate average densities and radii.

35 Estimate the Eddington luminosity of a black hole with the mass of Sgr A⋆. What is the ratio
of the upper limit of the bolometric luminosity of Sgr A⋆ to its Eddington luminosity?

36 In this problem you will construct a crude model for the mass distribution and velocity curve in
the inner 1 kpc of the Galaxy. Assume that a point (a black hole) of mass M0 = 3.7 × 106 M⊙
is located at the center of the Galaxy and that the remainder of the mass has an isothermal
density distribution that varies as r−2.
(a) Show that if the mass distribution is spherically symmetric, the mass interior to a radius r

can be expressed as a function of the form

Mr = kr + M0,

where k is a constant to be determined.
(b) Assuming perfectly circular motion and Newtonian gravity, show that the orbital velocity

curve is given by

v =
[

G

(

k + M0

r

)]1/2

.

(c) If the orbital velocity is 110 km s−1 at 2 pc, determine a value for k.
(d) Plot log10 Mr as a function of log10 r over the range 0.01 pc < r < 1 kpc. Express Mr in

solar units and r in parsecs. Your graph should be qualitatively similar to the observational
data depicted in Fig. 33.

equation below 

r < fR

(

ρp

ρm

)1/3

Rp,
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FIGURE 33 The interior mass function for the central 10 pc of the Galaxy. Note that the curve
is consistent with a mass distribution Mr ∝ r beyond about 5 pc but that interior to 2 pc the distri-
bution levels off, approaching a constant nonzero value of 3.7 × 106 M⊙. “Dark cluster” refers to a
hypothetical object. Note that the predictions of a dark cluster model at the center of the Galaxy do
not agree with the observational data. (Adapted from a figure courtesy of Reinhard Genzel and Rainer
Schödel. For a discussion of an earlier version of this diagram, see Schödel, et al., Nature, 419, 694,
2002.)

(e) Plot v as a function of log10 r over the range 0.01 pc < r < 1 kpc. Express v in km s−1

and r in parsecs. At what radius does the contribution of the central point mass begin to
become significant?
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Galactic Evolution

1 Interactions of Galaxies
2 The Formation of Galaxies

1 INTERACTIONS OF GALAXIES

With the exquisite vision of the heavens provided by modern ground-based and space-based
observatories, it has become increasingly apparent that galaxies are not “island universes”;
they do not evolve in isolation.

Evidence of Interactions

Interactions tend to increase the velocity dispersions of stars in the galaxies involved,
possibly destroying disk structures in late-type galaxies and causing the galaxies to relax
to early-type r1/4 profiles.

A VLA radio survey of the H I layer of galactic disks found that at least 50% of all disk
galaxies display warped disks. Also, more than half of all elliptical galaxies harbor discrete
shells of stars.1 Some disk warping may be due to tidal interactions with smaller satellite
galaxies, and, as we shall see, shells in ellipticals are signatures of mergers.

galaxies is largely responsible for removing the gas from the individual galaxies that make
up the cluster, while still leaving the gas trapped in the cluster’s overall gravitational well.
1See Binney (1992) and Barnes and Hernquist (1992) for further details on these statistics.

From Chapter  of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.

26 ,

Nearly all galaxies belong to clusters, and the galaxies take up a larger fraction of 
the cluster’s volume than do the stars in a stellar cluster.We also know that the spac-
ing between galaxies is typically only 100 times larger than the size of the galaxies 
themselves. Densely populated clusters, such as the Coma cluster (Figs.  1 and  2), 
have a higher proportion of early-type galaxies (ellipticals) in their centers than 
they do in their outer, less dense regions. The central regions of these rich, regularly 
shaped clusters also have a higher proportion of early-type galaxies than the centers 
of less populated, amorphous-shaped irregular clusters, such as the Hercules cluster 
(Fig.  3). These observations seem to correlate with the increased probability of inter-
actions and/or mergers between galaxies in regions of higher galaxy number density.

Observations also suggest that hot, X-ray-emitting gas occupies much of the space 
between the galaxies in rich clusters and has a mass equal to or exceeding the mass 
of all of the cluster’s stars. It seems that the gravitational influence of interacting



FIGURE 1 The center of the Coma cluster. The width of this view is about 18 arcmin. (Courtesy
of National Optical Astronomy Observatories.)
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FIGURE 2 The Coma cluster of galaxies, showing the ellipticals (filled circles) and spirals (open
circles). Note that the scale is much larger than the width of the image in Fig. 1.

Galactic Evolution



FIGURE 3 The Hercules cluster of galaxies. (Courtesy of National Optical Astronomy Obser-
vatories.)

Although only a small fraction of the galaxies’ gas is removed in a direct collision, mergers
may initiate a burst of star formation that produces stellar mass loss and supernovae, leading
to a galactic superwind capable of liberating a large amount of gas.

today between galaxies are simply a natural extension of their formative years. Figure 4
shows one of many examples of galactic interactions. In this section, we will examine such
obvious examples, as well as more subtle phenomena.

Dynamical Friction

What happens when galaxies collide? Given that stars are generally spread very far apart
in galaxies, the chance of even a single stellar collision is quite small.
Instead, interactions between stars will be gravitational in nature. To see this, imagine that
an object (a globular cluster or small galaxy) of mass M is moving through an infinite col-
lection of stars, gas clouds, and dark matter with a constant mass density, ρ. We will assume
that the mass of each object in the background “sea” of material is much less than M , so
M continues moving in a straight line instead of being deflected. In the absence of colli-
sions, it might be thought that M would move unimpeded. However, as M moves forward,
the other objects are gravitationally pulled toward its path, with the closest ones feeling
the largest force. As shown in Fig. 5, this produces a region of enhanced density along
the path, with a high-density “wake” trailing M . The result, known as dynamical friction,
is a net gravitational force on M that opposes its motion. Kinetic energy is transferred from
M to the surrounding material as M’s speed is reduced.

Galactic Evolution

This evidence suggests that interactions between galaxies play an important role 
in their evolution. In the hierarchical “bottom-up” scenario of galaxy formation to 
be described in the next section, large galaxies are thought to be formed by merg-
ers and the gravitational capture of smaller entities. In this view, the interactions seen



FIGURE 4 The plumes on the opposite sides of NGC 520 are evidence of a tidal interaction,
possibly ending in the merger of the two colliding disk galaxies. Note the diagonally oriented dust
lane. (Courtesy of Gemini Observatory/AURA.)
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FIGURE 5 The fractional enhancement in the density of stars caused by the motion of a mass
M in the positive z direction. (Figure adapted from Mulder, Astron. Astrophys., 117, 9, 1983.)
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The derivation of an expression for dynamical friction is beyond the scope of this text,
but it is easy to see that the physical quantities involved are the mass, M , and speed, vM ,
of the massive object, and the mass density of the surrounding material, ρ. As a result,
the expression for the force must contain GM , vM , and ρ only.2 It is left as a problem to
show that there is only one combination of these variables that has the units of force, so the
expression for the force of dynamical friction, fd , must look like

fd ≃ C
G2M2ρ

v2
M

, (1)

where C is dimensionless. Here, C is not a constant, but a function that depends on how
vM compares with the velocity dispersion, σ , of the surrounding medium. For vM ∼ 3σ ,
typical values of C are 23 for the LMC, 76 for globular clusters, and 160 for ellipticals.3

Through a careful examination of Eq. ( 1), it is possible to see why the various terms
enter as they do. Clearly the dynamical friction must be proportional to the mass density
of stars. Assuming that the relative numbers of objects of various masses do not change,
doubling ρ means doubling the total number of objects, which would in turn double the
gravitational force on M . The mass M itself is squared; one power comes from its role in
producing the high-density wake that trails behind it, and the other from the gravitational
force on M produced by the enhanced density. Finally, consider the velocity-squared term
in the denominator. If M moves twice as fast, it will spend only half as much time near
a given object, and so the impulse

∫

F dt = #p given to that object is only half as great.
Consequently, the density enhancement develops only half as rapidly, and M will be twice
as far away by the time the enhancement arises. Thus the v2

M in the denominator comes
from the inverse-square law of gravity. This last point means that slow encounters are much
more effective at decreasing the speed of an intruding mass.

To get an estimate of the timescale associated with the effects of dynamical friction
acting on a galaxy’s globular clusters, recall that flat rotation curves imply that the density
of the dark matter halo may be approximated most simply by,

ρ(r) = v2
M

4πGr2 .

Inserting this expression into Eq. ( 1), we find that the dynamical friction acting on a
cluster is

fd = C
G2M2ρ(r)

v2
M

= C
GM2

4πr2 .

If the cluster’s orbit is circular and of radius r , its orbital angular momentum is just
L = MvMr . Since dynamical friction acts tangentially to the orbit and opposes the cluster’s

2Because the only time that M arises is in connection with Newton’s law of gravity, the combination GM will be
inseparable in any derivation.
3You may refer to Binney and Tremaine (1987) for a detailed discussion of dynamical friction.
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motion, a torque of magnitude τ = rfd is exerted on the cluster. The torque in turn reduces
the cluster’s angular momentum according to

dL

dt
= τ.

Recalling that a flat rotation curve implies that the orbital speed vM is essentially constant,
differentiating the angular momentum and substituting for the torque give

MvM

dr

dt
= −rC

GM2

4πr2 .

Integrating the last equation leads to an expression describing the time required for the
globular cluster to spiral into the center of the host galaxy from an initial radius ri , or

∫ 0

ri

r dr = −CGM

4πvM

∫ tc

0
dt.

Solving for the cluster lifetime, tc, yields

tc = 2πvMr2
i

CGM
. (2)

Equation ( 2) can be inverted to find the most distant cluster that could have been
captured within the estimated age of the galaxy:

rmax =
√

tmaxCGM

2πvM

(3)

Example 1.1. Consider a globular cluster that orbits the Andromeda galaxy (M31).
Assume that the cluster’s mass is M = 5 × 106 M⊙ and its velocity is vM = 250 km s−1,
typical of the rotation curve in the outer part of the galaxy. If the age of M31 is approximately
13 Gyr, then Eq. ( 3) implies that rmax = 3.7 kpc. This means that globular clusters of
5 × 106 M⊙ that were originally within approximately 4 kpc of the center of Andromeda
would have spiraled into its nucleus by now.

According to Eq. ( 3), rmax ∝ M1/2, implying that clusters with masses greater than
5 × 106 M⊙ could have been gathered from greater distances. This may help to explain
why there are no very massive globular clusters remaining around M31 today.

This is a fate that has already befallen the Sagittarius dwarf spheroidal galaxy, the remnant
of the dwarf galaxy in Canis Major, and possibly a progenitor dwarf galaxy ofωCentauri. In
fact, any giant galaxy will probably devour numerous satellite galaxies during its lifetime.

Galactic Evolution

Not only are globular clusters affected by dynamical friction, but satellite 
 galaxies are as well. A stream of material has been tidally stripped from the Mag-
ellanic Clouds. In fact, it appears that dynamical friction will ultimately cause the 
Magellanic Clouds to merge with the Milky Way some 14 billion years in the future.



The process of satellite accretion has a variety of possible consequences. For instance,
the gravitational torques involved in the merger of a satellite galaxy in a retrograde orbit
may produce the counter-rotating cores that are observed in some elliptical galaxies

Rapid Encounters

We now turn to another type of encounter, one that occurs so rapidly between two galaxies
that their stars do not have time to respond. Even in the special case where the two systems
pass through one another, there is no significant dynamical friction because there is no
appreciable density enhancement. In this impulse approximation, the stars barely have time
to alter their positions. As a result, the internal potential energy, U , of each galaxy is
unchanged by the collision. However, the gravitational work that each galaxy performs on
the other has increased the internal kinetic energies of both galaxies in a random way. This
internal kinetic energy comes at the expense of the overall kinetic energies of the galaxies’
motions with respect to one another. The amount of internal energy gained by the galaxies
depends on the nearness of the approach of the galaxies involved, with the energy declining
rapidly for more distant encounters. (Roughly, the energy gained is inversely proportional
to the fourth power of the distance of closest approach of the galaxies.)

Suppose that one of the galaxies gains some internal kinetic energy during the interaction.
To determine how it will respond, assume that the galaxy was initially in equilibrium,
meaning that it satisfied the virial theorem prior to the encounter,
and its initial kinetic, potential, and total energies were related by 2Ki = −Ui = −2Ei .
Imagine that during the encounter, the galaxy’s internal kinetic energy increased from Ki

to Ki +#K . Because its potential energy has remained essentially constant, the galaxy’s
total energy has increased to Ef = Ei +#K . As a result, the galaxy has been thrown out
of virial equilibrium. When equilibrium is finally reestablished (after a timescale of a few
orbital periods), the final kinetic energy must, according to the virial theorem, be

Kf = −Ef = −(Ei +#K) = Ki −#K.

Thus, as equilibrium is regained, the internal kinetic energy of the galaxy actually decreases
by 2#K from the value it had just after the collision.

How does the galaxy accomplish this reduction? One way to regain equilibrium is to
convert the excess kinetic energy into an increased (less negative) gravitational potential
energy. The galaxy expands slightly as the separation between its masses increases. Another
way of reducing the kinetic energy is for the most energetic components to carry it out away
from the galaxy in the form of a stream of stars and gas. This evaporation cools the galaxy
and moves it toward a new equilibrium. In fact, both of these processes may occur, and which
one dominates is determined by the specific circumstances of the collision. For instance,
a high-speed, nearly head-on collision may produce a ring galaxy, such as the Cartwheel
shown in Fig. 6. A numerical computer simulation and interpretation of this interaction
are left as an exercise.

Galactic Evolution
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In a disk galaxy, merg ers may excite global modes of oscillation. Mergers are also 

 capable of producing the sort of featureless disks that are characteristic of Ir (amor-
phous) galaxies. The importance of mergers in the evolution of galaxies will be  explored 
in Section 2.



FIGURE 6 An HST image of the ring galaxy known as the Cartwheel (A0035−335). The
diameter of the ring is about 46 kpc. As the ring expands at 89 km s−1, it triggers bursts of star
formation. It is not clear which of the two galaxies at right may have been the intruder. [Courtesy of
Kirk Borne (STScI), and NASA.]

If two galaxies are gravitationally bound to one another, they will eventually merge,
given enough time. Because of their extended mass distributions, galaxies do not follow the
same trajectories they would if they were point masses; some orbital energy is diverted into
increasing the galaxies’ internal energy, and the orbit shrinks a bit. Tidal forces may also
dissipate the orbital energy by pulling stars and gas out of one or both galaxies, a process
known as tidal stripping. This is probably the cause of the Magellanic Stream.

An instructive way of thinking about this loss of galactic material involves using the
idea of gravitational equipotential surfaces

Although the figure is for point masses in a circular orbit, it contains valuable insights for
the present case of extended galaxies in noncircular orbits. In particular, it is useful to talk
about the tidal radii, ℓ1 and ℓ2, of the galaxies. They are the distances from the center of
each galaxy to the inner Lagrangian point, L1, given by (approximately, in this noncircular

the gravitational potential well. (This is analogous to a star overflowing its Roche lobe
As a result, the density of galactic material undergoes a sharp decline

beyond the tidal radius.
Polar-ring galaxies and dust-lane ellipticals are normal galaxies that are orbited by

rings of gas, dust, and stars that were stripped from other galaxies as they passed by or
merged. Polar rings typically contain 109 M⊙ or more of gas and are found only around
elliptical or S0 galaxies. It is estimated that some 5% of all S0 galaxies have or have had a
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case). As the two galaxies move about one another, the shape of the equipotential 
surfaces and the values of the tidal radii are constantly changing. If stars or clouds 
of gas extend beyond a galaxy’s tidal radius, they have a tendency to escape from



polar ring. Figure 7 shows the polar-ring galaxy NGC 4650A, an S0 galaxy with a ring
that is nearly perpendicular to its long axis (inclined just 7◦).

Because the rings respond to the gravitational field of the galaxies, astronomers use
them as probes of the three-dimensional distribution of matter, both luminous and dark,
in their host galaxies. The results of studying several polar-ring galaxies show that they
are surrounded by spherical dark halos. An example of a well-known dust-lane elliptical is
Centaurus A (NGC 5128), shown in Fig. 8. Cen A is also a powerful radio source

An extreme case of a gaseous ring (no stars) is the one that encircles the central two
galaxies of the M96 group in the constellation Leo, as shown in Fig. 9. The gas is in an

FIGURE 7 The polar-ring galaxy NGC 4650A. [Courtesy of J. Gallagher (University of
Wisconsin–Madison) and the Hubble Heritage Team (AURA/STScI/NASA).]

FIGURE 8 Centaurus A (NGC 5128) is a dust-lane elliptical galaxy. (Courtesy of NOAO Cerro
Tololo Interamerican Observatory.)
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FIGURE 9 21-cm radio contours showing the ring of neutral hydrogen around the galaxies
M105 (a giant elliptical) and NGC 3384 (an S0) in the M96 group. Note that the ring is more than 1◦

wide on the sky. (Figure adapted from Schneider, Warped Disks and Inclined Rings around Galaxies,
Cambridge University Press, Cambridge, 1991.)

elliptical orbit around the two galaxies; the eccentricity of the orbit is e = 0.402, and the
cross (“+”) in the figure marks the location of the orbit’s focus.

n elliptical orbit is the result of an inverse-square force law, which means that the gas
ring in the M96 group must lie beyond any dark-matter halos surrounding the two galaxies.
The semimajor axis of the orbit is a = 101 kpc, so the maximum extent of any dark halo
must be given by,

rp = a(1 − e) = 60 kpc,

the perigalacticon distance. Note, however, that this calculation must be viewed cautiously
because the ring is merely a locus of gas and may not in fact coincide with the orbit followed
by a single particle.

Modeling Interactions with N-Body Simulations

The merger of two galaxies is a complicated affair. If the relative speed of the galaxies
is substantially greater than the velocity dispersions of their stars, the collision will not
result in a merger. Conversely, if the relative speed of the collision is less than the velocity
dispersion of the stars in one of the galaxies, a merger is inevitable. The situation is partic-
ularly complicated when the relative velocity of the galaxies is comparable to the velocity
dispersion of stars in one of the galaxies. This situation is best studied today by numerical
experiments involving N -body simulations, like the ones that were used to investigate the
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bar instability in a disk of stars. In these computations, Newton’s second law is used to
follow the motions of the stars through a sequence of time intervals.4

One of the first such efforts was made in 1972 by Alar and Juri Toomre. Each galaxy
consisted of a massive nucleus surrounded by concentric rings of disk stars. To simplify
the calculations, the stars in the disk were allowed to feel the gravitational pull of the
galactic nuclei, but not of each other. With their program, the Toomre brothers succeeded
in demonstrating how interactions could explain the appearance of galaxies such as M51
(the Whirlpool), which has a bridge of stars and gas that appears to extend to its neighbor

in Fig. 11. It is remarkable that the rapid advances in computing power since the early
1970s now allow a program similar to the Toomres’ to be run on a personal computer.

In general, only close, slow encounters produce bridges and tails. The effect is most
pronounced when the orbital angular speed of one of the galaxies matches the angular
speed of some of the stars in the other galaxy’s disk. The resulting orbital resonance, which
acts on both the near and far sides of the disk, allows the tidal forces to be especially
effective. Two bulges tend to develop on opposite sides of one (or both) of the galaxies,
similar to Earth’s tidal bulges. Tidal stripping then pulls out streams of stars and gas as
the two galaxies pirouette around one another. When conditions are right, the stars and gas
torn from the near side will form an apparent bridge, while, because of angular momentum
conservation, the material stripped from the far side moves off to form a curving tail.

Modern computer codes include the effects of dark matter and the gravitational inter-
actions (self-gravity) of individual stars and gas clouds. Figures 12 and 13 show the
results of one such calculation that has reproduced the appearance of the tidal-tail galaxies
NGC 4038 and NGC 4039. These codes have also been used to simulate the merger of a
disk galaxy (with a central bulge and halo) and a satellite galaxy with 10% of the mass of
the primary. The presence of a dark-matter halo significantly decreases the timescale of a
merger because it allows the galaxies to interact over much larger distances. The satellite
is devoured and absorbed in only two revolutions of the disk galaxy.

and vary little in age, while the outer population has a wider age spread. The inner clusters
also tend to have a preferential direction for their orbits around the Galaxy, while the outer
clusters have randomly oriented orbits. Again, it appears likely that these outer clusters
formed elsewhere and were captured later by the Milky Way. In fact, some researchers

4In 1941, Holmberg used an analog computer to investigate the tidal interactions of galaxies. He made “galaxies”
out of light bulbs and used the inverse-square law of light to mimic the same behavior for gravity. With the aid of
a light meter, he was able to analyze the gravitational influence of one model galaxy on another.
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galaxy NGC 5195. Fig.  10 suggests how this system could have been produced. 
Also note the development of the grand-design spiral arms that are so prominent 
in M51. In addition, the Toomres were successful in reproducing the appearance of 
 tidal-tail galaxies, such as the pair NGC 4038 and NGC 4039 (the “Antennae”) shown

It is worth recalling that roughly one-half of the stars in the Milky Way’s outer 
stellar halo move in retrograde orbits, which is probably a consequence of tid-
al stripping and/or mergers of other dwarf galaxies. There are two different spatial 
distributions of globular clusters around the Milky Way. The inner clusters are old
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FIGURE 10 The Toomres’ computer simulation of the interaction between M51 (NGC 5194)
and NGC 5195. Note from the side view that the “bridge” does not actually connect the two galaxies.
You may also note the resulting warped disk. [Figure adapted from Toomre, The Large Scale Structure
of the Universe, Longair and Einasto (eds.), Reidel, Dordrecht, 1978.]

have suggested that the young globular clusters, Palomar 12 and Ruprecht 106, were tidally
stripped from the Large Magellanic Cloud.

Finally, if a satellite galaxy is moving at an angle with respect to the plane of the disk, the
merger can result in a warped disk that persists for 3 to 5 billion years. More than 50% of
galactic disks (including the Milky Way’s) display a warp in their gas distributions (although
some stars may participate in the warp as well), and most of these galaxies do not appear
to have nearby companions. The absence of a companion might argue in favor of a merger,
under the assumption that the companion was enveloped by the primary galaxy. However,
most disks show no explicit evidence that a merger has occurred. It has also been shown
that warped disks can arise simply as a consequence of the triaxial nature of the surrounding
dark halos. The importance of the role of mergers or close encounters in producing warped
disks has yet to be determined.
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FIGURE 11 The Antennae galaxies, NGC 4038 and NGC 4039, and their tidal tails. [Courtesy
of Brad Whitmore (STScI) and NASA.]
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FIGURE 12 The orbital geometry used to calculate the formation of the tidal-tail galaxies shown
in Fig. 11. The disks are shown in their initial positions. Each disk is initially inclined by 60◦ to
the orbital plane, and a dashed line indicates the intersection of each disk with the orbital plane. The
positions of closest approach are identified (“peri”). The viewing direction for Fig. 13 is indicated
as along the positive y-axis. (Figure adapted from Barnes, Ap. J., 331, 699, 1988.)

Starburst Galaxies

In 1972 Richard Larson and Beatrice Tinsley found that strongly interacting galaxies tend
to be bluer than isolated ones of the same type. They attributed the excess blue light to
hot newborn stars and argued that tidal interactions have induced vigorous bursts of star
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formation in these galaxies. The increased luminosity is difficult to detect because, 
like all star formation, it is shrouded in thick clouds of gas and dust. The light emitted 
by the young stars at visible and ultraviolet wavelengths is absorbed and then reradi-
ated in the infrared. In 1983 the Infrared Astronomy Satellite (IRAS) found that these
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FIGURE 13 The result of Joshua Barnes’s simulation of the formation of the tidal-tail galaxies
NGC 4038 and NGC 4039.Adistance of 1 on the x- and z-axes corresponds to 40 kpc. (Figure adapted
from Barnes, Ap. J., 331, 699, 1988.)

starburst galaxies are extremely bright at infrared wavelengths, pouring out up to 98% of
their energy in this portion of the spectrum. (In comparison, the Milky Way emits 30% of
its luminosity in the infrared, and M31 only a few percent.) Most of the star formation is
confined to within about one kiloparsec or so of the galaxy’s center, where radio telescopes
have detected vast clouds containing some 109 to 1012 M⊙ of hydrogen gas that serves as
fuel. Between 10 and 300 M⊙ of gas is converted into stars each year in a starburst galaxy,
while only two or three stars are formed annually in the Milky Way. The clouds typically
contain sufficient hydrogen to support this rate of star formation for about 108 to 109 years,
although a given burst may last for only 20 million years or so.

The observational evidence also shows that starbursts do not occur exclusively in the
nuclei of interacting galaxies. Although this is often the case, many disk-wide starbursts
are also known. In this case, the problem is how star formation can be triggered nearly
simultaneously over such a wide area.

Since hydrogen clouds were initially distributed throughout the galactic disk, one puzzle
facing astronomers is how a violent interaction with another galaxy could have removed
more than 90% of the clouds’ angular momentum, allowing the gas to become concentrated
in the galactic center. An answer may be provided by numerical simulations of colliding
galaxies. These studies indicate that the gas and stars react differently to the impact of an
intruding galaxy, with the gas tending to move out in front of the stars as they orbit the
galactic center. The stars’ gravity then pulls back on the gas, and the resulting torque on the
gas reduces its angular momentum, causing it to plunge toward the galactic center. As the
two galaxies begin to merge, more angular momentum is lost. Shock fronts then compress
the gas, and a burst of star formation begins.

Figure 14 shows the starburst galaxy M82/NGC 3034, about 3.2 Mpc away
From its unusual appearance, astronomers once thought that this galaxy was

exploding. The current interpretation is that between 107 and 108 years ago, the inner 400 pc
of M82 began a tremendous episode of star formation that is still continuing. The center
of M82 contains a wealth of OB stars and supernova remnants that have expelled more
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FIGURE 14 The starburst galaxy M82 (NGC 3034). This composite image was obtained by
the Subaru Telescope’s FOCAS instrument in B, V , and Hα wavelengths. [Courtesy of National
Astronomical Observatory of Japan (NAOJ).]

than 107 M⊙ of gas from the plane of the galaxy. All of this violent activity may have been
triggered by a tidal interaction with M81, a spiral galaxy that is now about 36 kpc away
from M82 (as projected on the plane of the sky) and linked to it by a gaseous bridge of
neutral hydrogen. In fact, the center of M81 is known to be a significant source of X-rays,
with an X-ray luminosity of LX = 1.6 × 1033 W. This has been interpreted as implying
that M81 has a central black hole that is being “fed” by infalling gas at the rate of 10−5 to
10−4 M⊙ yr−1. This gas infall may also be a consequence of the tidal interaction with M82.

Mergers in Elliptical and cD Galaxies

The importance of interactions in galactic evolution is most obvious for elliptical galaxies.
The case is especially compelling for the cD galaxies typically found at the centers of rich,
regular clusters. More than half of the known cD’s have multiple nuclei that move differently
than the galaxy as a whole. Although the typical orbital speed of a star in a cD galaxy is
∼ 300 km s−1, the multiple nuclei move with relative velocities of ∼ 1000 km s−1. All of
this is taken as evidence that cD galaxies are the products of galactic mergers that supplied
the supernumerary nuclei and the expansive halo of stars. Their frequent occurrence at the
bottom of a cluster’s gravitational potential well makes collisions and other close encounters
all the more probable. Figure 15 is a remarkable photograph of three smaller galaxies
passing through a cD at the center of the cluster Abell 2199. (In this case their velocities are
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so large that these galaxies will not be captured during this passage through the cD.) 
cD’s also have unusually high specific frequencies of globular clusters, suggesting that 
a large number of clusters have been captured throughout the evolution of a typical cD 
galaxy.

Normal elliptical galaxies show evidence of interactions and mergers as well, 
particularly the boxy E’s. About 25% of all ellipticals have very different veloc-
ity fields in their cores when compared with their outer regions. Observations



FIGURE 15 The passage of three small galaxies through a giant elliptical in the cluster
Abell 2199. (Courtesy of Whipple Observatory and Harvard CfA.)

FIGURE 16 Faint concentric shells around the elliptical galaxy NGC 3923. (Figure from Malin
and Carter, Nature, 285, 643, 1980. Anglo-Australian Observatory photo by David Malin.)

also reveal that 56% of all ellipticals have faint shells (as do 32% of all S0’s). As shown in
Fig. 16, otherwise normal ellipticals may have as many as twenty large concentric arcs
of very low surface brightness, both outside and inside the galaxy. Numerical experiments
find that these shells may be the result of head-on (or nearly head-on) collisions with smaller
galaxies that have only a few percent of the mass of the larger elliptical. In essence, the
captured stars slosh back and forth in the elliptical’s gravitational well, like water rocking
back and forth in a large bowl. Arcs are seen where the stars slow and reverse their courses.
The natural spread in the stellar kinetic and potential energies creates the concentric arcs.
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large ellipticals. Computer simulations bolster this view by showing that r
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brightness
profiles are normal outcomes of mergers. Calculations of mergers can also reproduce the
observations of distinctly different velocity fields inside and outside the galactic core.

It is important to note, however, that dwarf ellipticals and dwarf spheroidals, the most
common types of elliptical galaxies, do not appear to result from mergers.

Binary Supermassive Black Holes

An intriguing consequence of the merging of two large galaxies, whether they are ellipticals
or spirals, is the apparently inevitable formation of a binary system of supermassive black
holes. If each galaxy involved in the merger originally contained a supermassive black hole,
the two black holes would migrate toward the center of the potential well of the combined
system as a direct result of dynamical friction. Depending on their trajectories, the two black
holes would probably enter into a well-separated binary system. One such system appears
to be NGC 6420, which has two very strong X-ray sources (believed to be supermassive
black holes) that are currently separated by a distance of about 1 kpc (see Fig. 17).

FIGURE 17 AChandra X-Ray Observatory image of two supermassive black holes near the cen-
ter of the “butterfly-shaped” galaxy, NGC 6240. (Courtesy of NASA/CXC/MPE/S. Komossa, et al.)

Galactic Evolution

From the evidence discussed here, it seems likely that many, and perhaps all, 
large elliptical galaxies are strongly influenced by mergers. Galaxy mergers seem to 
produce results that are strikingly similar to elliptical galaxies in many ways. Pho-
tometry of the inner regions of cD galaxies and other obvious merger remnants con-
firms that their surface brightness profiles follow the r  law that is obeyed by most
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As the two supermassive black holes orbit around one another, they will have a profound
and disturbing time-dependent gravitational influence on stars near the center of the merged
galaxy. As with other three-body systems where one member is much less massive than
the other two, it is probable that individual stars will be ejected from the central region of
the galaxy. If the total mass of stars ejected in this way becomes comparable to the mass
of the black holes, enough angular momentum and energy will be carried away by the
stars that the two black holes will spiral in toward one another. When the black holes
become sufficiently close, they will produce large amounts of gravitational radiation that
will further rob them of the energy and angular momentum needed to stay separated

The final outcome of the process will be a merger of the two black holes, producing an
even larger beast in the center of the merged galaxy.

It has been suggested that such a mechanism is a probable route to growing the super-
massive black holes that seem to be so prevalent in the centers of large galaxies.

2 THE FORMATION OF GALAXIES

As we have seen so far in our discussions of the Milky Way and other galaxies, galactic
structures are complex and varied. The luminous components of elliptical galaxies are dom-
inated by spheroidal mass distributions that are primarily composed of old stars, while spiral
galaxies contain both relatively old spheroids and appreciable disks of younger generations
of stars, dust, and gas. Important differences even exist within the designations of early-
and late-type galaxies, such as the degree of diskiness or boxiness of normal ellipticals, the
existence of dwarf spheroidals, and the relative dominance of the bulges and disks of spirals,
to name a few. Furthermore, the presence of large quantities of dark matter, accounting for
90% or more of the mass in many galaxies, also plays a critical role in determining their
overall structures.

The Eggen, Lynden–Bell, Sandage Collapse Model

It was in 1962 that Olin J. Eggen (1919–1998), Donald Lynden-Bell, and Allan R. Sandage
presented an important early attempt at modeling the evolution of our Galaxy, often referred
to as the ELS collapse model. Their work was based on observed correlations between the
metallicity of stars in the solar neighborhood, and their orbital eccentricities and orbital
angular momenta. Eggen, Lynden-Bell, and Sandage noted that the most metal-poor stars
tend to have the highest eccentricities, the largest w components of their peculiar motions

To explain the kinematic and chemical properties of stars in the solar neighborhood,
ELS suggested that the Milky Way Galaxy formed from the rapid collapse of a large proto-
Galactic nebula. The oldest halo stars formed early in the collapse process while still on
nearly radial trajectories, resulting in their highly elliptical orbits above and below the
Galactic plane.As a further consequence of their rapid formation, the model predicts that the
halo stars are naturally very metal-poor (Population II) since the interstellar medium had not
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and the lowest angular momenta about the rotation axis of the Galaxy. On the other 
hand, metal-rich stars tend to exist in nearly circular orbits and are confined to regions 
near the plane of the Galaxy.



yet had time to become enriched by the by-products of stellar nucleosynthesis. However, as
the first generations of massive stars generated heavier elements in their interiors, underwent
supernova explosions, and ejected metal-rich material back into the ISM, the ISM evolved
chemically over time.

As the proto-Galactic cloud continued to fall inward, the model predicts that the rapid
collapse slowed when collisions between gas and dust particles became more frequent and
the kinetic energy of infall was dissipated (converted into the thermal energy of random
particle motions). Furthermore, the presence of angular momentum in the original proto-
Galactic nebula meant that the cloud began to rotate more quickly as the radius decreased.
The combination of the increased dissipation and the increased angular speed led to the
development of a disk of chemically enriched gas from which Population I stars continue
to form today.

Example 2.1. The time required for the free-fall collapse of the proto-Galactic cloud
as envisioned by Eggen, Lynden-Bell, and Sandage can be estimated

Assume that the proto-Galactic cloud contained
some 5× 1011 M⊙, the estimated mass of the Milky Way Galaxy within a nearly spherical
volume of radius 50 kpc (which includes the dark matter halo

If we further assume that the mass was uniformly distributed over the sphere,
then the initial density of the cloud was

ρ0 = 3M

4πr3 = 8 × 10−23 kg m−3.

Substituting into gives

tff =
(

3π
32

1
Gρ0

)1/2

= 200 Myr.

Of course, if the nebula were initially somewhat centrally condensed, the inner portions of
the Galaxy would collapse more rapidly than the outer, rarefied regions.
This may explain the existence of the very old stellar population within the bulge. The
high metal abundance of bulge stars would arise if the first, massive, short-lived stars could
quickly enrich the relatively dense ISM in that part of the Galaxy. Recall that the lifetimes of
the most massive stars are on the order of one million years, much shorter than the estimated
free-fall timescale.

Problems with the ELS Model

Although the model does account for many of the basic features found in the structure of
the Milky Way, this top-down approach involving the differentiation of a single, immense
proto-Galactic cloud does not explain several important aspects of our current understanding
of the Galaxy’s morphology. For instance, given an initial rotation of the proto-Galactic
cloud, essentially all halo stars and globular clusters should be moving in the same general
direction, albeit with highly eccentric orbits about the Galactic center. However, astronomers
have come to realize that approximately one-half of all outer-halo stars are in retrograde
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stars and clusters seems to suggest that the early environment of the Galaxy was fairly
turbulent and clumpy.)

A second problem with the standard ELS collapse model is the apparent age spread
among the globular clusters and halo stars. If the approximately 2-billion-year variation in

8 Gyr old, whereas the age of the thick disk may be 10 Gyr (both being significantly younger
than the halo).

Yet another difficulty lies in the compositional variation found between globular clusters.
The clusters located nearest the Galactic center are generally the most metal-rich and oldest,
while the clusters in the outer halo exhibit a wider variation in metallicity and tend to be
younger. The clusters also seem to form two spatial distributions; one set is associated with
the spheroid, and the other may more properly be affiliated with the thick disk.

The problems that have developed with the early ELS view of the formation of the
Milky Way suggest that our understanding of its formation and subsequent evolution must
be revised or is otherwise incomplete. Furthermore, the rich variety of galaxies, along with
their ongoing dynamical evolution via mutual interactions and mergers, poses interesting
challenges to the development of an overall, coherent theory of galactic evolution.Although
at the time this text was written, such a theory had not yet reached the same level of
maturity that exists in our understanding of stellar evolution, important features have begun
to emerge.

The Stellar Birthrate Function

As we have seen in the ELS model, any theory of galaxy formation must be able to explain
the rate of formation of stars of various masses, as well as the chemical evolution of the
interstellar medium. Since the ISM is enriched by mass loss via stellar winds and supernovae
of various types, the theory must also incorporate the rates of stellar evolution and the
chemical yields of stars.

One problem immediately arises in this regard: Although astronomers have been able
to develop a reasonable description of the evolution of individual stars, our understanding
of stellar birthrates is not yet complete. It is customary to express the stellar birthrate
function, B(M, t), in terms of the star formation rate (SFR), ψ(t), and the initial mass
function (IMF), ξ(M), in the form

B(M, t) dM dt = ψ(t) ξ(M) dM dt, (4)

where M is the stellar mass and t is time. B(M, t) represents the number of stars per unit
volume (or per unit surface area in the case of the Galactic disk) with masses between
M and M + dM that are formed out of the ISM during the time interval between t and
t + dt . The SFR describes the rate per unit volume at which mass in the ISM is being

Galactic Evolution

orbits and the net rotational velocity of the outer halo is roughly 0 km s−1. On the other 
hand, stars in the inner halo, along with the inner globular clusters, appear to have 
a small net rotational velocity. (Our current understanding of the kinematics of halo

ages is real (the age range being perhaps 11 to 13 Gyr), then the collapse must have 
taken roughly an order of magnitude longer to complete than proposed by Eggen, 
Lynden-Bell, and Sandage. The model also does not readily explain the existence 
of a multicomponent disk having differing ages. The young disk is probably about
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FIGURE 18 A model of the total star formation rate (in units of M⊙ pc−2 yr−1) for the disk of
the Milky Way Galaxy as a function of time. (Figure adapted from Burkert, Truran, and Hensler, Ap.
J., 391, 651, 1992.)

converted into stars; the present value for the SFR within the Galactic disk is believed to
be 5.0 ± 0.5 M⊙ pc−2 Gyr−1, integrated over the z direction (this corresponds to the two

To understand the birthrates of stars and their ensuing contribution to the chemical
evolution of the ISM, different researchers have made various assumptions about the SFR.
For instance, some astronomers have assumed that the SFR is time-independent, while
others have argued for an exponentially decreasing function with time, or perhaps one that
is proportional to some power of the surface mass density of the Galactic disk. One computer
simulation of the evolution of the disk of our Galaxy, performed by Andreas Burkert, James
W. Truran, and G. Hensler (1992), produced an SFR that reached a maximum value and then
decreased with time as the available gas and dust in the ISM was consumed (see Fig. 18).
Other studies have considered the possibility that the SFR may be highly variable in both
space and time. Such a situation could occur because of short-timescale starburst activity,
for instance.

The IMF is often modeled as a power-law fit of the form

ξ(M) = dN

dM
= CM−(1+x), (5)

where x may take on different values for various mass ranges and C is a normalization
constant. The first attempt to derive an IMF for the solar neighborhood was carried out by
Edwin E. Salpeter in 1955, where he argued for a value of x = 1.35. According to more
recent determinations, it appears that x = 1.8 may be a better fit for stars in the approximate
mass range 7 M⊙ to 35 M⊙ (and perhaps down as low as 2 M⊙). For stars more massive than
about 40 M⊙, x = 4 may be required, implying that the production of massive stars drops
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to three stars formed per year that was mentioned previously). Finally, the IMF repre-
sents the relative numbers of stars that form in each mass interval.



off very rapidly with increasing mass. For lower-mass stars, x is very difficult to determine
through observational studies. The complications arise because the IMF must be decoupled
from the present-day mass function and the SFR, which itself can be quite complicated.
It has been suggested that the IMF may flatten considerably at low masses. Unfortunately,
an exact form of the IMF is not yet known, and it is not even clear whether the IMF varies
with time or location.

The G-Dwarf Problem

Attempts to use the SFR and IMF to model the chemical evolution of the Galactic disk in the
solar neighborhood have resulted in predictions that do not always agree with observations.
If we assume that the first generation of stars was born without any metals (Z0 = 0; Popu-
lation III) and the chemical evolution of the ISM occurs within a closed box (meaning that
no gas or dust is allowed to enter or leave the system being modeled), then the calculations
predict too many stars of low metallicity when compared with observations. For instance,
this simple model suggests that roughly one-half of the stars in the solar neighborhood
should have values for Z that are less than one-quarter of the solar value (Z⊙ ≃ 0.02).
However, only about 2% of the F and G main-sequence stars have such low Z values. This
is known as the G-dwarf problem.

One possible solution to the G-dwarf problem, referred to as prompt initial enhance-
ment, is to assume that the disk of our Galaxy formed with Z0 ̸= 0, which could occur if
heavy-element enrichment of the ISM resulted from rapidly evolving massive stars before
the gas and dust settled into the disk. A second suggestion is that the disk accumulated mass
over a significant period of time, perhaps even continuing to the present (in other words, the
closed-box assumption is invalid). In this scenario a substantial infall of metal-poor material
onto the Galactic disk has occurred since its initial formation; as the gas entered the system,
it mixed with the metal-enriched ISM. Since a lower initial mass density would imply fewer
stars formed during the early history of the disk, fewer metal-poor stars would be observed
today. Yet another proposal argues that the IMF was different in the early history of the
Galaxy, and a larger fraction of more massive stars were formed with correspondingly fewer
low-mass stars. Since massive stars are short-lived, this hypothesis would result in fewer
metal-poor stars today.

A Dissipative Collapse Model

collapse can be described in terms of the time necessary for the nebula to cool significantly.
If the cooling timescale, tcool, is much less than the free-fall timescale, then the cloud will not
be pressure-supported and the collapse will be rapid (i.e., essentially in free-fall). However,
if the cooling time exceeds the free-fall timescale, the gas cannot radiate its energy away fast
enough to allow for a rapid collapse, and the gravitational potential energy that is released
during the collapse will heat the nebula adiabatically. This situation is yet another example
of the virial theorem.
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Another issue that must be addressed by a comprehensive theory of galactic evo-
lution is the question of a free-fall collapse versus a slow, dissipative one. A free-
fall collapse is governed by the free-fall timescale, sometimes alternatively referred 
to as the dynamical timescale (see Example  2.1). On the other hand, a dissipative



To estimate the cooling timescale, we must first determine the characteristic amount of
thermal kinetic energy contained within each particle in the gas. According to the virial
theorem, if we assume that the gas is in quasistatic equilibrium, the average thermal kinetic
energy of the gas must be related to its potential energy by,

−2 ⟨K⟩ = ⟨U⟩ .

If we further assume that the gas has a mean molecular weight of µ and contains N particles,
then the virial theorem gives

−2N
1
2
µmH

〈

v2〉 = −3
5

GM2

R
,

where m = µmH is the average mass of a single particle, R is the radius of the nebula,
and M = NµmH is the nebula’s mass. In the last expression, we used a gravitationally
bound, spherical mass distribution of constant density to estimate the potential energy of

σ =
(

3
5

GM

R

)1/2

. (6)

Now we may determine a characteristic temperature of the gas, known as the virial
temperature, by equating the typical kinetic energy of a gas particle to its thermal energy,
or

1
2
µmHσ

2 = 3
2
kTvirial,

which gives

Tvirial = µmHσ
2

3k
. (7)

Finally, to estimate the cooling time we must determine the rate at which energy can be
radiated away from the gas. This is done by expressing the cooling rate per unit volume as

rcool = n2+(T ),

where rcool has units of energy per unit time per unit volume, n is the number density of
particles in the gas, and +(T ) is a quantum mechanical cooling function. +(T ), shown

106 K, the cooling is due to thermal bremsstrahlung and Compton scattering. The n2 de-
pendence in the expression for rcool can be understood in terms of the interactions between
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in Fig. 19, includes the same physical processes of bound–bound, 
bound–free, free–free, and electron scattering. The two “bumps” in the 
curve just above 104 K and near 105 K correspond to the ionization/ 
recombination temperatures of hydrogen and helium, respectively. Above about

the syste . Solving for the velocity dispersion σ = ⟨v2⟩1/2 givesm
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FIGURE 19 The cooling function +(T ). The solid line corresponds to a gas mixture of 90%
hydrogen and 10% helium, by number. The dashed line is for solar abundances. (Figure adapted from
Binney and Tremaine, Galactic Dynamics, Princeton University Press, Princeton, NJ, 1987.)

pairs of particles in the gas; collisions excite ions, atoms, or molecules, which then radiate
the energy away in the form of photons, cooling the gas.

If all of the energy in the cloud is radiated away in a time tcool, then

rcoolV tcool = 3
2
NkTvirial,

where V is the volume of the cloud. Solving for the cooling time, we have

tcool = 3
2

kTvirial

n+
. (8)

Example 2.2. Assume for simplicity that the proto-Galactic nebula discussed in Ex-
ample 2.1 was initially composed of 90% hydrogen and 10% helium, by number (this
corresponds to X ≃ 0.7 and Y ≃ 0.3).5 If we assume complete ionization, then the
mean molecular weight is given by µ ≃ 0.6. Also, according to Eq. ( 6), the
initial velocity dispersion of the particles in the gas was approximately σ = 160 km s−1.
Then, substituting into Eq. ( 7), the virial temperature of the gas at the time of collapse
was roughly

Tvirial ≃ 6 × 105 K.

(At this temperature our assumption that the gas was completely ionized is certainly valid.)

5Note that we are assuming here that all of the mass is in the form of baryonic matter. This means that we are
neglecting the influence of dark matter in this example.
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The number density of particles in the gas is given by

n = ρ

µmH

= 3M

4πR3µmH

∼ 5 × 104 m−3.

This value should be compared to the typical number densities found in Galactic molecular
clouds today, which are on the order of n ∼ 108 to 109 m−3.

Now, from Fig. 19, + ∼ 10−36 W m3 and the cooling time for the cloud (Eq. 8)
is found to be

tcool = 8 Myr.

Clearly, in this case tcool ≪ tff . Apparently the proto-Galactic nebula was capable of
radiating energy away at a rate sufficient to allow for a free-fall collapse.

It is instructive to consider the situation where tcool > tff . In this case the nebula is unable
to efficiently radiate away the gravitational potential energy that is released by the collapse.
As a result, the cloud’s temperature would rise adiabatically as the cloud shrinks, resulting
in an increasing internal pressure and a halt to the collapse. After the collapse has halted,
the virial theorem governs the equilibrium conditions of the cloud. For the approximate
values of T ∼ 106 K and n ∼ 5 × 104 m−3 characteristic of a protogalactic cloud at the
time of formation of the first galaxies, the upper limit on the mass that can cool and collapse
is on the order of 1012 M⊙, with a corresponding radius of about 60 kpc. In regions of the
cloud where the gas temperature had decreased to the level of hydrogen recombination,
T ∼ 104 K, the mass limit becomes ∼ 108 M⊙. Thus the galaxies that are observed today
would be expected to have masses in the range from 108 M⊙ to 1012 M⊙. The lower limit
corresponds fairly well with the values of the smallest dwarf elliptical galaxies, and the upper
limit agrees with the values measured for the most massive giant spiral galaxies (Sa–Sc).
Although some giant ellipticals and cD galaxies exceed 1012 M⊙, they have certainly been
affected significantly by mergers throughout their histories and are not in virial equilibrium
near their outer edges.

Although the proto-Galactic cloud was able to radiate away the initial release of grav-
itational energy content from the system, shortly after the collapse began a new source of
energy became available. The deaths of the first generations of very massive stars meant
that supernova shock waves moved through the ISM at speeds on the order of 0.1c. As
the expanding shells struck the gas, the gas was reheated to temperatures of a few million
kelvins, slowing the rate of collapse somewhat. However, calculations of the supernova
production rate that are based on estimates of the IMF seem to indicate that even this new
source of energy was unable to slow the collapse appreciably.

The Hierarchical Merger Model

How then can we explain the apparent age and metallicity differences among the globular
clusters, as well as the existence of distinct components of varying ages within the disk of
our Galaxy (i.e., the thick disk and the younger thin disk)? The answer appears to be that
not only did galaxy-building involve the top-down process originally envisioned by Eggen,
Lynden-Bell, and Sandage, but it also incorporated a bottom-up hierarchical process of
mergers.
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With the realization in the 1970s and 1980s that mergers play an important role in galactic
evolution, and because of observational and theoretical developments regarding the nature
of the early universe, the hierarchical merger scenario has received a great deal of attention.
Scientists now believe that shortly after the birth of the universe via the Big Bang, density
fluctuations existed in the overall distribution of matter.

Our current understanding of those fluctuations
suggests that the most common density perturbations occurred on the smallest
mass scales. Consequently, density fluctuations involving 106 to 108 M⊙ were much more
common than those for 1012 M⊙ or more.

First consider the formation of the Milky Way as an example of the hierarchical merger
process. As these 106 to 108 M⊙ proto-Galactic fragments were gravitationally attracted
to one another, they began to merge into a growing spheroidal mass distribution. Initially,
many of the fragments evolved in virtual isolation, forming stars and, in some cases, globular
clusters in their centers. As a result, they developed their own chemical histories and unique
abundance signatures. In the inner regions of the growing spheroid, where the density of
matter was greater, its rate of collapse and subsequent evolution would have been more
rapid. This resulted in the production of the oldest stars that are observed today, together
with a greater degree of chemical enrichment (hence the old, metal-rich central bulge). In
the rarefied outer regions of the Galaxy, chemical evolution and star formation would have
been much slower.

According to the hierarchical model, collisions and tidal interactions between merging
fragments disrupted the majority of the fragments and left exposed the globular cluster cores
of others. Furthermore, in this model the disrupted systems would have led to the present
distribution of the field halo stars, while leaving the remaining globular clusters scattered
throughout the spheroid. Those proto-Galactic fragments that were initially moving in a
retrograde direction relative to the eventual orbital motion of the Galactic disk and inner
halo produced the net zero rotation of the outer halo that is observed today.

Certainly the rate of collisions would have been greater near the center of the Galaxy,
disrupting those proto-Galactic fragments first and building the bulge more rapidly than the
halo. Consequently, according to this picture, the spheroidal component of the Galaxy can
be considered as forming from the inside out.

The globular clusters still present in the Galaxy today probably total only some 10% of the
number that originally formed from proto-Galactic fragments. The other 90% were disrupted
by collisions and tidal interactions during the early merger process and by the subsequent
ongoing effects of dynamical friction. This may help to explain the relative uniformity in
the masses of globular clusters observed today (approximately 105 to 106 M⊙). Low-mass
globular clusters would have had small gravitational binding energies, allowing them to
be disrupted comparatively easily and rapidly when the Galaxy was young. On the other
hand, recall from Eq. ( 1) that dynamical friction is strongly dependent on the mass of
the cluster (fd ∝ M2) so that massive clusters would have spiraled rapidly into the inner
regions of the Galaxy where stronger and more frequent interactions ultimately disrupted
them as well.

It is important to note that because of their isolation in the outer reaches of the Galaxy and
the slower rate of evolution there, the proto-Galactic fragments in that region would have
evolved almost like individual dwarf galaxies for a time. In fact, the significant number of
dSph galaxies still present in the Local Group are assumed to be surviving proto-Galactic
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fragments. In addition, there is clear evidence of ongoing mergers today, such as the dwarf
spheroidal Sagittarius galaxy and the Magellanic Stream, indicating that the construction
of the Milky Way’s halo is still a work in progress.

Formation of the Thick Disk

As the gas clouds of disrupted proto-Galactic fragments collided, the collapse became
largely dissipative. This means that the gas began to settle slowly toward the central regions
of the Galaxy. However, because of the presence of some initial angular momentum in
the system, introduced through torques from other neighboring protogalactic clouds, the
collapsing material eventually became rotationally supported and settled into a disk about
the Galactic center. Of course, the already-formed halo stars did not participate in the
collapse to the disk, because their collisional cross sections were now too small to allow
them to interact appreciably, except through gravitational forces.

One model of thick-disk formation suggests that the thick disk may have formed around
the Galactic midplane with a characteristic temperature of T ∼ 106 K. By equating the
kinetic energy of a typical particle in the gas to its gravitational potential energy above the
midplane of the disk, the approximate scale height, h, of the disk of gas can be estimated.

To determine the local acceleration of gravity, g, at a height, h, above the midplane,
imagine that the disk has a mass density, ρ, given by

ρ(h) = ρ0e
−z/h,

where ρ0 is the mass density in the Galactic midplane. Now, according to the gravitational
version of “Gauss’s law”,

∮

g · dA = −4πGMin,

where the integral is over a closed surface that bounds the mass Min, and g is the local
acceleration of gravity at the position of dA. If h is much smaller than the diameter of the
disk, then for a Gaussian cylinder of height 2h and cross-sectional area A, centered on the
midplane (see Fig. 20),

2Ag = 4πGMin,

where Min is the amount of disk mass contained within the cylinder. Min can be estimated
by integrating the mass density throughout the volume of the cylinder, or

Min = 2
∫ h

0
ρ0e

−z/h A dz = 1.26ρ0Ah.

Substituting into our previous expression, we have that the local acceleration of gravity at
a height, h, is given by

g(h) = 2.53πGρ0 h.
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FIGURE 20 A Gaussian cylinder located entirely within the field of stars of the Galactic disk.

Next, the gravitational potential energy of a particle of mass, m, at a height, h, above the
midplane is given by

U(h) =
∫ h

0
mg(z) dz = 1.26πGmρ0h

2.

Equating the potential energy to the average thermal kinetic energy of a particle, K =
3kT /2, we find that

h(T ) =
(

3kT

2.53πGmρ0

)1/2

. (9)

Example 2.3. If the gas in the proto-Galactic thick disk had a characteristic temperature
of T ∼ 106 K, and if we assume that the central mass density was comparable to the value
that is estimated today for the solar neighborhood,

ρ0 ≃ 0.15 M⊙ pc−3 = 1.0 × 10−20 kg m−3,

then

h
(

106 K
)

≃ 2.2 kpc,

where we have used the mass of a hydrogen atom for m. he measured value for the scale
height of the thick disk is approximately 1 kpc.

In regions where the gas was locally more dense, it cooled more rapidly, since tcool ∝ n−1

(see Eq. 8). This was accomplished first through thermal bremsstrahlung and Compton
scattering, and then, when the temperature reached ∼ 104 K, via the radiation emitted
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by hydrogen atoms. This meant that once the hydrogen recombination temperature was
reached, H I clouds could form and begin producing stars. Within a few million years,
the most massive stars underwent core-collapse supernova detonations and their shocks
began to reheat the gas between the molecular clouds, maintaining the temperature of the
intercloud gas at roughly 106 K. At the same time, the production of iron in the supernovae
raised the metallicity from an initial value of [Fe/H] < −5.4 (perhaps originally enriched
somewhat by the stars that formed in the proto-Galactic fragments) to [Fe/H] = −0.5.
About 400 million years after the first stars were created in the thick disk, star formation
nearly ceased. In total, a few percent of the mass of the gas was converted into stars during
this thick-disk-producing period of the Galaxy’s evolution.

A modified version of the thick-disk formation model described above suggests that
the infalling gas was initially much cooler. This meant that the gas (and dust) was able
to settle onto the midplane with a much smaller scale height, similar to today’s thin disk.
Star formation was then able to proceed due to the greater local density of gas and dust.
However, as a direct result of a significant merger event with a proto-Galactic fragment
some 10 Gyr ago, the disk was reheated by the energy of the interaction, causing it to puff
up to its present 1-kpc scale height.

Formation of the Thin Disk

After the formation of the thick disk, cool molecular gas continued to settle onto the midplane
with a scale height of approximately 600 pc. During the next several billion years, star
formation occurred in the thin disk.

The process of maintaining the scale height was essentially a self-regulating one. If the
disk became thinner, its mass density would increase. This in turn would cause the SFR to
increase, producing more supernovae and reheating the disk’s intercloud gas component.
The ensuing expansion of the disk would again decrease the SFR, yielding fewer super-
novae, and the disk would cool and shrink. However, despite the self-regulating process,
as the gas was depleted in the ISM the SFR decreased from about 0.04 M⊙ pc−3 Myr−1

to 0.004 M⊙ pc−3 Myr−1. At the same time, the metallicity continued to rise, reaching a
value of approximately [Fe/H] = 0.3. Because of the decrease in the SFR, the thickness
of the disk decreased to about 350 pc, the scale height of today’s thin disk. During the
development of the thin disk, some 80% of the available gas was consumed in the form of
stars.

Finally, as the remaining gas continued to cool, it settled into an inner, metal-rich and
gas-rich component of the thin disk with a scale height of less than 100 pc. Today most
ongoing star formation occurs in this young, inner portion of the thin disk, the component
in which the Sun resides.

The Existence of Young Stars in the Central Bulge

The existence of young stars in the central bulge of our Galaxy can be understood in the
context of the evolution just described by arguing for recent mergers with gas-rich satellite
galaxies. When those galaxies were disrupted by tidal interactions with the Milky Way,
their gas settled into the disk and the center of the Galaxy, ultimately forming new stars. It
also appears that the Milky Way’s central bar plays a role in the migration of dust and gas
into the inner portion of the Galaxy by generating dynamical instabilities as it rotates.
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Metallicity Gradients

The hierarchical merger scenario just outlined predicts that metallicity gradients ought to
exist in galaxies that have undergone a dissipative collapse. If a galaxy is more metal-rich
in its center than it is near the outskirts of the system, then a color gradient should also
exist. Because of the enhancement of opacity with metallicity, the galaxy would be redder
in its center than it is farther out.

Of course, the strength of the metallicity and color gradients can be diminished or even
destroyed by sufficiently frequent and energetic mergers with other galaxies. For instance,
many starburst galaxies actually have inverted color gradients and appear bluer in their
centers. This is because of the large SFR that resulted from the sudden influx of gas-rich
material in the galactic center when another galaxy was disrupted, or from the effects of
tidal torques that acted on the starburst galaxy itself, causing its own gas to spiral into the
center. It is worth noting that weaker metallicity gradients are observed in boxy ellipticals
than in disky ones, another possible indication that boxy E’s have undergone significant
merger activity during their lifetimes.

The Formation of Elliptical Galaxies

Although we do not yet understand all of the complex details of galactic evolution, the nature
of the Hubble sequence may ultimately correspond to the mass of the individual galaxies,
the efficiency with which the galaxies made stars, and the relative importance of free-fall
collapse, dissipative collapse, and mergers. As an example, it appears that many ellipticals
may have formed the majority of their stars early in the galaxy-building process, before the
gas had a chance to settle into a disk, whereas late-type galaxies took a more leisurely pace.
You may also recall that current observations indicate that later Hubble types have a higher
relative abundance of gas and dust in their disks than galaxies of earlier Hubble type

However, as first mentioned at the end of Section 1, other E’s probably formed from
the collisions of already-existing spirals. The energy involved in the collision would destroy
the disks of both galaxies and cause the merged system to relax to the characteristic r1/4

distribution of an elliptical.
Although N -body simulations have been able to produce such a result (see Fig. 21),

some questions remain. For instance, the large number of globular clusters in E’s relative to
spirals present a serious difficulty in arguing that cataclysmic collisions are the cause of all

that many of the observed globular clusters are captured dwarf spheroidal galaxies, just as
ω Cen appears to be in the Milky Way.

From the discussion at the beginning of Section 1, recall that elliptical galaxies are
much more abundant relative to spirals in the centers of dense, rich clusters of galaxies,
whereas spirals dominate in less dense clusters and near the periphery of rich clusters. (This
morphology–density relation was first reported by Alan Dressler in 1980.) This effect may
be partly explained by the increased likelihood of interactions in regions where galaxies
are more tightly packed, destroying spirals and forming ellipticals.
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large elliptical galaxies. On the other hand, perhaps mergers can actually produce 
globular clusters by triggering star formation in clouds, in which case the larg-
er specific frequency of globular clusters may not be a problem. It is also possible
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FIGURE 21 An N -body simulation of the merger of two spiral galaxies. Each disk is represented
by 16,384 particles, and each bulge contains 4096 particles. The result is an elliptical galaxy with an
r1/4 profile. (Figure adapted from Hernquist, Ap. J., 409, 548, 1993.)

However, a competing hypothesis has also been suggested—namely, that ellipticals tend
to develop preferentially near the bottoms of deep gravitational potential wells, even in the
absence of interactions. Lower mass-density fluctuations in the early universe may have re-
sulted in spiral galaxies, and the smallest fluctuations led to the formation of dwarf systems.
If this is the case, then the large number of dSph’s and dE’s that exist has a natural expla-
nation in the much larger number of smaller fluctuations that formed in the early universe.
This mechanism could help explain galactic morphology if the initial density fluctuations
in the early universe were largest in what later became the centers of rich clusters. Because
the gravitational potential well in those regions would have been deeper, the probability of
collisions between protogalactic clouds should have been correspondingly greater as well.
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Perhaps the frequency of collisions between protogalactic clouds is correlated with galaxy
morphology.

Galaxy Formation in the Early Universe

Given the large number of fundamental problems that still remain in our development of a
coherent theory of galaxy formation, it is fortunate that a means exists (at least in principle)
for testing our ideas by observing galactic evolution through time. Because of the finite
speed of light, when astronomers look farther and farther out into space, we are literally
looking farther and farther back in time. For instance, galaxies that are 1 Mpc away emitted
their light more than 3 million years ago. This means that the light we observe today coming
from the galaxy is itself more than 3 million years old; we are “seeing” the galaxy 3 million
years in the past.

In 1978, Harvey Butcher and Augustus Oemler, Jr., noted that there appeared to be an
overabundance of blue galaxies in two distant clusters. They speculated that there may have
been a significant evolution in galaxies over time, leading to the types of objects we see
closer to us today. The Butcher–Oemler effect, as it is now called, suggests that galaxies in
the early universe were bluer on average than they are today, indicating an increased level
of star formation. The effect has been confirmed in numerous recent studies.

The morphology–density relation has also been shown to be time-dependent. As obser-
vations probe earlier times (more distant galaxy clusters), elliptical, and lenticular galaxies
become less abundant relative to spiral galaxies, suggesting an evolution from later Hub-
ble types to earlier types over time. This is just what would be expected if some earlier
Hubble-type galaxies form from the mergers of spirals. This is also consistent with the
overall picture of hierarchical galaxy building.

In 2004, the Space Telescope Science Institute released the Hubble Ultra Deep Field
(HUDF) image shown in Fig. 22. The HUDF image is actually a composite of two
images, one taken by the Advanced Camera for Surveys (ACS) and the other from the
Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). The region of the sky
contained in the HUDF image is only 3 arcmin on a side (about 1/10 the size of the full
moon), centered on (α = 3h32m40.0s, δ = −27◦48′00′′) in the constellation of Fornax. The
image required a total exposure time of 11.3 days for ACS (obtained between September
24, 2003, and January 16, 2004) and 4.5 days for NICMOS (over the period between
September 3, 2003, and November 27, 2003).

The HUDF reveals some very distant galaxies as they existed just 400 Myr to 800 Myr
after the Big Bang.As is evident in the close-up of a portion of the HUDF shown in Fig. 23,
the very distant galaxies appear quite different from the relatively nearby majestic spirals
and ellipticals that are seen in the present-day universe.

Observations like these suggest that the abundance of strange-looking, remote, blue
galaxies seen in the early universe may be the building blocks of today’s Hubble sequence
of galaxies. They probably represent the proto-galactic fragments responsible for the hier-
archical mergers that are still occuring today at a much diminished rate. Certainly a great deal
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FIGURE 22 The Hubble Ultra Deep Field (HUDF), obtained by combining images from ACS
and NICMOS onboard the HST. This HUDF image contains an estimated 10,000 galaxies covering
a region 3 arcmin square (about 1/10 the size of the full moon) in the constellation Fornax. Some of
the galaxies in the HUDF are so far away that we are seeing them less than 1 Gyr after the Big Bang.
[Courtesy of NASA, ESA, S. Beckwith (STScI) and the HUDF Team.]

FIGURE 23 A close-up of a portion of the HUDF image shown in Fig. 22. Many of the
galaxies in this image are extremely distant—and therefore extremely young. [Courtesy of NASA,
ESA, S. Beckwith (STScI) and the HUDF Team.]
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of work remains to be done before we can hope to fully understand the complex histories
of galaxies, but it appears that many of the basic ingredients of an evolution theory may be
in place.
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PROBLEM SET

fd ≃ C
G2M2ρ

v2
M

, (1)

Use the age of the Milky Way’s oldest globular clusters and the orbital veloc-
ity of the local standard of rest to estimate the greatest distance from which globular
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M = +

G µ mH R
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TABLE Approximate Values for Various Parameters Associated with the Components of the
Milky Way Galaxy. Definitions and details are discussed in the text.

Disks
Neutral Thin Thick

Gas Disk Disk
M (1010 M⊙) 0.5a 6 0.2 to 0.4
LB (1010 L⊙)b — 1.8 0.02
M/LB (M⊙/L⊙) — 3 —
Radius (kpc) 25 25 25
Form e−z/hz e−z/hz e−z/hz

Scale height (kpc) < 0.1 0.35 1
σw (km s−1) 5 16 35
[Fe/H] > +0.1 −0.5 to +0.3 −2.2 to −0.5
Age (Gyr) ! 10 8c 10d

Spheroids
Central Stellar Dark-Matter
Bulgee Halo Halo

M (1010 M⊙) 1 0.3 190+360
−170

f

LB (1010 L⊙)b 0.3 0.1 0
M/LB (M⊙/L⊙) 3 ∼ 1 —
Radius (kpc) 4 > 100 > 230
Form boxy with bar r−3.5 (r/a)−1 (1 + r/a)−2

Scale height (kpc) 0.1 to 0.5g 3 170
σw (km s−1) 55 to 130h 95 —
[Fe/H] −2 to 0.5 < −5.4 to −0.5 —
Age (Gyr) < 0.2 to 10 11 to 13 ∼ 13.5

a Mdust/Mgas ≃ 0.007.
b The total luminosity of the Galaxy is LB,tot = 2.3 ± 0.6 × 1010 L⊙,

Lbol,tot = 3.6 × 1010 L⊙ (∼ 30% in IR).
c Some open clusters associated with the thin disk may exceed 10 Gyr.
d Major star formation in the thick disk may have occurred 7–8 Gyr ago.
e The mass of the black hole in Sgr A⋆ is Mbh = 3.7 ± 0.2 × 106 M⊙.
f M = 5.4+0.2

−3.6 × 1011 M⊙ within 50 kpc of the center.
g Bulge scale heights depend on age of stars: 100 pc for young stars, 500 pc for old stars.
h Dispersions increase from 55 km s−1 at 5 pc to 130 km s−1 at 200 pc.

17 (a)

TABLE Characteristic Data for Dwarf Elliptical, Dwarf Spheroidal, and Blue Compact
Dwarf Galaxies.

dE dSph BCD
MB −13 to −19 −8 to −15 −14 to −17
M (M⊙) 107–109 107–108 ∼ 109

Diameter (D25, kpc) 1–10 0.1–0.5 < 3
⟨M/LB⟩ (M⊙/L⊙) ∼ 10 5–100 0.1–10
⟨SN ⟩ 4.8 ± 1.0 — —

Galactic Evolution: Problem Set



COMPUTER PROBLEMS

18

(x, y, z) = ( , − , )

(vx, vy, vz) = ( , . , . )

(a)

(b)
(c) x −

(b)

(c)

(d)

Galaxy

FIGURE The Whirlpool galaxy, M51 (NGC 5194), is an Sbc(s)I–II grand-design spiral
located in the constellation Canes Venatici (the Hunting Dogs of Boötes, just below Ursa Major).
Also visible is its companion NGC 5195, situated near the end of one of the spiral arms. (Image from
Sandage and Bedke, The Carnegie Atlas of Galaxies, Carnegie Institution of Washington, Washington,
D.C., 1994.)
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(a) (x, y, z) = ( , , )

(vx, vy, vz) = ( , , − )

(b)
expand

(c) x

19

two
(a)

(b) x −

20
Galaxy

Galaxy

FIGURE 6 An HST image of the ring galaxy known as the Cartwheel (A0035−335). The
diameter of the ring is about 46 kpc. As the ring expands at 89 km s−1, it triggers bursts of star
formation. It is not clear which of the two galaxies at right may have been the intruder. [Courtesy of
Kirk Borne (STScI), and NASA.]
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The Structure of the Universe

1 The Extragalactic Distance Scale
2 The Expansion of the Universe
3 Clusters of Galaxies

1 THE EXTRAGALACTIC DISTANCE SCALE

Unveiling the Third Dimension

/r



extragalactic distance scale cosmological distance
ladder

The Wilson–Bappu Effect

Wilson–Bappu effect

The Cepheid Distance Scale

≈
−

secular parallax

M⟨V ⟩ = − . Pd − . + . (B − V ),

V

V

Pd B − V

B − V ≈ .
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three

m − M

half
half
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Supernovae as Distance Indicators

θ(t)

ω = #θ/#t

#t d

vθ = ωd

v

d = v

ω
.
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L = πR (t)σTe ,

R(t) t

R(t) = v t

Example 1.1.
±

± − ±
t =

L ≈ π
(

v t
)

σTe = . × .

M = M − . (L/L⊙) ≈ − . .

Type Ia Light Curves

⟨MB⟩ ≃ ⟨MV ⟩ ≃ − . ± .

multicolor
light curve shapes (MCLS) method
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FIGURE 1

Physics Today
56

stretch method B V

m − M

Example 1.2.
B = .

d = (m−M−A+ )/ = . .
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− . −

Using Novae in Distance Determinations

MV

ṁ
−

MV = − . − . ṁ

± .

Secondary Distance Indicators

secondary
primary

⊙
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MV = − .

The Globular Cluster Luminosity Function

globular cluster luminosity function ϕ(MB)

ϕ(MB) dMB

MB MB + dMB

!
 M

B

m

"

MB

FIGURE 2
B = .

Publ. Astron. Soc. Pac. 104
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turnover magnitude M ≃ − .

M

m M

ϕ(mB)

universal

M = − . ± .

The Planetary Nebula Luminosity Function

planetary nebula luminosity function (PNLF)

#

N
 

FIGURE 3
Ap. J. 344
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FIGURE 4

Harmonizing Cosmic Distance Scales in a Post-Hipparcos Era ASP Con-
ference Series 167

M = − .

The Surface Brightness Fluctuation Method

surface brightness fluctuation method
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The Tully–Fisher Relation

Example 1.3. Wi
R = −

MH = − . ( W i
R − . ) − . = − . .

H H = .

d = (H−MH + )/ = . .

± .

± .

The D–σ Relation

L ∝ σr

D–σ relation D

D

. B −

D d

D standard ruler
σ D σ L

D σ

D = . σ + C,

fundamental plane
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"

FIGURE 5 D σ
− Ap. J. 313

C

D σ

D − D = C − C .

D d relative

d

d
= D

D
= C −C .

Example 1.4. C − .

− .

d

d
= C −C = . .
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D σ

The Brightest Galaxies in Clusters

M

MV = − . ± .

MJ

! !

FIGURE 6
Ap. J. 203
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A Summary of Distance Indicators

TABLE 1 Publ. Astron. Soc. Pac. 104

−

. ± .

. ± .

. ± .

. ± .

. ± . >

D σ . ± . >

. ± . >
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2 THE EXPANSION OF THE UNIVERSE

not

away
−

Hubble’s Law of Universal Expansion

v

d

v = H d,

Hubble’s law H Hubble constant v −

d H − −
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FIGURE 7
− Realm of the Nebulae

. . .

The Expansion of Space and the Hubble Flow
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FIGURE 8
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−

peculiar velocity recessional velocity
not

with
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FIGURE 9

FIGURE 10

Hubble flow cosmological
redshift
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as if

+

z ≤

d ≃ c

H

(z + ) −
(z + ) + ,

z ≪

d = cz

H
,

z > .

G

not

The Value of the Hubble Constant

H
− − − −

H

H

Malmquist bias

apparent
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H

h

H = h − − .

H h

H

The Big Bang

backward

and all of space

Big Bang

cosmic microwave background (CMB)

Wilkinson Microwave Anisotropy Probe
(WMAP)

h

h

[h] = . + .
− . .

h [h]

H = . × − h −

[H ] = . × − − .

H
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−

d = v/H = h− d = .

tH
d

v

v

d = v tH = H d tH ,

Hubble time

tH ≡
H

= . × h− = . × h− .

tH = . × = . × .

3 CLUSTERS OF GALAXIES

cosmological principle

The Classification of Clusters

groups clusters

. h−
−

× h− ⊙
h ⊙/ ⊙

poor
rich h−

− −

× h− ⊙ h ⊙/ ⊙
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regular irregular

superclusters

The Local Group

Local Group zero velocity surface

r =
. ◦

FIGURE 11

ℓ = . ◦ b = − . ◦

Microlensing 2000: A New Era of Microlensing Astrophysics A. S. P. Conference Series
239
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tc = r/v = .
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P
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r
+
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πGM
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) /

= .

r = v = − M

P
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−

expansion

M /
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tc = r/v

h = . H = − −

M = . × = . × ⊙

B . × ⊙

M/L = ⊙ ⊙

−

⊙ ⊙

Other Groups within 10 Mpc of the Local Group

◦

◦

voids

SGZ =

The Structure of the Universe

because the value of P was overestimated, M/L has been underestimated. These numbers 
are much larger than the value of M/L ≃ 3M⊙/L⊙ for the luminous matter in the Milky 
Way’s thin disk and central bulge. Our WMAP result of M/L ≃ 57 M⊙/L⊙
with the estimates when the MilkyWay’s dark halo is included. Apparently, astronomers 

 is consistent 

have seen less than approximately 10% of the matter that makes up the MilkyWay and 
Andromeda galaxies.



FIGURE 12
SGY

The Virgo Cluster: A Rich, Irregular Cluster

Virgo cluster

◦ × ◦

◦

The Structure of the Universe

galaxies (M84, M86, and M87; see Fig. 13). The diameters of these galaxies are  comparable 
to the distance  between our Galaxy and Andromeda, so each of these giant ellipticals is 
nearly the size of the entire Local Group.

M87, a giant E1 elliptical, is the largest and brightest galaxy in the Virgo clus-
ter. Like many other luminous elliptical galaxies, it contains roughly 1010 M⊙ of hot 
( 107 K) gas that has accumulated through normal stellar mass loss mechanisms. The 
gas loses energy by the free–free emission of X-ray photons. This thermal bremsst-
rahlung process produces a characteristic spectrum that can be readily identified

∼



FIGURE 13

T (r) ρ(r) r

dP

dr
= −G

Mrρ

r
.

P µ

Mr

Mr = − kT r

µmHG

(

∂ ρ

∂ r
+ ∂ T

∂ r

)

.

Mr total
Mr

The Structure of the Universe

One result for M87 shows that Mr increases linearly with radius out to about 300 kpc. 
This is the same signature seen for the distribution of dark matter in spiral gal-
axies. The total mass contained within r = 300 kpc is Mr ≃ 3 × 1013 M⊙, with a cen-
tral density of 1.5 × 10−2 M⊙ pc−3. The corresponding mass-to-light ratio is M/L ≃ 
750 M⊙/L⊙. This is 250 times the mass-to-light ratio for the stars in the Milky Way’s 
 Galactic bulge and thin disk and indicates that over 99% of M87’s mass is dark mat-
ter. M87 is not a typical elliptical galaxy. However, studies of other elliptical



The Coma Cluster: A Rich, Regular Cluster

Coma cluster ◦

◦

Evidence for the Evolution of Galaxies

+ z = . h− =
. h− = .

z ≈ . h− =
. h− = .

A Preponderance of Matter between the Galaxies
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FIGURE 14 +
Ap. J. Lett. 435

FIGURE 15
z = .
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σr = −

I (r)

Example 3.1.
− R =

M ≈ σr R

G
= . × ⊙

× ⊙
M/L ≈ ⊙/ ⊙

. . .

The Hot, Intracluster Gas

intraclus-
ter medium

intracluster gas

× ⊙ × ⊙

ν ν + dν

ℓν dν = . × − (

πne

)

T − / e−hν/kT dν − ,

The Structure of the Universe

follows a characteristic  law like those that describe the intensity profiles of the Milky 
Way’s bulge and halo, and elliptical galaxies. Presumably, like the stars that make up 
 elliptical galaxies and the spheroidal components of spirals, the galaxies in the Coma clus-
ter have become dynamically relaxed and are in an equilibrium configuration. This makes 
the virial theorem an appropriate method to use.

r1/4



FIGURE 16

. ◦ × . ◦

T ne

luminosity density L
ℓν

L = . × − neT
/ − .

Example 3.2.

R = .

continued
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FIGURE 17

Ap. J. 302

. ×
Lx

Lx = πR L .

Lx = × ne
−

ne =
[

Lx

πR T / ( . × − − )

] /

= − .

n ∼ −

M = πR nemH = . × ⊙,

× ⊙
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M/L ≃ ⊙/ ⊙
LV = × ⊙ . × ⊙

⊙

The Existence of Superclusters

supercluster

Local Supercluster

h−

h− h−

v = H d = h −

The Structure of the Universe

to the virial theorem, the cluster’s galaxies would have been moving more slowly, thereby 
increasing the dynamical friction and the chance of a merger. The large amounts of intra-
cluster gas found in many rich clusters were probably ejected during these early galactic 
interactions, or by bursts of star formation. Once this process was under way, it would 
have been enhanced by ram-pressure stripping. When a galaxy moves at several thousand 
kilometers per second through the intracluster gas, it encounters a furious wind that is 
capable of stripping its gas away.



FIGURE 18

Ap. J. 257

Virgocentric peculiar velocity
± −

× h− ⊙
M/L ≃ h ⊙/ ⊙

Large-Scale Motions Relative to the Hubble Flow

− h−

not

Great Attractor

The Structure of the Universe

The Virgocentric peculiar velocity is a minor perturbation in a much larger scale in-
homogeneity in the Hubble flow. There is a large-scale streaming motion (rela-
tive to the Hubble flow) that carries the Milky Way, the Local Group, the Virgo clus-
ter, and thousands of other galaxies through space in the direction of the constellation 
Centaurus. The peculiar velocity of the Local Group relative to the Hubble flow is
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FIGURE 19
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FIGURE 20
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FIGURE 21

MNRAS 242
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FIGURE 25 cz ≤ , − h−
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FIGURE 27
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PROBLEM SET

1 By equating the period–luminosity relation, the below equation and the period–luminosity–
tion, Eq. (1), estimate the range of the B − V color index for

2 The central light ring produced by SN 1987A (shown in the figure below) gave astronomers
chance to determine its distance (and therefore the distance to the Large Magellanic

Cloud). The supernova heated the ring of gas, causing it to glow. The ring, which has an
diameter of 1.66′′ (long axis), is presumed to be circular but tilted from the pers-

pective of Earth. Light was received from the near side of the ring 340 days before light arri-
ved from its far side.
(a) Carefully measure the photograph, and determine the angle between the plane of the ring

and the plane of the sky.
(b) Use the time delay to determine the diameter of the ring in parsecs, and compare your

result with the caption to the figure.
(c) Use trigonometry to find the distance to SN 1987A.

The Structure of the Universe

M⟨V ⟩ = −2.81 log10 Pd − 1.43

M⟨V ⟩ = −3.53 log10 Pd − 2.13 + 2.13(B − V ) (1)

a unique

angular

Rings around SN 1987A, detected by the Hubble Space Telescope in 1994. The
diameter of the inner ring is 0.42 pc. (Courtesy of Dr. Christopher Burrows, ESA/STScI and NASA.)

From Chapter 27 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.

variable stars.color rela Cepheid
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4 Show that an uncertainty in the distance modulus m − M of 0.4 mag corresponds to an uncer-
tainty in the distance of about 20%. What uncertainty in the distance modulus would produce
a 5% uncertainty in the distance? What uncertainty in the distance modulus would produce a
50% uncertainty in the distance?

5 In Eq. ( 4), the value of C for the Fornax cluster of galaxies is C = −1.264. What is the
ratio of the distances to the Virgo and Fornax clusters? to the Coma and Fornax clusters?

3 The three brightest red stars in the galaxy M101(the “Pinwheel” galaxy; see )
have visual magnitudes of V = 20.9. Assuming that there is 0.3 mag of extinction,what is the
distance to M101? How does this compare to the distance of 7.5 Mpc found using classical
Cepheids?

(a) (b)

(c) (d)

Typical normal spirals. (a) NGC 7096 (Sa(r)I), (b) M81/NGC 3031 (Sb(r)I–II),
(c) M101/NGC 5457/Pinwheel (Sc(s)I), (d) M104/NGC 4594/Sombrero (Sa/Sb) seen nearly edge on.
(Images from Sandage and Bedke, The Carnegie Atlas of Galaxies, Carnegie Institution of Washing-
ton, Washington, D.C., 1994.)

the be low fig ure

(27.4)

log10 D = 1.333 log σ + C (4)
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7 Use the relative motion of the Andromeda and Milky Way galaxies to estimate their total mass
for the case h = 0.5. What is the corresponding mass-to-light ratio of these galaxies?

The Magellanic Stream orbits the Milky Way and extends from 50 kpc to 100 kpc from the
Galactic center.
(a) Consider a clump of gas in the stream in a circular orbit about the Galactic center. Take

the radius of the orbit to be 75 kpc and the orbital speed to be 244 km s−1. Treating the
Galaxy and the mass clump as point masses, estimate the mass of the Milky Way. What is
the corresponding mass-to-light ratio?

(b) Suppose a clump of gas at the tip of the stream starts with zero radial velocity at a distance
of 100 kpc and reaches a radial velocity of −220 km s−1 after falling down to 50 kpc from
the Galactic center. Assuming that the transverse (orbital) velocity of the clump of gas
has not changed, use conservation of energy to estimate the mass of the Milky Way. Find
the corresponding mass-to-light ratio. As before, treat the Galaxy and the clump of gas as
point masses.

6 Use the solid line in Hubble’s velocity–distance diagram, Fig. 7, to determine his value of H0.
Why was his result so different from today’s value?

FIGURE 7 Hubble’s 1936 velocity–distance relation. The two lines use different corrections for
the Sun’s motion. (The vertical units should be km s−1.) (Figure from Hubble, Realm of the Nebulae,
Yale University Press, New Haven, CT, ©1936.)

9 Assuming that the Sculptor group of galaxies occupies a spherical volume of space, find the
difference in magnitude between two identical objects located at the very front and back of
the group.

8

Derive Eq. (17).

11 Suppose that the densities of the dark matter and interstellar gas in M87 have the same r-
dependence (i.e., they are proportional). Use Eq. ( 17) to show that the gas is isothermal.
Hint: Assume T ∝ rα and show α = 0. Use flat rotation curves and make use of the below 
equations . [The controversial assumption that T (r) = constant has been used in some studies
of dark matter in elliptical galaxies.]

Mr = − kT r

µmHG

(

∂ ln ρ
∂ ln r

+ ∂ ln T

∂ ln r

)

. (17)

Mr = V 2r

G
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µmHG

(

∂ ln ρ
∂ ln r

+ ∂ ln T

∂ ln r

)

. (17)



12 Like the Coma cluster, the Virgo cluster contains a large amount of hot (70 million K) intra-
cluster gas that emits X-rays.
(a) If the X-ray luminosity of the Virgo cluster’s intracluster gas is about 1.5 × 1036 W, use

Eq. ( 20) to find the electron number density and the mass of the gas. Assume that the
Virgo cluster is a sphere of radius 1.5 Mpc that is filled with completely ionized hydrogen.

(b) Use LV = 1.2 × 1012 L⊙ for the visual luminosity of the Virgo cluster to estimate the
cluster’s luminous mass. How does this compare with your answer to part (a) for the mass
of the intracluster gas?

(c) Assuming that the gas has no energy source and that it is simply losing energy via thermal
bremsstrahlung, use the below equation for the average kinetic energy per gas particle
(protons and electrons) to estimate how long it will take for the gas to lose all of its energy.
(Assume that the X-ray luminosity remains constant throughout your calculation.) How
does your answer compare with the Hubble time, tH ?

13 Estimate how long a galaxy in the Coma cluster would take to travel from one side of the
cluster to the other. Assume that the galaxy moves with a constant speed equal to the cluster’s
radial velocity dispersion. How does this compare with the Hubble time, tH ? What can you
conclude about whether the galaxies in the Coma cluster are gravitationally bound?

14 For the galaxies in the Virgo cluster, the dispersion in the radial velocity is σr = 666 km s−1.
Use the virial theorem to estimate the mass of the Virgo cluster.

15 Suppose that the galaxies in the Coma cluster are all moving away from the cluster’s center
but that the measured value of the radial velocity dispersion is unchanged. (For example,

ρ(r) = V 2

4πGr2
.

Lx = 4
3
πR3Lvol. (20)

1
2
mv2 = 3

2
kT .

directing each galaxy’s present velocity radially outward would accomplish this.) In this case,
the cluster would not be in equilibrium. What is the sign of the term ⟨d2I/dt2⟩ in the virial
theorem,shown  below? Explain how neglecting this term would affect your estimate of the

of the Coma cluster. How would your answer be different if all of the galaxies were
toward the cluster’s center?

1
2

〈

d2I

dt2

〉

− 2 ⟨K⟩ = ⟨U⟩ .

16 For the galaxy NGC 5585, the quantity 2vr/ sin i = 218 km s−1, and its apparent H magnitude
is H = 9.55 (already corrected for extinction). Use the Tully–Fisher method to determine the
distance to this galaxy.

17 The brightest galaxy in the cluster A1060 has an apparent visual magnitude of V = 10.99.
Estimate the distance to the cluster. Use the uncertainty in the average absolute magnitude of
the brightest galaxy to determine how far off your answer could be.

18 The Galactic coordinates of the direction of the large-scale streaming motion of galaxies in the
direction of the Great Attractor are ℓ = 309◦, b = 18◦. Convert these to equatorial coordinates,
and use a star chart to confirm that your answer is in the constellation of Centaurus.

The Structure of the Universe: Problem Set
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COMPUTER PROBLEM

19 Given the results in Table 1 for the distance to the Virgo cluster of galaxies, the problem
arises of how dave, the average distance, should be chosen.
(a) dave might be chosen to minimize

# ≡
∑

i

(

di − dave

δi

)2

,

where δi is the uncertainty in the distance di determined by the ith method in the table
(e.g., for the estimate using novae, d = 21.1 Mpc and δ = 3.9 Mpc). (There are echoes
of the least-squares fit to a straight line in this approach.) Make a graph of # vs. dave for
values of dave between 15 and 22 Mpc, and determine (to the nearest 0.1 Mpc) the value
of dave that minimizes #.

(b) The weighted mean value is

dw =
∑

i (di/δ
2
i )

∑

i (1/δ2
i )

.

Calculate the weighted mean for the values in Table 1, and compare your answer with
what you found in part (a).

(c) Prove that your answers to parts (a) and (b) will always agree.

TABLE 1 Distance Indicators. (Adapted from Jacoby et al., Publ. Astron. Soc. Pac., 104, 599,
1992.)

Uncertainty for Distance to
Single Galaxy Virgo Cluster Range

Method (mag) (Mpc) (Mpc)
Cepheids 0.16 15 − 25 29

Novae 0.4 21.1 ± 3.9 20

Planetary nebula
luminosity function 0.3 15.4 ± 1.1 50

Globular cluster
luminosity function 0.4 18.8 ± 3.8 50

Surface brightness
fluctuations 0.3 15.9 ± 0.9 50

Tully–Fisher relation 0.4 15.8 ± 1.5 > 100

D–σ relation 0.5 16.8 ± 2.4 > 100

Type Ia supernovae 0.10 19.4 ± 5.0 > 1000
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Active Galaxies

1 Observations of Active Galaxies
2 A Unified Model of Active Galactic Nuclei
3 Radio Lobes and Jets
4 Using Quasars to Probe the Universe

1 OBSERVATIONS OF ACTIVE GALAXIES

The story of modern astrophysics is one of a dynamically evolving universe. On every scale,
from planets to stars to galaxies, the objects that are present in this era differ from what
they were during previous epochs. As we study the ancient light that arrives from distant
corners of the universe, we are able to examine how galaxies looked and behaved in their
youth. These observations reveal a level of activity in the centers of young, remote galaxies
that is rarely found in nearer galactic nuclei.

Seyfert Galaxies

The first hint of the violent heritage of today’s galaxies was found by EdwardA. Fath (1880–
1959), who in 1908 was observing the spectra of “spiral nebulae.”Although most showed an
absorption-line spectrum produced by the combined light of the galaxy’s stars, NGC 1068
displayed six bright emission lines. In 1926 Edwin Hubble recorded the emission lines of
this and two other galaxies. Seventeen years later Carl K. Seyfert (1911–1960) reported that
a small percentage of galaxies have very bright nuclei that are the source of broad emission
lines produced by atoms in a wide range of ionization states. These nuclei are nearly stellar
in appearance.

Today these objects are known as Seyfert galaxies, with spectra that are categorized
into one of two classes. Seyfert 1 galaxies have very broad emission lines that include both
allowed lines (H I, He I, He II) and narrower forbidden lines (such as [O III]).1 Seyfert 1
galaxies generally have “narrow” allowed lines as well, although even the narrow lines are
broad compared to the spectral lines exhibited by normal galaxies. The width of the lines is
attributed to Doppler broadening, indicating that the allowed lines originate from sources
with speeds typically between 1000 and 5000 km s−1, while the forbidden lines correspond
to speeds of around 500 km s−1. Seyfert 2 galaxies have only narrow lines (both permitted

1 orbidden lines involve low-probability transitions in atoms and are an indication of low gas densities.

From Chapter  of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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FIGURE 1 The visible spectrum of Mrk 1243, a Seyfert 1 galaxy. (Figure adapted from Oster-
brock, QJRAS, 25, 1, 1984.)

and forbidden), with characteristic speeds of about 500 km s−1. Every spectrum also shows
a featureless continuum that is devoid of lines, originating from a small central source. The
great luminosity of a Seyfert 1 galaxy arises from this continuum, which often overwhelms
the combined light of all of the galaxy’s stars. The continuum observed for a Seyfert 2 is
significantly less luminous.

Figures 1 and 2, respectively, show the visible spectra of Mrk 1243 (a Seyfert 1)
and Mrk 1157 (a Seyfert 2), where “Mrk” indicates an entry in the galaxy catalog of E. B.
Markarian (1913–1985), produced in 1968. Some spectra display both broad and narrow
permitted lines, and so they are classified as an intermediate type such as Seyfert 1.5.
However, it is important to emphasize that this is a spectral classification. The spectra of
a few Seyfert galaxies have changed nearly from type 1.5 to type 2 in a matter of years,
although the broad Hα emission line has rarely if ever completely disappeared.

The galaxies known to emit the most X-ray energy are Seyferts of types 1 and 1.5. The
X-ray emission is quite variable, and can change appreciably on timescales ranging from
days to hours. In contrast, X-rays are less frequently measured for Seyfert 2 galaxies. An
analysis of the hard X-rays that are observed for Seyfert 2s indicates that the “missing”
X-rays have been absorbed by intervening material with huge hydrogen column densities2

of between 1026 and 1028 m−2.
Seyferts make up only a few tenths of a percent of all field galaxies. It is interesting that

at least 90% of the Seyferts close enough to be resolved by telescopes are spiral galaxies,
typically of types Sb or SBb. They are frequently accompanied by other galaxies with which

2 ine profiles can be used to calculate the column density of the absorbing material.
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FIGURE 2 The visible spectrum of Mrk 1157, a Seyfert 2 galaxy. (Figure adapted from Oster-
brock, QJRAS, 25, 1, 1984.)

FIGURE 3 A long exposure of the Seyfert 1 (or 1.5) galaxy NGC 4151 showing the galactic
disk around its bright nucleus. (Image from Sandage and Bedke, The Carnegie Atlas of Galaxies,
Carnegie Institution of Washington, Washington, D.C., 1994.)

they may be gravitationally interacting. Figure 3 is a long-exposure view of the Seyfert
galaxy NGC 4151 (type Sab) that shows the galactic disk around its bright nucleus.

The Spectra of Active Galactic Nuclei

Seyferts belong to the general class of galaxies with active galactic nuclei, or AGN for
short. Other members of this class, such as radio galaxies, quasars, and blazars, will be
introduced in the discussion that follows.

Active Galaxies
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FIGURE 4 A sketch of the continuum observed for many types of AGNs.

Figure 4 is a rough schematic of the continuum observed for many types of AGNs
(note that the logarithm of the product νFν is plotted on the figure’s vertical axis). The most
notable feature of this spectral energy distribution (SED) is its persistence over some
10 orders of magnitude in frequency. This wide spectrum is markedly different from the
thermal (blackbody) spectrum of a star or the combined spectra of a galaxy of stars.

When AGNs were first studied, it was thought that their spectra were quite flat. Accord-
ingly, a power law of the form

Fν ∝ ν−α (1)

was used to describe the monochromatic energy flux, Fν .3 The spectral index,4 α, was
believed to have a value of α ≃ 1.

The power received within any frequency interval between ν1 and ν2 is

Linterval ∝
∫ ν2

ν1

Fν dν =
∫ ν2

ν1

νFν
dν

ν
= ln 10

∫ ν2

ν1

νFν d log10 ν, (2)

so that equal areas under a graph of νFν vs. log10 ν correspond to equal amounts of energy;
hence the reason for plotting log10 νFν on the ordinate in Fig. 4. A value of α ≃ 1 reflects
the horizontal trend seen to the right of the turnover in Fig. 4.

The continuous spectra of AGNs are now known to be more complicated, involving a
mix of thermal and nonthermal emission. However, Eq. ( 1) is still used to parameterize

3Fν dν is the amount of energy with a frequency between ν and ν + dν that arrives per unit area per second on a
detector aimed at the source.
4Warning: Some authors define the spectral index with the opposite sign.
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the continuum. The spectral index typically has a value between 0.5 and 2 that usually
increases with increasing frequency, so the curve of log10 νFν vs. log10 ν in Fig. 4 is
generally concave downward. In fact, the value of α is constant over only a limited range
of frequencies, such as in the infrared and visible regions of the spectrum. The shape and
polarization of the visible-UV spectrum indicates that it can sometimes be decomposed into
contributions from thermal sources (blackbody spectrum, low polarization) and nonthermal
sources (power-law spectrum, significant polarization). The thermal component appears as
the big blue bump in Fig. 4, which can contain an appreciable amount of the bolometric
luminosity of the source. It is generally believed that the emission from the big blue bump
is due to an optically thick accretion disk, although some researchers have suggested that
free–free emission may be responsible. Also evident is a thermal infrared bump to the left
of the big blue bump; it is probably due to emission from warm (T ! 2000 K) dust grains.

A pure power-law spectrum (with constant α) is the signature of synchrotron radiation,
which is frequently encountered in astronomical situations involving relativistic electrons
and magnetic fields. As shown in Fig. 5, a synchrotron spectrum is produced
by the combined radiation emitted by individual electrons as they spiral around
magnetic field lines. If the distribution of the individual electron energies obeys
a power law, then the resulting synchrotron spectrum is described by Eq. ( 1).
However, the synchrotron spectrum does not continue to rise without limit as the frequency
decreases. At a transition frequency, the spectrum turns over and varies as ν5/2 (spectral
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FIGURE 5 The power-law spectrum of synchrotron radiation, shown as the sum of the radiation
produced by individual electrons as they spiral around magnetic field lines. The spectrum of a single
electron is at the upper right. The turnover at low frequencies is not shown.
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index α = −2.5). This occurs because the plasma of spiraling electrons becomes opaque
to its own synchrotron radiation, an effect known as synchrotron self-absorption.

In some SEDs, the “turnover” evident in the schematic continuum spectrum in Fig. 4
may be due to synchrotron self-absorption. However, the thermal contributions to the con-
tinuum spectrum evident in the infrared bump suggest that in other cases, the turnover
may be due to the long-wavelength Rayleigh–Jeans portion of the blackbody spectrum
produced by the warm dust grains. It is possible that the steeper, low-frequency spectra
of radio-quiet AGNs are due to the thermal spectrum of dust grains, while the shallower,
low-frequency spectra of radio-loud AGNs may be due to a combination of thermal and
nonthermal emission.

Radio Galaxies

After World War II the science of radio astronomy that was started by Karl Jansky made
rapid progress, led by astronomers in Australia and England. The first discrete source of
strong radio waves (other than the Sun) was discovered in the constellation Cygnus and
was named Cygnus A (a modern VLA radio image of Cyg A is shown in Fig. 6). Using
the accurate position provided by English radio astronomer F. Graham Smith, the team of
Walter Baade and Rudolph Minkowski (1895–1976) was able to find the optical counterpart
of Cyg A. It is a peculiar-looking cD galaxy whose center is apparently encircled by a ring
of dust (Fig. 7 shows an optical image of Cyg A obtained using the Hubble Space
Telescope). Cyg A’s spectrum shows a redshift of z = #λ/λrest = 0.057, corresponding
to a recessional velocity of 16,600 km s−1. From Hubble’s la the distance to Cyg A
is about 170h−1 Mpc (implying a distance of 240 Mpc if h = [h]WMAP). Considering
that Cyg A is the brightest radio source beyond the Milky Way, this distance is
surprisingly large. In fact, the only discrete radio sources brighter than

FIGURE 6 A VLA radio image of Cygnus A, showing the two radio lobes separated by about
100h−1 kpc and the jet extending from the galaxy to the right-hand lobe. Cyg A is a narrow-line radio
galaxy. The central cD galaxy does not show up on this radio picture (see Fig. ). The width of the
image is about 2 arcminutes. [Courtesy of R. A. Perley, J. W. Dreher, and J. J. Cowan (NRAO/AUI).]
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FIGURE 7 A continuum HST image of Cygnus A (3C 405) taken at a wavelength of 622 nm.
(Figure adapted from Jackson, et al., MNRAS, 301, 131, 1998.)

and Cassiopeia A, the nearby (3 kpc) remnant of a Type II supernova. To be detected
so far away, Cyg A must pour out enormous amounts of radio energy.

Cyg A is one example of a class of galaxies, called radio galaxies, that are extremely
bright at radio wavelengths.

Example 1.1. The radio energy emitted by Cygnus A can be estimated by using its
distance of d = 170h−1 Mpc together with the observed value of the monochromatic flux
at a radio frequency of 1400 MHz,

F1400 = 1.255 × 10−23 W m−2 Hz−1 = 1255 Jy.

The radio spectrum follows the power law of Eq. ( 1) with α ≃ 0.8, so Fν ∝ ν−0.8. That
is, we can write

Fν = F1400

( ν

1400 MHz

)−0.8
.

The radio luminosity can be found by integrating the monochromatic flux over
the range of radio frequencies. The upper frequency limit is taken to be ν2 = 3 × 109 Hz,
corresponding to a radio wavelength of 0.1 m. As is shown in Problem 20,
the power-law behavior of the radio spectrum does not continue to ν = 0. Instead,
the flux received from Cygnus A declines when the frequency falls below about

continued

Active Galaxies

Sun



ν1 = 107 Hz. With these limits, the radio luminosity is approximately

Lradio = 4πd2
∫ ν2

ν1

Fν dν = 4πd2F1400

∫ ν2

ν1

( ν

1400 MHz

)−0.8
dν = 2.4 × 1037h−2 W.

Using the WMAP value of [h]WMAP = 0.71, the radio luminosity of Cygnus A is esti-
mated to be Lradio = 4.8 × 1037 W. This is several million times more radio energy than is
produced by a normal galaxy such as M31 and is roughly three times the energy produced
at all wavelengths by the Milky Way.

Like Seyfert galaxies, radio galaxies may also be divided into two classes: broad-line
radio galaxies (BLRGs, corresponding to Seyfert 1s) and narrow-line radio galaxies
(NLRGs, corresponding to Seyfert 2s). BLRGs have bright, starlike nuclei surrounded by
very faint, hazy envelopes. NLRGs, on the other hand, are giant or supergiant elliptical
galaxies (types cD, D, and E); Cyg A is a NLRG.

Despite their similarities, there are obvious differences between Seyferts and radio galax-
ies. Although Seyfert nuclei emit some radio energy, they are relatively quiet at radio wave-
lengths compared with radio galaxies. Furthermore, while nearly all Seyferts are spiral
galaxies, none of the strong radio galaxies are spirals.

Radio Lobes and Jets

A radio galaxy may display extended radio lobes, as in Fig. 6, or it may radiate its energy
both from a compact core in its nucleus and from a halo that is about the size of the visible
galaxy or larger. The optical cD galaxy in Fig. 7 is the central dot in the Cyg A radio
image shown in Fig. 6. The optical galaxy is flanked by two huge radio lobes that are
the sources of the tremendous radio luminosity estimated in Example 1.1. Each of the
lobes has a diameter of about 17h−1 kpc.

Observations reveal that one of the lobes is connected to the central galaxy of Cyg A
by a collimated jet that spans the roughly 50h−1 kpc of space separating the galaxy from
the lobe. (Since the orientations of jets and radio lobes are not well determined, the values
for their sizes quoted here are projected distances on the plane of the sky.) At least half
of the stronger radio galaxies have detectable jets, as do more than three-quarters of the
weaker sources. The jets associated with the powerful sources tend to be one-sided (like
Cyg A’s), while those found in less luminous radio galaxies are typically two-sided. One
reason for this is that the stronger radio galaxies can be seen at greater distances, and so a
dim counterjet may go undetected. (Reasons why counterjets may not appear as luminous
to the observer will be discussed in Section 3.)

Figure 8 shows the strong jet and weak counterjet of the elliptical galaxy NGC 6251
at several radio frequencies. Note that the Moon’s angular diameter would just fit into either
of the two rectangular boxes at the top of the figure, while the scale of the bottom box is
just a few milliarcseconds across. It is remarkable that the jet can be traced essentially all
the way to the core of the galaxy.

Other radio jets are not as straight as those of Cyg A or NGC 6251. Figure 9 shows the
windblown appearance of the jets emanating from NGC 1265, produced by that galaxy’s
motion through the intracluster gas of the Perseus cluster.
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FIGURE 8 The jet and counterjet (second panel) of the radio galaxy NGC 6251. (Figure adapted
from Bridle and Perley, Annu. Rev. Astron. Astrophys., 22, 319, 1984. Reproduced by permission from
the Annual Review of Astronomy and Astrophysics, Volume 22, ©1984 by Annual Reviews Inc.)

Following Cyg A, many more radio galaxies were discovered. One of these is M87,
the giant elliptical (E1) galaxy that lies at the center of the Virgo cluster. With an
apparent visual magnitude of V = 8.7, M87 is one of the brighter-appearing
galaxies in the sky. Figure 10 shows two HST views of M87, also known as Virgo A
to radio astronomers. Its prominent jet, shown at the right, was discovered optically in
1917. The jet extends from the galaxy some 1.5 kpc into one of its radio lobes. The jet
also displays evenly spaced knots that are bright at radio, visible, and X-ray wavelengths.
The X-ray luminosity of M87, including the jet, is roughly 1036 W. This is about 50 times
greater than M87’s radio luminosity. The inset shows the spiral-shaped disk of hot gas that
is at the core of M87. There is also evidence for a faint counterjet extending away from
M87 in the direction opposite that of the dominant jet.

Active Galaxies



03h15m00s 57s 54s

30"

30"

40º41'00"

Right ascension (1950.0)

D
ec

lin
at

io
n 

(1
95

0.
0)

NGC 1265 4873 MHz

FIGURE 9 The radio appearance of NGC 1265, with its jets swept back by that galaxy’s motion
through the surrounding intracluster gas. (Figure adapted from O’Dea and Owen, Ap. J., 301, 841,
1986.)

FIGURE 10 Two HST views of M87 and its jet. The inset shows the spiral-shaped disk of hot gas
at the center of M87. [Courtesy of H. Ford (STScI/Johns Hopkins U.); R. Harms (Applied Research
Corp.); Z. Tsvetanov, A. Davidsen, and G. Kriss (Johns Hopkins U.); R. Bohlin and G. Hartig (STScI);
L. Dressel and A. K. Kochhar (Applied Research Corp.); and Bruce Margon (U. Washington).]
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FIGURE 11 The visual and radio appearance (superimposed contour lines) of the radio galaxy
Centaurus A. (Courtesy of NRAO.)

One of the largest radio galaxies known is 3C 236 (the “3C” designates a listing in the
Third Cambridge Catalog of radio sources). With a redshift of z = 0.0988, its distance
is about 280h−1 Mpc, according to Hubble’s law. The radio lobes of 3C 236 are separated
by more than 1.5h−1 Mpc, projected onto the plane of the sky, while its radio jet is only
400h−1 pc long.

The closest example of anAGN is CentaurusA(NGC 5128), at a distance of 4.7h−1 Mpc.
Figure 11 shows an optical image of Cen A, an E2 galaxy girded by a thick dust lane.
Superimposed on the photograph is a radio map showing the radio lobes. Like M87,
Cen A has a jet extending from its nucleus containing several knots of radio and X-ray
emission. Although Cen A is in our astronomical backyard, radio galaxies on average are
roughly 100 times less abundant than Seyferts in regions that are nearby in cosmological
terms.

The Discovery of Quasars

As radio telescopes discovered increasing numbers of radio sources in the late 1950s, the
task of identifying these sources with known objects became more important. In 1960
Thomas Matthews and Allan Sandage were searching for an optical counterpart to another
radio source, 3C 48. They found a 16th-magnitude starlike object whose unique spectrum
displayed broad emission lines that could not be identified with any known element or
molecule. In Sandage’s words, “The thing was exceedingly weird.” In 1963 a similarly
weird spectrum was found for another radio source with a stellar appearance, 3C 273.
Figure 12 shows 3C 273 and its jet, which extends a projected distance of 39h−1 kpc
from the nucleus.
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FIGURE 12 The quasar 3C 273 and its jet. [Courtesy of NASA and J. Bahcall (IAS).]
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FIGURE 13 The z = 0.158 redshift of the quasar 3C 273. (Adapted from a figure courtesy of
Palomar/Caltech.)

3C 48, 3C 273, and other, similar sources were classified as quasi-stellar radio sources
(QSRs), which became known as quasars. But names are not a substitute for understanding,
and an understanding of quasars proved to be elusive. Later that year, the mystery lifted
somewhat when Dutch astronomer Maarten Schmidt recognized that the pattern of the
broad emission lines of 3C 273 was the same as the pattern of the Balmer lines of hydrogen.
These familiar lines had been severely redshifted (z = 0.158) to unfamiliar wavelengths,
making their identification difficult; see Fig. 13. This Doppler shift means that 3C 273
is receding from Earth at 14.6% of the speed of light. According to Hubble’s law, this
places 3C 273 at a distance of about 440h−1 Mpc. At Caltech, Schmidt’s associates Jesse
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Greenstein (1909–2002) and Thomas Matthews calculated that 3C 48 has an even greater
redshift, z = 0.367, corresponding to a radial velocity of 0.303c and a Hubble distance of
just over 900h−1 Mpc. Astronomers realized that 3C 48 was one of the most distant objects
yet discovered in the universe.

Quasar Luminosities

A quasar’s radio emission may come either from radio lobes or from a central source in
its core. Quasars are so far away that in optical images most appear as overwhelmingly
bright, starlike nuclei surrounded by faint fuzzy halos. In some cases, a fuzzy halo can be
resolved into a faint parent galaxy. To be visible from such great distances, quasars must be
exceptionally powerful.

Example 1.2. quation can be used to obtain the absolutevisualmagnitude
of the quasar 3C 273, which has an apparent visual magnitude of V = 12.8

[h]WMAP = 0.71 yields a distance of d ≃ 620 Mpc, implying that

MV = V − 5 log10

(

d

10 pc

)

= −26.2.

This value can be used to obtain an estimate of the luminosity of the quasar at visual
wavelengths. Using MSun = 4.82 for the Sun’s absolute visual magnitude gives an estimate
of the quasar’s visual luminosity:

LV ≈ 100(MSun−MV )/5L⊙ = 2.6 × 1012L⊙ = 1 × 1039 W.

The radio energy emitted by 3C 273 can be estimated from its distance and the
value of the monochromatic flux at a radio frequency of 1400 MHz, F1400 = 4.64 ×
10−25 W m−2 Hz−1 = 46.4 Jy. The radio spectrum follows the power law of Eq. ( 1)
with a spectral index of α ≃ 0.24. Integrating the monochromatic flux from ν1 ≃ 0 to
ν2 = 3 GHz gives

Lradio = 4πd2
∫ ν2

ν1

Fν dν = 7 × 1036 W.

The bolometric luminosities inferred for quasars range from about 1038 W to more than
1041 W, with 5 × 1039 W being a typical value; see Fig. 16. This implies that the most
luminous quasars are on the order of 105 times more energetic than a normal galaxy like
our own Milky Way.

Quasar Spectra

The monochromatic flux of 3C 273 is shown in Fig. 14. This continuous spectrum spans
nearly 15 orders of magnitude in frequency, very broad compared with the sharply peaked
blackbody spectrum of a star. The gentle decline at the low-frequency end of the spectrum
reflects the larger-than-average spectral index (α = 0.24) for 3C 273 in this regime. (At
low frequencies, the spectrum of 3C 273 is dominated by radiation from its jet rather than
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FIGURE 14 The spectrum of 3C 273, after the Doppler shift of the frequencies due to the Hubble
flow has been removed. A horizontal line would correspond to a spectral index of α = 1; for reference,
the diagonal dashed line shows the slope for Fν = constant. The two lines on the right correspond
to 3C 273 during quiescence and during an outburst. (Figure adapted from Perry, Ward, and Jones,
MNRAS, 228, 623, 1987.)

from its core.) For most other quasars, the spectrum at the low-frequency end falls off more
abruptly (smaller α). A typical spectrum turns over in the far infrared at a frequency of
about 5 × 1012 Hz, possibly due to dust and/or synchrotron self-absorption. Also, although
some quasars are most luminous at infrared wavelengths and others peak in X-rays, the
peak power output of 3C 273 is in the form of low-energy gamma rays.

Quasars emit an excess of ultraviolet light relative to stars and so are quite blue in
appearance. For example, the color indices of 3C 48 are U − B = −0.61 and B − V = 0.38
(you should note that this lies well above the positions of main-sequence stars on the
color– color diagram . In Fig. 14, this ultraviolet excess is indicated by the big blue
bump between roughly 1014 Hz and 1016 Hz. A big blue bump is a feature of most (but not
all) quasar spectra.

Absorption lines may also be present in some quasar spectra. In particular, Doppler-
broadened absorption lines, found in up to 10% of the spectra of quasars, originate from
sources with speeds exceeding 104 km s−1. These lines are believed to be associated with
the quasar itself. Many additional narrow absorption lines are typically seen in the spectra

quasars with high redshifts (z > 2.2) due to the Lyman series of hydrogen and
metals such as C IV and Mg II. These lines would normally appear at ultraviolet
wavelengths but have been redshifted into the visible spectrum by the recessional velocity
of the absorbing material. The absorption lines of a given quasar can be placed into different
groups that share common redshifts. Furthermore, the redshifts of these narrow absorption
lines are nearly always less than the redshift of the quasar’s emission lines. The various
groupings of lines are thought to arise from clouds of intervening material that lie between
the quasar and Earth, as will be discussed in Section 4.
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Quasi-Stellar Objects

The distinctive appearance of quasars, starlike with an excess of ultraviolet light, led as-
tronomers to search for more objects fitting this description. In fact, choosing those objects
with U − B < −0.4 results in a nearly complete list of possible quasars (those at very
high z are redder), which must then be confirmed by a spectroscopic analysis. Researchers
discovered that about 90% of the confirmed quasar candidates, and AGNs in general, are
relatively radio-quiet. For this reason, most of these objects are technically referred to as
quasi-stellar objects (QSOs), rather than quasars (QSRs).

Quasar Terminology

Today, the term quasar has come to be used almost universally for both radio-loud QSRs
and radio-quiet QSOs. As a result, it is common to encounter the descriptions radio-loud
quasars and radio-quiet quasars. However, it is also sometimes the case that QSO is used
as an abbreviation for quasar. The terminology can be confusing in the literature, so it is
important for you to understand the context in which the term is being used. In this text,
we will generally use quasar to represent both classes of objects, making the distinction
between radio-loud and radio-quiet when necessary.5

Ultraluminous Infrared Galaxies

Nearly all quasars have spectra similar to those of broad-line radio galaxies and Seyfert 1s,
with bright power-law continua and broad emission lines (both allowed lines and narrower
forbidden lines). Seyfert 2 spectra, with their narrow emission lines (both permitted and
forbidden), appear to have no counterparts among the quasars. However, some astronomers
argue that a subset of the galaxies that were cataloged by the IRAS satellite as being ultra-
luminous at infrared wavelengths, known as ultraluminous infrared galaxies (ULIRGs),
should be considered quasars of type 2 rather than starburst galaxies. It is suggested
that the infrared light results from dust that absorbs and reradiates the light from the
quasar nucleus.

The High Cosmological Redshifts of Quasars

The Sloan Digital Sky Survey (SDSS) has cataloged 46,420 quasars. The brightest en-
try in the catalog in the i band (centered on a wavelength of 748.1 nm) is the object
SDSS 17100.62+641209.0 at a redshift of z = 2.7356, having Mi = −30.242. The most
distant quasar in the catalog is SDSS 023137.65−072854.4 at a redshift of z = 5.4135,
implying a recessional velocity of more than 0.95c. In fact, there are 520 quasars in the
SDSS catalog with redshifts greater than z = 4.

For such large cosmological redshifts, we must abandon using the Hubble law
to determine distances. Cosmological redshifts are caused by the expansion of
the space through which the light travels, so for extremely large distances
total elongation of the wavelength depends on how the expansion of the universe has

5It has been pointed out by more than one astronomer that this confusing terminology is also a bit contradictory; to
say that a particular quasar is radio-quiet is equivalent to saying that we are discussing a radio-quiet quasi-stellar
radio source (based on the original definition of quasar)!
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changed with time. The rate of expansion is changing in response to all of the matter and
energy in the universe. For this reason, it is customary to quote the redshift, z, rather than an
actual distance determination. You should keep in mind, however, that the fractional change
in wavelength for a cosmological redshift is the same as the fractional change in the size of
the universe, R, since the time when the light was emitted.6 That is,

z = λobs − λemitted

λemitted
= Robs − Remitted

Remitted
,

which gives

Robs

Remitted
= 1 + z. (3)

Thus a redshift of z = 3 means that the universe is now four times larger than when the
light was emitted.

Evidence for Quasar Evolution

he regions that are cosmologically close to us make up “today’s universe.” In observing
these regions, astronomers can study galaxies as they appear here and now in the present
epoch. When looking deeper into the universe, however, we see ancient photons that have
been traveling for a long time from a source that may have changed significantly since
the light began its journey. This essentially means that looking farther into space implies
peering farther into the past. Thus telescopes serve as time machines, providing a window
to the early universe.

Bright quasars were certainly more common at earlier epochs than they are now, as
evidenced by observations at large and small z, respectively. Several factors could contribute
to the greater space density of luminous quasars in the past. Both the total number of quasars
and their luminosities may have been different then, and it is obviously a difficult task to
disentangle these influences. A further complication is introduced by the expansion of the
universe. The universe is larger today than it was at a redshift z by a factor of 1 + z, so the
space density of quasars would be greater in the past even if their numbers and luminosities
have remained constant. To avoid unnecessary confusion caused by the expansion of the
universe, astronomers have defined a comoving space density that mathematically removes
the effect of the expanding universe. The number of objects per Mpc3 at a redshift z is divided
by (1 + z)3, scaling the space density down to the value it would have today (at z = 0).
The comoving space density of a constant number of nonevolving objects does not change
as the universe expands, and so a change in this density implies that the number of objects
is varying or that the objects are evolving (or both).

Statistical studies indicate that there are more than 1000 times as many quasars per
Mpc3 (comoving space density) brighter than MB = −25.9 at z = 2 than there are today
(z = 0). However, there is strong evidence that the total number of quasars has not changed
significantly from the present (z = 0) back to roughly z = 2. Figure 15 shows several

6This fractional change can be measured by the average separation of its constituents, for instance.
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FIGURE 15 Luminosity functions for quasars with different redshifts. The redshifts are indicated
in each frame; for instance, in the upper-left-hand frame, z = 0.540. The jagged line that is present
in every frame (upper right in z = 0.540) represents the data for z = 1.390. Note that the population
is brighter at greater redshifts. Data are from the Sloan Digital Sky Survey (SDSS) and the 2-degree
Field survey (2dF) for 5645 quasars. The g band is centered on 480 nm. (Figure adapted from Richards
et al., MNRAS, 360, 839, 2005.)

luminosity functions, &, for quasars in different redshift intervals, where &(Mg) is the
number of quasars per Mpc−3 (comoving) that have an absolute magnitude between Mg and
Mg + dMg . Note that for z < 2, the curves would overlap if they were shifted horizontally
along the Mg-axis. This indicates that for z < 2, the populations of quasars with different
redshifts differ only in their luminosities, not in their comoving space densities. If this is so,
then the scarcity of bright quasars today is an evolutionary effect, caused by a decrease in
their luminosities with time. This luminosity evolution of quasars is shown in Fig. 16.7

Apparently, a picture in which a constant number of quasars grows dimmer as the universe
expands is consistent with the observations for z < 2.

The situation becomes more complicated between z = 2 and z = 3. Astronomers can
study the birth and evolution of quasars out to z ∼ 6. Statistical surveys at both optical and
X-ray wavelengths show that the comoving space density of AGNs peaks at a redshift of
approximately z ≈ 2.5 and then drops off for z > 3; see Fig. 17. These studies indicate
that the comoving space density declines by roughly a factor of 10 from its peak value by
z ≈ 4.

This high-z deficit in the number of quasars could reflect a growth phase of supermas
sive black holes that power the nascent AGN. well-defined relationship exists
between the mass of a supermassive black hole and the velocity dispersion of the
spheroid of a galaxy, suggesting that as the mass of the galaxy grows and the velocity

7Note that Figure 16 assumes a pre-WMAP value of h = 0.5 and a specific model for the expansion of the
universe that corresponds to a “flat universe” (a deceleration parameter of q0 = 0.5).
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dispersion of its spheroid increases, so does the mass of the central supermassive black
hole.

There is evidence, including interactions in observed quasars, suggesting that an individ-
ual quasar “event” lasts only for a galactic dynamical timescale (the dynamical timescale,
essentially the characteristic free-fall or orbital time). Figure 18 shows the quasar
PKS 2349−014 and a companion galaxy about the size of the LMC (the small
bright spot just above the quasar). The thin curved wisps that almost surround the quasar
are probably the result of a tidal interaction between the quasar and the companion galaxy.
The companion is so close that it will probably merge with PKS 2349−014 in the near
future. A portion of the diffuse nebulosity centered on the quasar may (or may not)
represent a host galaxy in which it resides.

In 2003, James S. Dunlop, Ross J. McLure, and their colleagues reported on an extensive
study of the morphology of the host galaxies of 33 radio-loud quasars, radio-quiet quasars,
and radio galaxies in the redshift band 0.1 < z < 0.25. The study was conducted by using
the Hubble Space Telescope in combination with VLAradio imaging. The research team was
able to conclude that all of the galaxies in their sample associated with radio-loud quasars
or radio galaxies are massive ellipticals. Of the 13 radio-quiet quasars in the sample, 9 are
hosted by massive ellipticals while the remaining 4 are in disk/bulge systems. Furthermore,
of the 4 disk/bulge systems, the luminosities of 2 of them are dominated by their bulge
components, implying that 11 of the 13 radio-quiet quasars (or ∼ 85%) are associated
with galaxies that are predominantly spheroidal. In addition, the 2 disk-dominated galaxies
are the sites of the lowest-luminosity AGNs in the sample by far, and they may be more
appropriately considered Seyfert 2 galaxies. From the systems investigated in this study, it
appears that all of the true quasars and radio galaxies in the sample are hosted by massive
ellipticals that are nearly indistinguishable from lower-z quiescent galaxies typically found
near the centers of rich clusters.

FIGURE 18 The quasar PKS 2349−014 in a gravitational interaction with a companion galaxy.
(Figure from Bahcall, Kirhakos, and Schneider, Ap. J. Lett., 447, L1, 1995. Courtesy of J. Bahcall,
Institute for Advanced Study, NASA.)
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The study also revealed that all of the radio-loud quasars contained central supermassive
black holes of at least 109 M⊙ and that the radio-quiet quasars contained black holes with
masses in excess of 5 × 108 M⊙. It appears from this work that radio-loud systems are
much less abundant than radio-quiet systems (10% vs. 90%) simply because the radio-loud
systems require more massive central black holes to power the strong radio energy emission.
However, although the investigation did find a broad correlation between increasing black
hole mass and increasing radio luminosity, the most luminous radio sources cannot be
attributed to black hole mass alone. Rather, there is speculation that black hole rotation also
may be required to power the strongest radio sources.

In a second, statistical study of 12,698 quasars with redshifts in the range 0.1 < z < 2.1
found in the Sloan Digital Sky Survey quasar catalog, McLure and Dunlop considered the
evolution of black hole masses with increasing redshift. They found that black hole masses
sufficient to power quasars were in place by z ∼ 2. They further determined that all of
the central black holes had masses in the range 107 M⊙ < Mbh < 3 × 109 M⊙, where the
upper limit corresponds to the most massive black holes yet found in the local universe
(specifically, in M87 and Cygnus A).

The SDSS quasar study was also able to point out that quasar bolometric luminosities
increase steadily with redshift from roughly 0.15LEd at z ∼ 0.2 to 0.5LEd at z ∼ 2.0, where
LEd is the Eddington luminosity. It is also evident from the data that the Eddington
luminosity limit remains valid at the high-z end of the study.

Timescales of AGN Variability

The energy produced by many of the AGNs discussed above (excluding NLRGs and
Seyfert 2s) can vary on short timescales. The luminosity of the broad emission lines and
continuum of some Seyfert 1 galaxies and quasars can change by a factor of 2 within a
few months, weeks, or even days, although there is little or no corresponding variation in
the narrow lines. The variation in broad emission lines typically lags behind the continuum
variation over similar timescales. There are also variations of a few percent in the visible
and X-ray output of Seyfert 1s and quasars on timescales as short as a few minutes, with
X-ray fluctuations typically the most rapid. At the other end of the scale, there may be
changes of a longer duration. For example, Fig. 19 shows that around the year 1937, the
quasar 3C 279 brightened by a factor of 250 at visible wavelengths during an outburst that
lasted for several years.

Polarization of the Emission

Quasars typically show low degrees of polarization. At visible wavelengths, the degree
of linear polarization is usually less than 3% for both radio-quiet and radio-loud objects,
although it may reach up to 35% polarization for a few objects. The radio emission from
high-polarization quasars comes mostly from a compact core; such quasars are called core-
dominant radio sources (and also compact sources). These quasars are less polarized at
radio wavelengths than the lobe-dominant sources, which may reach up to 60% linear
polarization. The degree of linear polarization of AGN radio jets is typically 40% but may
exceed 50% within a small region. ( ynchrotron radiation is highly linearly polarized.
The lower polarization of the core-dominant sources is probably
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FIGURE 19 The variation in the apparent magnitude of the quasar 3C 279, based on an exam-
ination of archival astronomical photographs. (Figure adapted from Eachus and Liller, Ap. J. Lett.,
200, L61, 1975.)

self-absorption.) Figure 20 shows the orientation of the magnetic field of the quasar
3C 47, as obtained from polarization measurements.

Fanaroff–Riley Luminosity Classes

In 1974, B. L. Fanaroff and J. M. Riley suggested that the radio-loud AGNs in the third
Cambridge catalog could be categorized into two general luminosity classes. Fanaroff and
Riley defined Class I objects as those for which the ratio of the distance between the brightest
spots of radio emission on either side of the center (excluding the central source) to the full
extent of the radio source is less than 0.5; Class II objects have a ratio greater than 0.5. An
example of an FR I galaxy is NGC 1265, shown in Fig. 9, and Cyg A is a classic example
of an FR II galaxy (Fig. 6). Quasars are also FR II objects.

From the classification scheme, it becomes apparent that FR I sources have diminishing
radio luminosity with increasing distance from the center of the jets, while FR IIs tend to
be most radio-bright at the ends of the lobes. It is also common that FR I galaxies have
two recognizable radio jets, while FR II galaxies often exhibit only a single identifiable jet
(the counterjet is either very weak or undetectable). Furthermore, FR I galaxies may have
curved jets, while FR II jets tend to be straight.

Also intriguing, and the reason why this morphological classification scheme is referred
to as a luminosity classification, is that there is also a rather clear demarcation between FR I
and FR II classes in terms of the specific luminosity. Sources having a specific luminosity
at 1.4 GHz of less than 1025 W Hz−1 are identified as FR Is, and those with greater specific
luminosities are inevitably classified as FR IIs.

Blazars

The properties of rapid variability and a high degree of linear polarization at visible wave-
lengths define the class of AGNs known as blazars. The most well-known object in this
class is BL Lacertae, found in the northern constellation of Lacerta (the Lizard). BL Lac
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FIGURE 20 Polarization mapping of the magnetic field of the quasar 3C 47. Both lobes are
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was originally classified as a variable star because of its irregular variations in brightness;
hence the variable star type of designation. In a week’s time BL Lac would double its lu-
minosity, and it would change by a factor of 15 as the months passed. But although BL Lac
has a stellar appearance, its spectrum shows only a featureless continuum with very weak
emission and absorption lines. Careful observations reveal that the bright, starlike nucleus
of BL Lac is surrounded by a fuzzy halo that has a spectrum similar to that of an elliptical
galaxy.

BL Lac objects are a subclass of blazars that are characterized by their rapid time-
variability. Remarkably, their luminosities may change by up to 30% in just 24 hours and
by a factor of 100 over a longer time period. BL Lacs are also distinguished by their
strongly polarized power-law continua (30–40% linear polarization) that are nearly devoid
of emission lines. However, observations of a few faint spectral lines have revealed high
redshifts, so that, like quasars, BL Lacs are at cosmological distances. Of those BL Lacs that
have been resolved, about 90% appear to reside in elliptical galaxies. Joining the BL Lac
objects in the blazar classification are the optically violently variable quasars (OVVs).
They are similar to the BL Lacs except that they are typically much more luminous, and
their spectra may display broad emission lines.

LINERs

A final class of objects worth mentioning consists of the so-called Low Ionization Nuclear
Emission-line Regions (LINERs). These galaxies have very low luminosities in their nuclei,
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but with fairly strong emission lines of low-ionization species, such as the forbidden lines
of [O I] and [N II]. The spectra of LINERs seem similar to the low-luminosity end of
the Seyfert 2 class, and LINER signatures are detected in many (perhaps a majority of)
spiral galaxies in high-sensitivity studies. These low-ionization lines are also detectable in
starburst galaxies and in H II regions, and so it is unclear whether LINERs truly represent
a low-luminosity limit of the AGN phenomena.

A Summary of AGN Classifications

This section has introduced a large number of objects with some commonalities and some
apparent differences. Before proceeding to a discussion of how we might unify the descrip-
tion of AGN phenomena, we briefly summarize the objects in Table 1.

TABLE 1 A Summary of AGN Classes.

Class Sub-class Description
Seyferts Type 1 broad and narrow emission lines, weak radio

emission, X-ray emission, spiral galaxies, variable

Type 2 narrow emission lines only, weak radio emission,
weak X-ray emission, spiral galaxies, not variable

Quasars Radio-loud broad and narrow emission lines, strong radio
(QSR) emission, some polarization, FR II, variable

Radio-quiet broad and narrow emission lines, weak radio
(QSO) emission, weak polarization, variable

Radio BLRG broad and narrow emission lines, strong radio
Galaxies emission, FR II, weak polarization, elliptical

galaxies, variable

NLRG narrow emission lines only, strong radio emission,
FR I and FR II, no polarization, elliptical galaxies,
not variable

Blazars BL Lacs almost devoid of emission lines, strong radio
emission, strong polarization, rapid variability,
90% in ellipticals

OVV quasars broad and narrow emission lines, strong radio
emission, strong polarization, rapid variability,
much more luminous than BL Lacs

ULIRGs possibly dust-enshrouded quasars, alternatively
may be starburst phenomena

LINERs similar to low-luminosity Seyfert 2, low-ionization
emission lines, in many (perhaps majority of)
spiral galaxies, alternatively may be starburst
phenomena or H II region emission
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2 A UNIFIED MODEL OF ACTIVE GALACTIC NUCLEI

The last section presented a bewildering array of observations of AGNs. Although there
were many similarities, such as a bright compact nucleus, a wide continuum, and time
variability, there were also many differences, including the presence or absence of broad
emission lines, and the strength of radio and X-ray emission. The question is: Are the types
of AGNs fundamentally different or fundamentally the same?

It now seems likely that active galactic nuclei are all powered by the same general
engine, accretion onto central supermassive black holes. Accordingly, the observational
differences are due to the different orientations of the objects as viewed from Earth and to
the different rates of accretion and masses of the central black holes. The presence of radio
lobes is then something in addition to, and consistent with, the basic model.

Although there is not yet general agreement on some of the specific details of a unified
model of AGNs, the model does serve to provide a framework for organizing the observa-
tions of AGNs and their interpretations. Any model should be self-consistent, meaning that
its constitutive elements are all in harmony. Also, as with all viable theories and models
in science, a successful AGN model should have the power to predict the results of new
observational tests, in addition to explaining all of the observations made previously. Suc-
cessful predictions have been made on the basis of the idea of unification, and it appears
that the basic features of a unified model of AGNs are in hand. The purpose of this section
is to demonstrate how the features of such a model may be deduced and to describe the best
idea of what an AGN probably looks like.

Toward a Unified Model of AGNs

First, we will examine two pieces of evidence suggesting that the pursuit of a unified model
is indeed justified. Figure 21 shows LHα , the luminosity in the Hα emission line, and
LFC, the luminosity of the featureless continuum at a wavelength near 480 nm, plotted for
a variety of AGNs (excluding blazars). If the hydrogen emission lines are produced via the
photoionization of hydrogen atoms by the continuum radiation and the atoms’ subsequent
recombination, then the two luminosities should be proportional, and a straight line with a
slope of 1 should be found on a log–log graph.The slope of the dashed line is 1.05, confirming
that LHα ∝ LFC. This result implies a common origin for the hydrogen emission lines, both
broad and narrow, that are observed in AGNs for Seyfert 1 and 2 galaxies, broad- and
narrow-line radio galaxies, and radio-loud and radio-quiet quasars.

Another piece of evidence for a unified model comes from an observation reported by
RobertAntonucci and Joseph Miller in 1985. When they observed NGC 1068 (a Seyfert 2) in
polarized light, they found a Seyfert 1 spectrum with broad emission lines. This and similar
cases discovered since then imply that within these Seyfert 2s are Seyfert 1 nuclei that
are hidden from the direct view of Earth by some optically thick material. The diminished
Seyfert 1 spectrum (normally overwhelmed by the direct Seyfert 2 spectrum) comes from
light that reaches us indirectly by reflection from the interstellar medium outside the nucleus.
This reflection would also contribute to the observed linear polarization, when the electric
field vector is perpendicular to the radio axis. The orientation of the AGN relative to the
line of sight from Earth will be an important factor in the unified model to be described.
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FIGUR 21 The luminosity in the Hα emission line versus the luminosity of the featureless
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Seyfert 2s and NLRGs (filled squares). (Figure adapted from Shuder, Ap. J., 244, 12, 1981.)
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FIGURE 22 The brightening of a sphere as seen by a distant observer at point O.

The Nature of the Central Engine

The most important clue to the nature of the central engine that powers AGNs is their rapid
time variability. Consider an optically thick sphere of radius R that simultaneously (in its
own rest frame) brightens everywhere; see Fig. 22. The news of the change reaches a
distant observer first from the nearest part of the sphere after traveling a distance ℓ1, and
last from the edge or limb after traveling a distance ℓ2. (The back of the sphere isn’t seen.)
Using

ℓ2 = ℓ1 + R

cos θ
≃ ℓ1 + R
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for R ≪ ℓ1 and cos θ ≃ 1, the light from the limb of the sphere must travel an additional
distance of ℓ2 − ℓ1 ≃ R. The brightening is thus smeared out over a time interval#t = R/c.
In this way, the rapidity of a luminosity change can be used to set an upper limit on the
size of the object involved. The high recessional speeds of quasars mean that relativity also
plays a role. It is left as an exercise to show that if the sphere described above were moving
away from Earth with a velocity v, then its radius as determined on Earth would be

R = c#t

√

1 − v2

c2
= c#t

γ
, (4)

where γ is the Lorentz factor. Using #t = 1 hr for a typical value, and taking γ = 1 for
convenience, the radius of the emitting region is no more than

R ≃ c#t

γ
= 1.1 × 1012 m = 7.2 AU.

Considering that AGNs are the most luminous objects known, this is an incredibly small
size. Whatever powers an active galactic nucleus would fit comfortably within our Solar
System!

The typical quasar luminosity of 5 × 1039 W is equivalent to more than 360 Milky Way
galaxies. However, there is an upper limit to the luminosity, L, of any spherically symmetric
object that is in equilibrium. It must be less than the Eddington limit, L < LEd, where,

LEd ≃ 1.5 × 1031 W
(

M

M⊙

)

.

For a luminosity of L = 5 × 1039 W, this provides a lower limit for the mass:

M >
L

1.5 × 1031 W
M⊙ = 3.3 × 108 M⊙. (5)

Finding such a large amount of mass in such a small space is clear evidence for a
supermassive black hole. he mass of a black hole with the radius R found in Eq. (4) is

M = Rc2

2G
= 3.7 × 108 M⊙.

The fact that these two mass estimates are of the same order of magnitude is enough to
support the idea that supermassive black holes are involved in powering AGNs. For the rest
of this section, we will assume a value of 108 M⊙ for a typical mass, which corresponds to
a Schwarzschild radius of RS ≃ 3 × 1011 m ≃ 2 AU ≃ 10−5 pc.

Generating Luminosity through Accretion

The most efficient way of generating energy is by the release of gravitational
potential energy through mass accretion. or matter falling onto the surface
of a 1.4 M⊙ neutron star, about 21% of the rest energy is released. However,
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dropping matter straight down onto a black hole is very inefficient because there is no
surface for the mass to strike. Instead, according to an observer at a great distance, a freely
falling mass would slow to a halt and then disappear as it approached the Schwarzschild
radius, RS . On the other hand, as matter spirals in toward a black hole through an accretion
disk, a substantial fraction of the rest energy can be released as viscosity converts kinetic
energy into heat and radiation.

For a nonrotating black hole, the smallest stable circular orbit for a massive particle (and
therefore the inner edge of an accretion disk) is at r = 3RS . At this location, theoretical
calculations show that the gravitational binding energy is 5.72% of the particle’s rest-
mass energy, so mass spiraling down through an accretion disk would release this much
energy. The situation is even more favorable for a rotating black hole because the event
horizon is located at a smaller r . For the most rapidly rotating black hole possible, both the
event horizon and the smallest stable prograde orbit are at r = 0.5RS (the smallest stable
retrograde orbit is at 4.5RS). The gravitational binding energy in this case of maximal
rotation is calculated to be 42.3% of a particle’s rest mass.

The accretion luminosity generated by a mass accretion rate, Ṁ , through the disk may
be written as

Ldisk = ηṀc2, (6)

where η is the efficiency of the process, 0.0572 ≤ η ≤ 0.423. (For comparison, he
efficiencies for accretion onto a 0.85 M⊙ white dwarf and a 1.4 M⊙ neutron star are
η = 1.9 × 10−4 and 0.21, respectively.)

The accretion of matter through a disk around a rapidly rotating black hole is an ex-
tremely efficient way of producing large amounts of energy. Furthermore, the smallest
stable prograde orbit lies inside the ergosphere of a rapidly rotating black hole, and frame
dragging guarantees that the accreting matter will rotate along with the black hole

For these reasons, most astronomers believe that an accretion disk around a
supermassive black hole is an essential ingredient of a unified model of AGNs. Figure 10
shows the spiral-shaped disk of gas that lies at the center of M87. The inner edge of the disk
is rotating with a speed of about 550 km s−1, causing the light from the lower right-hand
edge of the disk to be blueshifted (approaching), while the light from the upper-right is
redshifted (receding). The central supermassive black hole is calculated to have a mass of
about 3 × 109 M⊙.

he inner regions of accretion disks around white dwarfs and neutron stars
are bright at ultraviolet and X-ray wavelengths, respectively. It might be expected that
an accretion disk around a supermassive black hole would be a source of photons of
even higher energies, but this is not the case. Because they are supported by degeneracy
pressure, white dwarfs and neutron stars obey the mass–volume relation, which states that
these stars become smaller with increasing mass. Therefore, the accretion disks around
more massive white dwarfs and neutron stars penetrate deeper into their gravitational
potential wells. The Schwarzschild radius, however, increases with increasing mass, and
so the characteristic disk temperature, Tdisk, decreases as the mass of the black hole
increases. ( he equation forTdisk was derived using Newtonian physics, but in this case a
full relativistic treatment is clearly warranted.)
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To see this, we will assume a rapidly rotating black hole and adopt R = 0.5RS = GM/c2

for the location of the inner edge of the accretion disk. he characteristic disk temperature
becomes

Tdisk =
(

3c6Ṁ

8πσG2M2

)1/4

. (7)

For a disk radiating at a fraction fEd of the Eddington limit,

fEd ≡ Ldisk/LEd. (8)

Equation (6) give

ηṀc2 = fEd
4πGc

κ
M,

or

Ṁ = fEd

η

4πG

κc
M. (9)

Substituting this expression into Eq. (7) shows that

Tdisk =
(

3c5fEd

2κσGMη

)1/4

, (10)

and so for the disk temperature, Tdisk ∝ M−1/4.

Example 2.1. Consider an accretion disk around a rapidly rotating supermassive black
hole of 108 M⊙. The value of fEd is probably close to 1 for luminous quasars and roughly
between 0.01 and 0.1 for Seyfert galaxies. In this example, let the disk luminosity be equal
to the Eddington limit (fEd = 1), L = 1.5 × 1039 W. Also, we will adopt η = 0.1 as
a representative accretion efficiency. The mass accretion rate required to maintain the disk
luminosity is

Ṁ = fEd

η

4πG

κc
M = 1.64 × 1023 kg s−1 = 2.60 M⊙ yr−1.

Luminous quasars must be fed at a rate of around 1 to 10 M⊙ yr−1. Less luminous AGNs
may have correspondingly smaller appetites. The characteristic disk temperature is

Tdisk =
(

3c5fEd

2κσGMη

)1/4

= 7.30 × 105 K,

here X = 0.7 has been used for the opacity due to electron scattering. According to
Wien’s displacement law, the spectrum of a blackbody with this temperature peaks at a
wavelength of 39.7 nm, in the extreme ultraviolet region of the electromagnetic
spectrum.

Although this expression for Tdisk is at best a rough estimate of the characteristic disk
temperature, temperatures of several hundred thousand kelvins agree with the results of
more realistic disk calculations.
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It is thought that the big blue bump observed in the spectra of quasars is the thermal
signature of an underlying accretion disk. However, although accretion is believed to provide
the power for AGNs, the theoretical spectrum of an accretion disk cannot account for the
wide continuum that is actually observed.

Structure of the Accretion Disk

A detailed model of the accretion disk around a supermassive black hole is difficult to
derive because the high luminosities involved must have a significant effect on the disk’s
structure. Theoretical calculations indicate that the structure of the accretion disk depends
on fEd (Eq. 8). Several possible structures have been identified. If fEd < 0.01, then the
density of the disk is too small for efficient cooling. The energy generated by the disk’s
viscosity (internal friction) cannot be radiated away efficiently, and the disk puffs up into
an ion torus that is supported by the pressure of the hot ions. Part or all of the disk would
then resemble a doughnut around the central black hole. Values of 0.01 < fEd < 0.1 or so
imply a geometrically thin disk for close binary systems by definition, at any radial
distance r in a thin disk, the vertical height h ≪ r). As the value of Ldisk becomes
super-Eddington (fEd > 1), the radiation pressure that is generated balances the
force of gravity and the photons are capable of supporting the matter in an inflated
radiation torus.

One scenario involves a composite disk that has three regions, as shown in Fig. 23.
Within about 1000RS of the center, radiation pressure exceeds the gas pressure, resulting
in a thick, hot disk. This is the probable origin of the big blue bump in the continuous
spectrum. Exterior to this, reaching out to some 105RS (≃ 1 pc for M = 108 M⊙), is a thin
disk that is supported by gas pressure. This part of the disk flares outward, becoming thicker
with increasing radius. The concave surface of the outer disk means that it can be irradiated
by the central source or the thick, hot portion of the inner disk, resulting in a wind flowing

Hot disk

Jet

Black hole

Radiation from inner disk

~ 103RS

~ 105RS

FIGURE 23 A schematic structure of the accretion disk in an AGN. The radial direction is not
drawn to scale.
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outward from the disk. Finally, beyond about 105RS , the thick disk breaks up into numerous
small clouds.

Unfortunately, some problems with this picture remain. For example, the values of fEd

quoted above for Seyferts appear to be incompatible with models of thick disks.

The Implications of AGN Spectra

For the blazars, at least, there is widespread agreement that the continuous spectrum, with
its power-law form and significant polarization, is produced by synchrotron radiation.

or pulsars, synchrotron radiation is produced when relativistic charged
particles, such as electrons, spiral around magnetic field lines. (For objects other
than blazars, the situation is more complicated. he big blue bump observed in
the continua of other types of AGNs is believed to be thermal radiation. In addition, dust
emission plays an important role in the infrared.)

With a wide range of photon energies available for ionizing atoms, synchrotron radiation
can account for the variety of ionization states observed in the emission line spectra ofAGNs.
For example, a number of ionization states have been seen for forbidden lines, including
[O I] and [Fe X]. Furthermore, synchrotron radiation can be up to 70% linearly polarized,
in agreement with the high degrees of polarization observed for some AGNs.

Producing a Relativistic Outflow of Charged Particles

It might seem surprising to find a magnetic field involved in this situation. Although it
is theoretically possible for an isolated black hole to have a magnetic field, it is unlikely
to occur naturally. This is because although the three attributes of a black hole (its mass,
angular momentum, and electric charge) can be combined to produce a magnetic field, black
holes should be essentially electrically neutral, since any net charge acquired by a black
hole would be rapidly canceled as it attracted charge of the opposite sign. However, the
ionized disk material is highly conducting, so there can be a magnetic field that is generated
by the accretion disk as the disk orbits the black hole.

It may be that the varying magnetic field near the surface of the disk induces a large electric
field that is capable of accelerating charged particles away from the disk. As the particles move
outward, they are accelerated to relativistic speeds while they spiral around the magnetic
field lines that rotate with the disk. Because the field lines are anchored to the conducting
disk, the particle energy ultimately comes at the expense of the accretion energy.

There is another source of energy that taps the rotational energy of the black hole itself,
first described by Roger Blandford and Roman Znajek. Detailed calculations show that
the rotating black hole can be thought of as a spinning conductor in a magnetic field; see
Fig. 24. Just as the motion of a conducting wire through a magnetic field will produce
an electromotive force (emf) between its ends, the rotation of a black hole in a magnetic
field will produce a potential difference between its poles and its equator. The effective
resistance of the rotating black hole between its poles and equator is about 30 -. In this
picture, the black hole acts like an immense battery connected to a 30-- resistor. Power is
extracted from the black hole’s rotational energy, just as if a current of charged particles
were flowing through the resistor in response to the voltage difference. As a result, the black
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Disk Disk

FIGURE 24 An accretion disk and its magnetic field orbiting a rotating black hole.

hole’s rate of spin is reduced. The power generated by the Blandford–Znajek mechanism
is approximately

P ≃ 4π
µ0

B2R2
Sc (11)

= 2.7 × 1038 W = 7.1 × 1011 L⊙

for a 108 M⊙ black hole with RS = 3 × 1011 m and a magnetic field of 1 T. The energy
is in the form of electromagnetic radiation and a flow of relativistic pairs of electrons and
positrons. Up to 9.2% of the rest energy of a maximally rotating black hole may be extracted
in this manner. This is another important source of energy, comparable to that obtained by
disk accretion.

The two processes just described appear capable of producing a relativistic outflow
of charged particles, although the mechanism is still uncertain. As the electrons spiral
around the magnetic field lines, they emit the synchrotron radiation that contributes to
the continuous spectrum of AGNs. (You will recall from Section 1 that the observed
power-law synchrotron spectra of AGNs imply that the distribution of electron energies is
described by a power law. Just how this distribution comes about is as yet unknown, but
power-law synchrotron spectra are also observed for supernova remnants such as the Crab
Nebula.)

The Generation of X-Rays

AGNs can be very bright in X-rays,8 and several mechanisms are usually invoked to ex-
plain the excess over that produced directly by synchrotron radiation. The high-frequency
end of the accretion disk spectrum may be sufficient to account for the soft (low-energy)
X-rays. Lower-energy photons from other sources may also be scattered to much higher

8X-rays from AGNs are probably responsible for the X-ray background, a uniform glow of X-ray photons that per-
vades the sky. Discovered in 1962, the X-ray background extends into the gamma-ray region of the electromagnetic
spectrum.
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energies by collisions with relativistic electrons. As the name suggests, this inverse Comp-
ton scattering is the reverse of the Compton scattering process. In addition, inverse
Compton scattering may produce the gamma rays coming from the quasar 3C 273.
Thermal bremsstrahlung, the mechanism that produces the X-ray emission observed
in clusters of galaxies, has a characteristic spectrum that could also be consistent with
observations of X-rays from AGNs.

Broad-Line and Narrow-Line Emission

The characteristic broad emission lines (when present) and narrow emission lines of AGNs
are the result of photoionization by the continuum radiation. A careful examination of these
lines reveals much about the conditions under which they were formed.All of the broad lines
arise from permitted atomic transitions, but none of them involve the forbidden transitions
seen in some narrow lines. The broad Hα and Hβ lines vary on timescales of a month
or less, while the narrow lines seem to vary little, if at all. This evidence, along with the
discovery that Seyfert 2 galaxies may harbor Seyfert 1 nuclei that are hidden from direct
view by some obscuring material, indicates that the broad and narrow lines in the spectra
of AGNs originate in different regions under different conditions.

The Broad-Line Region

The broad emission lines observed in the spectrum of manyAGNs are formed in a broad-line
region that is relatively close to the center.Astudy of the Seyfert galaxy NGC 4151 revealed
that when the intensity of the continuum radiation varied, most of the broad emission lines
responded very quickly, within a month or less and perhaps as quickly as one week. Light
can travel a distance of nearly 1015 m in 30 days, so this provides a rough estimate of
the radius of the broad-line regions for Seyferts and BLRGs. The variation of the lines in
quasars takes place more slowly, so their broad-line regions may be larger by a factor of
four or so. A study of the broad Fe II emission lines that are usually present indicates that
the temperature in the broad-line region is ∼ 104 K. Other lines indicate that the number
density of electrons probably lies between 1015 m−3 and 1016 m−3. Forbidden lines will not
be seen with large number densities such as these because of the frequent collisions between
the atoms. Atoms and ions with electrons in the long-lived metastable states that give rise
to forbidden lines are deexcited by collisions before downward radiative transitions can
occur. As a result, the forbidden lines are much weaker than the permitted lines.

There is widespread agreement that the broad-line region must be clumpy, containing
partially ionized clouds of gas, rather than being homogenous. The optically thick clouds
that actually produce the emission lines fill only about 1% of the available volume and
probably have a flattened distribution. These regions of high density may be surrounded by
a rarefied, high-temperature medium that prevents the clouds from dispersing.

According to the unified model, the various types of observed AGN phenomena (see
Table 1) derive from different viewing angles of the central engine and surrounding
environment. The unified model postulates that a large, optically thick torus of gas and dust
surrounds the clouds of the broad-line region. This is presumably what conceals the broad-
line region and the central source from direct view when observing a Seyfert 2 galaxy; see
Fig. 25. In this case, the continuum and emission lines must reach the observer indirectly
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FIGUR 25 A sketch of a unified model of an active galactic nucleus. The jets would be present
in a radio-loud AGN. A typical observer’s point of view is indicated for AGNs of various types.

by reflected light, which explains why the continuum of Seyfert 2s is much fainter than the
continuum of Seyfert 1s. Overall, the light received directly from the central nucleus makes
Seyfert 1 galaxies generally brighter than Seyfert 2s. The torus is also thought to be opaque
to soft X-rays because the X-rays observed for Seyfert 2s are hard (with energies above
approximately 5 keV).

Determining Black Hole Masses in Broad-Line Regions

The broad emission lines also indicate that the clouds orbit the central supermassive black
hole. In fact, taking the 5000 km s−1 width of the lines to be an orbital velocity and using
r = 1015 m as an orbital radius provides an estimate of the central mass.

Mbh = rv2

G
= 1.9 × 108 M⊙,

which is consistent with previous mass estimates.
A second technique for determining the masses of the central black holes of AGNs in

broad-line regions is based on measuring the lag time between changes in brightness of
the continuum and emission lines. This reverberation mapping technique combines the
measured time delay, τ , with the root-mean-square width of the emission line, σline, giving
a mass estimate of

Mbh = f cτσ 2
line

G
, (12)

where c is the speed of light and f is a factor that depends on the structure, kinematics, and
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FIGURE 26 The masses of the supermassive black holes in AGNs as a function of their lumi-
nosities. The solid diagonal lines represent lines of constant fractions of the Eddington luminosity.
The masses were determined by the reverberation mapping technique. The bolometric luminosities
are given on the top axis, and the optical luminosities (centered at 510 nm) are given on the bottom
axis. (Figure courtesy of Bradley Peterson.)

orientation of the broad-line region. Clearly cτ is a measure of the size of the broad-line
region. Of course it is important to be consistent in terms of which ionized species are
used in making the measurement (in other words, which emission line is used in the study)
because highly ionized species tend to have the shortest lag times, suggesting that the level
of ionization in the broad-line region is dependent on distance from the central source.

By comparison with other black hole–spheroid relations, such as the mass–velocity
dispersion relation for a sample of resolved galactic centers, the scaling factor
in Eq. ( 12) is found to have the value f ≈ 5.5. The reverberation mapping method
requires long-term observations to determine the lag times, and high spectral resolution,
but it does not require spatially resolving the central region of the host galaxy. Thus, the
reverberation technique holds great promise for measuring black hole masses in AGNs that
are at high z. Figure 26 shows the results of a study of AGN broad-line emission regions.

The Narrow-Line Region

Outside the opaque torus is the narrow-line region where the narrow emission lines orig-
inate. The number density of electrons in the narrow-line region is only about 1010 m−3,
comparable to the values found in planetary nebulae and dense H II regions. The narrow-line
region contains more mass than the broad-line region, and both permitted and forbidden
lines can be formed in such an environment. They reveal a temperature of approximately
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104 K. Like the broad-line region, the region that generates the narrow-line spectrum is
clumpy. It is probably composed of a more or less spherical distribution of clouds. The
clouds that are far enough above or below the plane of the obscuring torus can be illumi-
nated and photoionized by the continuum radiation from the center. Other clouds have their
lines of sight to the central source blocked by the opaque torus, and so they remain neutral.

In fact, if the narrow-line region can be treated as a clumpy H II region, then
the Strömgren radius can be used to estimate the fraction of the narrow-line region that
is occupied by clouds. If the clouds occupy a fraction ϵ (referred to as the filling factor)
of the volume of the narrow-line region, can be modified to produce an estimate of
the radius of that region,

rNLR ≈
(

3N

4παqmϵ

)1/3 1

n
2/3
e

. (13)

In this case N is the number of photons per second produced by the central source of
the AGN that have enough energy to ionize hydrogen from the ground state, and αqm

is a quantum-mechanical recombination coefficient (not the spectral index)

Example 2.2. To estimate the filling factor of the narrow-line region, we will assume
an AGN luminosity of L = 5 × 1039 W. The continuum includes photons with a wide range
of energies. We will assume that the monochromatic energy flux (Eq. 1) obeys a power
law with a spectral index of α = 1. Recalling Example 1.1, the flux is related to the
luminosity by

L = 4πd2
∫ ν2

ν1

Fν dν =
∫ ν2

ν1

Cν−1 dν

with ν1 = 1010 Hz and ν2 = 1025 Hz for the range of frequencies of the continuous spectrum
(cf., Fig. 14), and C is a constant to be determined.9 Evaluating the integral and solving
for C gives

C = L

ln(ν2/ν1)
= L

ln 1015
= 0.029L.

We are now ready to find N , the number of photons emitted per second with an energy
EH > 13.6 eV, or a frequency νH > 3.29 × 1015 Hz, required to ionize hydrogen from the
ground state. Dividing the monochromatic energy flux by the energy per photon, Ephoton =
hν, results in

N =
∫ ν2

νH

Cν−1

hν
dν =

∫ ν2

νH

0.029L

hν2
dν ≃ 0.029L

hνH

= 6.64 × 1055 s−1,

where ν2 ≫ νH .
continued

9The constant C includes the leading factor of 4πd2.
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Observations of the nearest Seyfert 2 galaxies show narrow-line regions with diameters
between roughly 100 and 1000 pc. If we let rNLR = 200 pc, ne = 1010 m−3, andαqm = 3.1 ×
10−19 m3 s−1, the filling factor of the narrow-line region is approximately

ϵ ≈ 3N

4παqm

1
n2

er
3
NLR

= 2.2 × 10−2.

Thus clouds occupy roughly 2% of the volume of the narrow-line region.

The profiles of the narrow emission lines seen in Seyfert 2s often have extended blue
wings, indicating that the clouds are moving toward us relative to the galactic nucleus. This
is usually interpreted as a radial flow of the clouds away from the center. The light from
the clouds moving away from us on the far side of the AGN is presumably diminished by
extinction.

An outward flow of clouds in the region that produces narrow emission lines could be
driven by a combination of radiation pressure and a wind coming from the accretion disk,
as mentioned previously, or the outflow could be associated with the material in radio jets.
Figure 27 shows an image obtained by the Hubble Space Telescope of the narrow-line

FIGURE 27 An HST image of the narrow-line region of the Seyfert 1 galaxy, NGC 4151.
Numerous clouds are evident in a biconical distribution. The clouds to the southwest are approaching
the observer relative to the nucleus, and the clouds to the northeast have recessional velocities. There
is some evidence that the clouds may be associated with the galaxy’s radio jets. An angular scale of 1′′

is indicated on the image; at the distance to NGC 4151, 1′′ corresponds to a projected linear distance
of 63 pc. The labels correspond to clouds identified in the paper. (Figure from Kaiser et al., Ap. J.,
528, 260, 2000.)
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region for the Seyfert 1 galaxy, NGC 4151. Distinct emission clouds are clearly evident
in this high-resolution image. It is also evident that the optical emission falls within two
conical distributions extending to the northeast and the southwest of the center of the galaxy.
When a radio map is overlaid on the image, the radio emission also falls along the same
axis as the biconical optical emission.

Similar observations have been made of Mrk 3, a Seyfert 2 galaxy. In this case there is
additional evidence that the narrow-line region is composed of expanding shells around the
radio jets. It has been suggested that the material forming the radio jets is expanding at near
0.1c from the center of the galaxy. As the jets move through the interstellar material, the gas
is ionized at a temperature of ∼ 107 K. The overheated gas expands outward away from
the jets, energizing the gas near the surface of the expanding shell, which then produces the
narrow-line emission region.

A further consequence of the expanding jet model of producing the narrow-line region
is that the region may be relatively short-lived, at least in the case of the relatively weak
Seyfert systems. Since the radio jets of Seyfert galaxies are typically only a few kiloparsecs
in length, this implies that ages of roughly 104 to 105 years can be deduced based on the
expansion velocity of the jets. If that is the case, Seyfert phenomena may be relatively
transient events, perhaps caused by the temporary feeding of the galaxy’s supermassive
black hole.

A Summary of the Unified Model of AGNs

The preceding details comprise what must be considered as a rough sketch of a unified
model of an AGN. Its central engine is an accretion disk orbiting a rotating, supermassive
black hole. The AGN is powered by the conversion of gravitational potential energy into
synchrotron radiation, although the rotational kinetic energy of the black hole may also serve
as an important energy source. The structure of the accretion disk depends on the ratio of
the accretion luminosity to the Eddington limit. To supply the observed luminosities, the
most energetic AGNs must accrete between about 1 and 10 M⊙ yr−1. The perspective of
the observer, together with the mass accretion rate and mass of the black hole, largely
determines whether the AGN is called a Seyfert 1, a Seyfert 2, a BLRG, a NLRG, or a
radio-loud or radio-quiet quasar.

Although many of the details of the unified model have not yet been fully confirmed,
the unified model does appear to provide an important framework for describing many of
the general characteristics of active galaxies. For example, Fig. 28 shows an amazing
HST image of NGC 4261, an elliptical radio galaxy in the Virgo cluster that is classified
optically as a LINER. The core of this radio-loud object shows a bright nucleus surrounded
by a large, obscuring torus that is perpendicular to the radio jets. The central object is
probably a 107 M⊙ black hole, although the HST image does not have the resolution to
confirm this. The torus has a radius of about 70 pc (2 × 1018 m), and the jets reach out some
15 kpc from the nucleus.10

10The Schwarzschild radius of a 107 M⊙ black hole is 2.95 × 1010 m, smaller than the torus by nearly eight orders
of magnitude. The black hole would be less than a nanometer wide on the scale of Fig. 28.
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FIGURE 28 Two views of NGC 4261. Left: a composite optical and radio image from the
ground, showing the radio jets. Right: an optical image from the HST, showing the dusty torus around
the nucleus. (Courtesy of NASA.)

3 RADIO LOBES AND JETS

There is a basic division of active galaxies into objects that are radio-loud and those that
are radio-quiet. Radio-loud sources usually consist of a radio core, one or two detectable
jets, and two dominant radio lobes. The radio-quiet sources are less luminous at radio
wavelengths by a factor of 103 to 104, consisting of a weak radio core and perhaps a feeble
jet. The increased level of activity in radio-loud AGNs is not confined to radio wavelengths,
however; they also tend to be about three times brighter in X-rays than their radio-quiet
cousins.

The Generation of Jets

The radio lobes are produced by jets of charged particles ejected from the central nucleus
of the AGN at relativistic speeds; recall Fig. 8. These particles are accelerated away
from the nucleus in two opposite directions, powered by the energy of accretion and/or by
the extraction of rotational kinetic energy from the black hole via the Blandford–Znajek
mechanism. The jet must be electrically neutral overall, but it is not clear whether the ejected
material consists of electrons and ions or an electron–positron plasma. The latter, being less
massive, would be more easily accelerated. The disk’s magnetic field is coupled (“frozen
in”) to this flow of charged particles. The resulting magnetic torques may remove angular
momentum from the disk, which would allow the accreting material to move inward through
the disk.

The incredible narrowness and straightness of some jets means that a collimating pro-
cess must be at work very near the central engine powering the jet. A thick, hot accretion
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FIGURE 29 Aschematic showing the collimation of outflowing material by a thick, hot accretion
disk. The loops represent contours of constant disk density.

disk around the black hole could provide natural collimation by funneling the outflowing
particles, as shown in Fig. 29. Because the accreting material retains some angular mo-
mentum as it spirals inward through the disk, it will tend to pile up at the smallest orbit that
is compatible with its angular momentum. Inside this “centrifugal barrier” there may be a
relatively empty cavity that can act as a nozzle, directing the accreting gases outward along
the walls of the cavity. However, producing highly relativistic jets, as frequently observed,
appear to be difficult to accomplish with this nozzle mechanism.

Alternatively, magnetohydrodynamic (MHD) effects could play an important role in ac-
celerating and collimating the relativistic flows. Unfortunately, details of MHD mechanisms
have not yet been fully developed either. Whatever the specific details of the collimation of
jets, their straightness is likely to be linked to the rotating supermassive black holes at the
hearts of AGNs.

The Formation of Radio Lobes

As a jet of material travels outward, its energy primarily resides in the kinetic energy of
the particles. However, the jet encounters resistance as it penetrates the interstellar medium
within the host galaxy and the intergalactic medium beyond. As a result, the material at the
head of the jet is slowed, and a shock front forms there. The accumulation and deceleration
of particles at the shock front cause the directed energy of the jet to become disordered as the
particles “splash back” to form a large lobe in which the energy may be shared equally by
the kinetic and magnetic energy. The problem of calculating the motion of a jet through the
intergalactic medium is so complicated that extensive numerical simulations are required to
model the process. Figure 30 shows a series of computer simulations of jets with various
initial energies working their way through the intergalactic medium.

The motion of the charged particles and the magnetic fields within the lobes of radio-
loud objects contain an enormous amount of energy. For Cygnus A, the energy of each
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FIGURE 30 Numerical simulation of electron–positron plasma jets moving through the inter-
galactic medium, which is assumed to be decreasing in density with increasing distance from the
source of the jets (left-hand side of each frame). The frames correspond to initial Lorentz factors (γ )
at the source of the jets of (a) 2.0, (b) 2.5, (c) 5.0, (d) 7.0, and (e) 10.0. Somewhat different behaviors
are seen in the simulations when the jet material is assumed to be composed of electrons and protons.
(Figure from Carvalho and O’Dea, Ap. J. Suppl., 141, 371, 2002.)

lobe is estimated to be approximately 1053 to 1054 J, equivalent to the energy liberated by
107 supernovae.

Example 3.1. Assuming that each radio lobe of Cyg A contains an energy of Elobe =
1053 J, and adopting h = [h]WMAP = 0.71 for the values given in Example 1.1 for CygA,
the lifetime of the radio lobes can be estimated. With Cyg A’s radio luminosity of Lradio =
4.8 × 1037 W, the time to radiate away the energy stored in its radio lobes is

tlobe = Elobe

Lradio
= 66 Myr.

Generally, the lifetime of the radio emission from radio lobes ranges from 107 to more than
108 years.

The average strength of the magnetic field in the lobes can be estimated by making the
common assumption that the energy is shared equally between the kinetic and magnetic
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energy. he magnetic energy stored per unit volume is um = B2/2µ0. If the volume of
the lobe is Vlobe, then

1
2
Elobe = umVlobe = B2Vlobe

2µ0

or

B =
√

µ0Elobe

Vlobe
. (14)

Example 3.2. Assume that each of Cyg A’s radio lobes can be modeled as a sphere
of radius R = 8.5 kpc = 2.6 × 1020 m, characteristic of the size of the lobes. With Elobe =
1053 J, the average value of the magnetic field in the lobes is estimated to be

B =
√

µ0Elobe
4
3πR3

lobe

≈ 41 nT.

A value of order 10 nT is typical of the bright emission regions (“hot spots” that are a few
kpc across) found in radio lobes. In diffuse radio lobes, the value may be more than an order
of magnitude smaller, while the field strength in the radio core is probably around 100 nT.

Accelerating the Charged Particles in the Jets

The observations of jets are made possible by inefficiencies in the transport of particles and
energy out to the radio lobes. The spectra of the radio lobes and jets follow a power law,
with a typical spectral index of α ≃ 0.65. The presence of power-law spectra and a high
degree of linear polarization strongly suggest that the energy emitted by the lobes and jets
comes from synchrotron radiation.

The loss of energy by synchrotron radiation is unavoidable, and in fact the relativistic
electrons in jets will radiate away their energy after just 10,000 years or so. This implies
that there is not nearly enough time for particles to travel out to the larger radio lobes; for
example, for the large radio galaxy 3C 236, the journey would take several million years,
even at the speed of light. This long travel time and the long lifetime of radio lobes imply
that there must be some mechanism for accelerating particles in the jets and radio lobes. As
one possibility, shock waves may accelerate charged particles by magnetically squeezing
them, reflecting them back and forth inside the shock. Radiation pressure may also play a
role, but it alone is not enough to generate the necessary acceleration.

Superluminal Velocities

Although the standard model of jets and radio lobes requires a steady supply of charged
particles moving at relativistic speeds, evidence for such high velocities is difficult to obtain.
The absence of spectral lines in a power-law spectrum means that the relativistic velocity of
the jet material cannot be measured directly but must be inferred from indirect evidence. The
most compelling argument for relativistic speeds involves radio observations of material
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ejected from the cores of several AGNs with so-called superluminal velocities. This effect
is observed within about 100 pc of the AGN’s center and probably continues farther out.

Example 3.3. Figure 31 is a radio view of the core of the quasar 3C 273 that
shows a blob of radio emission moving away from the nucleus with an angular velocity
of µ = 0.0008′′ yr−1. Assuming that the radio knot is traveling in the plane of the sky,
perpendicular to the line of sight, and using a distance of d = 440h−1 Mpc for 3C 273, the
apparent transverse velocity of the blob away from the nucleus is,

vapp = dµ = 1.67 × 109h−1 m s−1 = 5.57h−1c.

If h = [h]WMAP, we find that vapp = 7.85c. This is clearly unphysical, and so the assumption
of motion perpendicular to the line of sight must be wrong.

Figure 32 shows how the motion of the knot toward the observer can resolve this
dilemma. Suppose a source is traveling with a velocity v (the actual speed of the source,
not its apparent speed) at an angle φ measured from the line of sight. A photon is emitted
along the line of sight at time t = 0 when the source is a distance d from Earth. At a later
time (te), another photon is emitted when the distance to Earth is d − vte cosφ. The first

3C 273 10.65 GHz

1977.56

1978.24

1978.92
1980.52

1979.44

1978.92

Beam 2 arc ms
E

N

FIGURE 31 The motion of a radio-emitting knot ejected from the core of the quasar 3C 273.
The dates of the observations are recorded as fractions of a year, and the third image has been repeated
for clarity. (Figure adapted from Pearson et al., Nature, 290, 365, 1981. Reprinted by permission from
Nature, Vol. 290, pp. 365–368. Copyright 1981 Macmillan Magazines Limited.)

Active Galaxies



Photon 2

To Earth

Photon 1

D
is

ta
nc

e 
d 

to
 E

ar
th

Position of knot at t = 0

(

vt
e 

co
s 

( Knot travels vte

Position of knot at t = te

FIGURE 32 Two photons emitted at t = 0 and t = te by a source moving with speed v.

photon reaches Earth at time t1, where

t1 = d

c
.

The second photon arrives at Earth at time

t2 = te + d − vte cosφ
c

.

The time on Earth between the reception of the two photons is thus

#t = t2 − t1 = te

(

1 − v

c
cosφ

)

,

a time that is shorter than te. The apparent transverse velocity measured on Earth is then

vapp = vte sin φ
#t

= v sin φ
1 − (v/c) cosφ

.

Solving this for v/c results in

v

c
= vapp/c

sin φ + (vapp/c) cosφ
. (15)

It is left as an exercise to show that v/c < 1 for angles satisfying

v2
app/c

2 − 1

v2
app/c

2 + 1
< cosφ < 1, (16)
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and that the smallest possible value of v/c for the source is

vmin

c
=
√

v2
app/c

2

1 + v2
app/c

2
, (17)

which occurs at an angle φmin given by

cot φmin = vapp

c
. (18)

This minimum value of v/c corresponds to a minimum Lorentz factor of the
source of

γmin = 1
√

1 − v2
min/c

2
≃
√

1 + v2
app/c

2 = 1
sin φmin

. (19)

Example 3.4. Referring to Example 3.3, since the actual speed of the radio knot
ejected by 3C 273 must be less than c, as required by special relativity, φ must be less than

φmin = cot−1
(vapp

c

)

= 7.26◦.

That is, the knot must be approaching Earth within 7.26◦ of the line of sight. From
Eq. ( 17), the lower limit of the knot’s speed isvmin = 0.992c. Therefore, from Eq. ( 19),
γmin = 7.92.

The minimum value of the Lorentz factor inferred for other superluminal sources ranges
betweenγmin = 4 and 12 forh = [h]WMAP. 3C 273 and similar examples provide compelling
evidence that the central cores of AGNs can accelerate material to relativistic speeds.

Relativistic Beaming and One-Sided Jets

The headlight effect will be involved whenever a source of light moves with
a relativistic speed (γ ≫ 1). All of the light emitted into the forward hemisphere
in the rest frame of the source is concentrated into a narrow cone in the observer’s rest
frame. The cone’s half-angle, θ , is given by sin θ = 1/γ . Comparing this with
Eq. ( 19) above shows that if the source is approaching Earth with a relativistic velocity
within the angle φmin of the line of sight, this relativistic beaming effect will cause it to
appear much brighter than expected and it will appear to be moving with a superluminal
speed across the plane of the sky. Interestingly, nearly all AGNs showing superluminal
motions are surrounded by large, dim halos that may be radio lobes seen end-on. Blazars
may be quasars or radio galaxies viewed with the jet coming directly (or nearly so) toward
the observer. Their very rapid time variability could then be exaggerated by the relativistic
Doppler shift. Any luminosity variations due to a source within the relativistic
jet would be observed to occur approximately 2γ times more rapidly by astronomers on
Earth.

Conversely, a relativistic source moving away from us will appear unusually dim (recall
Fig. 6). All of the jets showing superluminal motion are one-sided, even when the
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AGNs exhibit two radio lobes. It is expected that the central engines of AGNs produce
two oppositely directed jets; however, relativistic beaming seems to explain why the jets
appear to be only one-sided.

The Roles of Galactic Companions

The galactic companions of AGNs may play an important role in supplying them with the
fuel. Most Seyferts (at least 90%) are spiral galaxies, and many have close neighbors with
whom they may be interacting. Gravitational perturbations produce the distorted appear-
ance frequently seen in those Seyferts close enough to be studied, as evidenced by
the appearance of bars and/or outer rings. hese interactions could produce
gravitational torques on the gas in a Seyfert galaxy, drastically reducing its angular
momentum and sending the gas plunging into the galactic center. The result would be the
delivery of a fresh supply of fuel to the Seyfert nucleus to be accreted by the black hole.
The concentration of gas could also result in a burst of star formation around the nucleus.
Furthermore, if a merger with a galactic companion occurs, the subsequent disruption could
produce an elliptical galaxy with an active nucleus, resulting in a young radio galaxy.

Mergers are certainly important for quasars as well. Some low-redshift quasars show
evidence of past interactions (see Fig. 18), and mergers were undoubtedly more common
in the early universe than they are today. Since galaxies are believed to have contained more
gas when they were young, mergers may have resulted in the infall of large amounts of gas
that could have contributed to the growth of a central supermassive black hole as the gas
simultaneously fueled its activity. In addition, mergers probably resulted in the coalescing of
supermassive black holes, producing even larger central engines. As the masses of the black
holes grew, so did the number of quasars and their energy output, until the fuel powering
the engines was largely consumed.

AGN Evolution

What happens when a quasar runs out of fuel? In broad terms, the diminishing fuel supply of
an energetic object could lead to its transformation into a less luminous form. For example,
Cen A has huge radio lobes (see Fig. 11) but is a weak radio source. It was probably
much more luminous in the past but is now fading away. On the other hand, a lesser
luminosity could be explained by a less massive black hole rather than a smaller accretion
rate. Our Milky Way does not have a 108 M⊙ black hole at its center, although there is a
more modest one of 3.7 × 106 M⊙. If, as has been conjectured, every large galaxy
comparable to the Milky Way has a supermassive black hole of at least 10 6 M⊙,
then low-level galactic activity may be a common occurrence.

One large impediment to understanding the evolution of active galaxies is our current lack
of knowledge about their lifetimes. Some researchers find that around z = 2, the number of
luminous AGNs decreases toward the present-day epoch with a characteristic decay time of
τ ≃ 2h−1 Gyr. However, this is only an upper limit to the lifetime of an AGN. A single AGN
may remain active this long, or the individual lifetimes may be much shorter, say between
107 and 108 years, the typical timescale needed to radiate away the energy stored in a radio
lobe. In this latter case, τ would describe the statistical changes in a population of active
galaxies, rather than the behavior of a single individual. A galaxy may then experience just
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one, or several, brief episodes of activity during its history as mergers refuel the central
engine.It maybe that Seyfert galaxies experience recurring episodes of activity, for example

4 USING QUASARS TO PROBE THE UNIVERSE

Quasars are among the most distant visible objects in the universe, and so they offer a unique
opportunity to probe the intervening space. Clouds of gas, galaxies, and dark matter can all
affect the light from a quasar during its journey to Earth. By decoding the clues supplied
by observations of quasars, astronomers can learn a great deal about the perturbing objects
along the line of sight.

Gravitational Lensing and Multiple Images of Quasars

In 1919, the same year that Eddington measured the bending of starlight as it passed
near the Sun and verified Einstein’s general theory of relativity, Sir Oliver Lodge
(1851–1940), an English physicist, put forth the possibility of using a gravitational
lens to focus starlight (recall the discussion of gravitational lensing ). During the
1920s, astronomers began to consider how light passing through the curved spacetime
surrounding a massive object could produce multiple images of the source. Then, in 1937,
Fritz Zwicky (1898–1974) proposed that gravitational lensing by a galaxy would be much
more likely than gravitational lensing by individual stars. By the 1970s the search was on
for a multiply imaged quasar, and in 1979 the quasar Q0957+561 was discovered to appear
twice in the sky. As shown in Fig. 33, the two images are separated by 6.15′′, and each

FIGURE 33 An optical (negative) view of the double quasar Q0957+561. The photo on the left
shows the two gravitationally lensed images. The fuzz extending upward from the bottom image is
the lensing galaxy. On the right, the upper image has been subtracted from the lower image to reveal
the lensing galaxy more clearly. (Figure from Stockton, Ap. J. Lett., 242, L141, 1980.)
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FIGURE 34 Spectra of the images of the quasar Q0142−100 formed by a gravitational lens.
The bottom panel shows the difference between the two spectra. (Figure adapted from Smette et al.,
Ap. J., 389, 39, 1992.)

shows a quasar with a redshift of z = 1.41. The gravitational lens is due to the gravity of an
intervening giant cD galaxy with z = 0.36 that is between the two images and 0.8′′ away
from one of them. In addition to having the same redshift, both images have the same two
bright emission lines and many absorption features in common. Both images also show the
same radio core and jet structure.

Figure 34 shows spectra of the two images of another quasar, Q0142−100, that are
also formed by a gravitational lens. Like optical lenses, gravitational lenses can
magnify and increase an object’s brightness. The brighter of the two images of
Q0142−100 has the appearance of being one of the most luminous quasars known because
of the gravitational amplification of the image. (The difference in the apparent magnitudes
of the images of Q0142−100 is about #mV = 2.12.)

The Geometry of Gravitational Lensing

Gravitational lensing results when light follows the straightest possible worldline (a
geodesic) as it travels through the curved spacetime around a massive object.
It is analogous to the normal refraction of light by a glass lens that occurs as the light
crosses the lens surface, passing from one index of refraction, n, to another, where n ≡ c/v

is just the ratio of the speed of light in a vacuum to its speed, v, in the medium. Outside of
a spherical object of mass M (which is equivalent to a point mass), the coordinate speed of
light in the radial direction is given by,

dr

dt
= c

(

1 − 2GM

rc2

)

so the effective “index of refraction” is

n = c

dr/dt
=
(

1 − 2GM

rc2

)−1

≃ 1 + 2GM

rc2
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for radially traveling light, assuming that 2GM/rc2 ≪ 1. At a distance of 104 pc from a
galaxy with a mass of 1011 M⊙, the effective index of refraction is n = 1 + 9.6 × 10−7.
(Of course, the light passing by the point mass will never be traveling exactly radially. This
was merely used to estimate the magnitude of the effect of gravity in a gravitational lens.)
Obviously, the deviation of the light from a straight line will be extremely small.

Figure 35 shows the path taken by light from a source at point S, as it is deflected
through an angle, φ, by the gravitational lens due to a point mass, M , at point L. The light
arrives at the position of the observer at point O.

he angular deviation of a photon passing a distance r0 (very nearly the distance of
closest approach) from a mass M was

φ = 4GM

r0c2
rad (20)

[this includes the factor of 2 mentioned in part (c) of that problem]. The distance to the
source is dS/ cosβ ≃ dS , where β ≪ 1, and dL is the distance to the lensing mass. It is then
a matter of simple trigonometry (left as an exercise) to show that the angle θ between the
lensing mass and the image of the source must satisfy the equation

θ2 − βθ − 4GM

c2

(

dS − dL

dSdL

)

= 0, (21)

where θ and β are measured in radians.
The quadratic equation (Eq. 21) indicates that for the geometry shown in the figure,

there will be two solutions for θ , and so two images will be formed by the gravitational lens.
Designating these solutions as θ1 and θ2, these angles can be measured observationally and
then used to find the values of β and M . The results are

β = θ1 + θ2. (22)

L

S

O
"

&

(

dL

dS

r0

FIGURE 35 The geometry for a gravitational lens. Light from the source, S, passes within a
distance of approximately r0 of a lensing point mass at L on its way to an observer at O. The angles
involved are actually just a fraction of a degree, and so r0 is very nearly the distance of closest
approach.
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and

M = −θ1θ2c
2

4G

(

dSdL

dS − dL

)

. (23)

Referring back to Fig. 35, note that Eq. ( 22) implies that θ1 and θ2 have opposite
signs. As a result, the two images are formed on opposite sides of the gravitational lens, so
M will be positive.

Example 4.1. For the quasar Q0957+561 shown in Fig. 33, θ1 = 5.35′′ = 2.59 ×
10−5 rad, and θ2 = −0.8′′ = −3.88 × 10−6 rad. (Which angle assumes the minus sign is
arbitrary.) From the quasar’s redshift of zS = 1.41 and the gravitational lens redshift of
zL = 0.36, the Hubble law gives the corresponding distances of dS = 2120h−1 Mpc and
dL = 890h−1 Mpc. Then Eq. (23) gives

M = −θ1θ2c
2

4G

(

dSdL

dS − dL

)

= 8.1 × 1011h−1 M⊙.

This is in good agreement with a value of M = 8.7 × 1011h−1 M⊙ obtained with a more
accurate treatment of the mass distribution of the lensing galaxy.

Einstein Rings and Crosses

If a quasar or other bright source lies exactly along the line of sight to the lensing mass, then
it will be imaged as an Einstein ring encircling the lens (this phenomenon was described
by Einstein in 1936). In this case, β = 0 in Fig. 35, and so Eq. ( 21) can be solved
immediately for the angular radius of the Einstein ring,

θE =
√

4GM

c2

(

dS − dL

dSdL

)

rad. (24)

Of course, for a point source, the chance of an exact alignment with the lensing mass is
essentially zero. For an extended source, the requirements for an Einstein ring are that
β < θE and that the line of sight through the lensing mass must pierce the extended source.
Figure 36 shows a calculation of a partial ring—the image of a slightly off-center source.
The first Einstein ring to be discovered, MG1131+0456, was found at radio wavelengths
by the VLA. Figure 37 shows the radio appearance of the ring, which is thought to be
the image of a radio galaxy lensed by an elliptical galaxy.

The value of θE can be calculated for any gravitational lens, regardless of the alignment
of the lens and the source. Although the image may not be a ring, θE does provide a useful
parameter for describing the properties of any gravitational lens. If β < θE , as shown in
Fig. 35, there will be two images formed by the point mass. If β ≫ θE , the position and
brightness of the source are only slightly altered, but a secondary image appears close to
the lensing mass that is reduced in angular size by a factor of (θE/β)4.

A point mass is clearly a crude representation of an actual galaxy. A better model of the
lensing galaxy is provided by an isothermal sphere around a central core, similar to the
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FIGURE 36 A calculation of the image of a slightly off-center spherical galaxy formed by a
lensing mass located at the cross (“+”). (Figure adapted from Chitre and Narasimha, Gravitational
Lenses, Springer-Verlag, Berlin, 1989.)
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FIGURE 37 The Einstein ring MG1131+0456. The knot labeled A is produced by the core of
the imaged radio galaxy, and the knot labeled B represents one of its lobes. (Figure adapted from
Hewitt et al., Nature, 333, 537, 1988. Courtesy of J. Hewitt.)
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FIGURE 38 The Einstein cross Q2237+031, as observed in August 1991 (left) and August 1994
(right). The cross consists of 4 images of the quasar (labeled A–D), with the lensing galaxy (labeled
g) at the center. (Courtesy of Geraint Lewis and Mike Irwin.)

model used for the central bulge of the Milky Way. Another improvement is to depart
from spherical symmetry and use an isothermal ellipsoid, which can produce
either three or five images (an extended distribution of mass will produce an odd number of
images). The Einstein cross shown in Fig. 38 includes four images of a distant quasar
(Q2237+031, at z = 1.69) that is lensed by a nearby (z = 0.04) spiral galaxy. There is
probably also a fifth faint central image that is overwhelmed by the lensing galaxy at the
center of the cross. Note that image A has brightened by 0.5 mag in the 3-year interval
between the photos.

Luminous Arcs in Galaxy Clusters

Another striking example of gravitational lensing is the formation of arcs by light passing
through a cluster of galaxies. One such arc in the cluster Abell 370 is shown in Fig. 39.
Up to 60 additional “arclets” and several distorted distant background galaxies have also
been observed in that cluster. The source of the large arc must be a resolved object such as a
galaxy rather than the starlike nucleus of a quasar. According to one model of Abell 370, the
lensing mass (visible galaxies and dark matter) needed to produce the images in Abell 370
is at most about 5 × 1014 M⊙. Taken with the combined luminosity of a few × 1011 L⊙ for
the lensing galaxies, this implies a mass-to-light ratio of at least 1000 M⊙/L⊙, indicating
the presence of large amounts of dark matter.

Abell 370 is an unusual cluster in that it is sufficiently centrally condensed to produce such
arcs. The dark matter in most clusters is probably more widely distributed, producing weak
lensing effects just strong enough to distort the appearance of distant galaxies seen beyond
the cluster. Figure 40 shows a spectacular example of multiple arclets that are lensed
images of background galaxies produced by the cluster Abell 2218. Such weak lensing can
also cause an apparent bunching of quasars, so statistical studies of the clustering of objects
in the very early universe must take this effect into account.

Time Variability of Multiple Images

An interesting effect occurs when the source for a pair of images increases its luminosity.
Because the light from the source takes different paths on its way to the observer, there
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FIGURE 39 A gravitationally lensed arc, about 20′′ long, produced by the cluster Abell 370.
(Figure from Lynds and Petrosian, Ap. J., 336, 1, 1989. Courtesy of National Optical Astronomy
Observatories/R. Lynds.)

FIGURE 40 An HST view of the gravitationally lensed images of background galaxies produced
by the cluster Abell 2218. [Courtesy of W. Couch (U. of South Wales), R. Ellis (Cambridge U.), and
NASA.]

will be a time delay between the brightening of the lensed images. A time delay of about
1.4–1.5 yr has been measured for the original double quasar, Q0957+561. Nonperiodic
celestial events usually catch astronomers by surprise, but this time delay puts astronomers
in the unique situation of knowing in advance how a lensed quasar will behave.

It turns out that the time delay is also inversely proportional to the Hubble constant.
This offers a way of determining the value of H0 that is independent of any other distance
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measurement. At the cosmological distances of quasars, their recessional velocities should
completely dominate their peculiar velocities through space. One study using Q0957+561
concluded that H0 = 69 ± 21 km s−1 Mpc−1, assuming that the lensing galaxy contains
a substantial amount of dark matter. The result is in excellent agreement with the WMAP
value of H0 = 71+4

−3 km s−1 Mpc−1.

The Lyman-Alpha Forest

The spectra of high-redshift quasars always display a large number of narrow absorption
lines superimposed on the quasar’s continuous spectrum (these lines are in addition to any
broad absorption lines that are associated with the quasar itself). These narrow lines are
formed when the light from a quasar passes through material (an interstellar cloud, a galactic
halo) that happens to lie along the line of sight. If the absorbing material is far from Earth, its
recessional motion will cause these absorption lines to be strongly redshifted. Furthermore,
if the light passes through more than one cloud or galactic halo during its trip to Earth,
different sets of absorption lines will be seen. Each set of lines corresponds to the redshift
of a particular cloud or halo.

There are two classes of narrow absorption lines in quasar spectra:

• The Lyman-α forest is a dense thicket of hydrogen absorption lines. These lines
are believed to be formed in intergalactic clouds and display a variety of redshifts.
Absorption by primordial ionized helium (He II) has also been detected.

• Lines are also formed by ionized metals, primarily carbon (C IV) and magnesium
(Mg II), together with silicon, iron, aluminum, nitrogen, and oxygen. The mix of ele-
ments is similar to that found in the interstellar medium of the Milky Way, indicating
that the material has been processed through stars and enriched in heavy elements.
These lines are thought to be formed in the extended halos or disks of galaxies found
along the line of sight to the quasar.

Most of these lines are normally found at ultraviolet wavelengths, when the absorbing
material is moving at a small fraction of the speed of light relative to Earth (i.e., has a
small redshift). They are rarely seen from the ground because Earth’s atmosphere absorbs
most ultraviolet wavelengths. However, if the absorbing material is receding fast enough,
the Doppler effect can shift ultraviolet lines to visible wavelengths, where the atmosphere
is transparent. For this reason, these absorption lines are seen from the ground only in the
spectra of highly redshifted quasars.

Example 4.2. The rest wavelength of the ultraviolet Lyman-α line of hydrogen is
λLyα = 121.6 nm. To determine the redshift required to bring this line into the visible
region of the electromagnetic spectrum, we can use the definition of z,

z = λobs − λrest

λrest
.

continued
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Using λrest = λLyα and λobs = 400 nm for the blue end of the visible spectrum, we require
a redshift of

z >
400 nm − 121.6 nm

121.6 nm
≃ 2.3,

just to bring the Lyα line to the edge of the visible spectrum. Actually, some near-ultraviolet
light can penetrate Earth’s atmosphere, so the Lyα line can be observed when z > 1.7 for
the absorbing material.

Typically, the spectrum of a high-redshift quasar contains a strong Lyman-α emission
line produced by the quasar itself, and perhaps some 50 Lyα absorption lines at shorter
wavelengths (smaller redshifts); see Fig. 41. Each one of these lines is from a different
intergalactic cloud of hydrogen (and presumably helium) encountered by the
quasar’s continuum radiation on its journey to Earth. he Lyα line profile can
be used to calculate the column density of the neutral hydrogen atoms in the cloud that
produces each line. A typical result is 1018 m−2. In other words, a hollow tube having a
cross-sectional area of 1 m2 that crossed completely through the cloud would contain 1018

neutral hydrogen atoms. Such a cloud would be extremely transparent to the ultraviolet
radiation that is normally present throughout space. As a result, this ultraviolet background
can penetrate the cloud and keep it almost completely ionized. Calculations indicate that
only one hydrogen atom in 105 remains neutral in the cloud and is capable of absorbing an
ultraviolet photon.
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FIGURE 41 The strong Lyα emission line in the spectrum of QSO 1215+333, with the Lyα
forest of absorption lines at shorter wavelengths. (Adapted from a figure courtesy of J. Bechtold,
Steward Observatory, University of Arizona.)
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We deduce the size of the intergalactic clouds by comparing the Lyα forest in the spectra
of pairs of lensed quasars. Many of the absorption lines are seen in both spectra, but some
are not. This indicates that the clouds are, on average, about the size of the lensing galaxy.
From the total calculated column density of hydrogen (ionized as well as neutral), the mass
of a typical cloud probably lies between 107 and 108 M⊙. At the temperature estimated
for a typical cloud by some astronomers (approximately 3 × 104 K), its self-gravity would
be too weak to keep it from dispersing. It may be held together by the pressure of a less
dense (but hotter) external intergalactic medium or by the presence of dark matter within
the cloud.

Ionized Metal Absorption Lines in Quasars

The narrow absorption lines produced by ionized metals in quasar spectra have a different
origin. They can be divided into two groups as observed from Earth’s surface, corresponding
to two different redshift ranges. Below roughly z = 1.5, the Mg II lines dominate, accom-
panied by Si II, C II, Fe II, and Al II, because they fall within the wavelength window that
can be seen from the ground (the Mg II lines are probably produced in the halos of normal
galaxies or in regions of star formation.). The C IV lines, together with Si IV, N V, and O IV,
are common between about z = 1.2 and z = 3.5, however.

The distribution of redshifts of these lines is in general agreement with the expected
distribution of galaxies at that earlier time when the universe was smaller by a factor
of 1 + z, assuming that the galactic halos are typically some 30–50 kpc across. In fact,
some Mg II systems with z < 1 have been clearly identified with foreground galaxies seen
in direct images. The C IV lines probably come from clouds in young galaxies that are
strongly ionized by young, hot OB stars. These narrow metal lines indicate lower-than-
solar abundances of heavy elements, consistent with their origin in young galaxies that may
still be in the process of forming.

The Density Distribution of Intergalactic Clouds

The comoving space density of intergalactic clouds appears to have been greater in the
past than it is today, so the number of clouds has been decreasing as the universe ages. A
statistical analysis of the clouds’ redshifts reveals little evidence that the clouds tend to be
grouped in clusters. Instead, they appear to be distributed randomly throughout space. In
particular, there do not appear to be large voids in the distribution of these intergalactic
clouds (the significance of this is not yet clear). The distribution of the He II is similarly
uncertain.
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PROBLEM SET

1 The radio galaxy Centaurus A has a redshift of z = 0.00157. The monochromatic flux of Cen A
is Fν = 912 Jy at a frequency of 1400 MHz. Using α = 0.6 for its spectral index, estimate the
radio luminosity of Cen A.

2 Use Fig. 14 to calculate the spectral index, α, of the quasar 3C 273 at a radio frequency of
1400 MHz. Compare your answer with the value given in Example

3 For a temperature of 7.3 × 105 K, make a graph of the Planck function
, plotting log10 νBν(T ) vs. log10 ν for log10 ν between 15.5 and 17.5. How does the

behavior of your graph of a blackbody compare with that of Fig . 14 for the continuous spe
of the quasar 3C 273?
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FIGURE 14 The spectrum of 3C 273, after the Doppler shift of the frequencies due to the Hubble
flow has been removed. Ahorizontal line would correspond to a spectral index of α = 1; for reference,
the diagonal dashed line shows the slope for Fν = constant. The two lines on the right correspond
to 3C 273 during quiescence and during an outburst. (Figure adapted from Perry, Ward, and Jones,
MNRAS, 228, 623, 1987.)
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5 Use Newtonian physics to calculate the values of the average density and “surface gravity”
for a 108 M⊙ black hole. Compare these values with those for the Sun.

6 Use the Newtonian expression for the disk luminosity, shown below, to estimate the efficie-
ncy of the accretion luminosity of a disk around a nonrotating black hole (R = 3RS ). Repeat
this for a maximally rotating black hole (R = 0.5RS).

7 The maximum possible angular momentum for an electrically neutral rotating black hole is

Lmax = GM2

c

Use Newtonian physics to make estimates for this problem.
(a) What is the maximum angular velocity, ωmax, for a M = 108 M⊙ black hole? Use MR2

S as
an estimate of the black hole’s moment of inertia, where RS is the Schwarzschild radius.

4 A rough idea of how the population of quasars may have been different in the past can be
gained by mathematically modeling the dimming of quasars as they age.
(a) Consider the case where the total number of quasars has remained constant back to z = 2.2,

and suppose that the average luminosity, L, of a quasar with a redshift z has the form

L = L0(1 + z)a,

where L0 is the luminosity at z = 0 (today). Use Fig. 16 to estimate the value of the con-
stant a.

(b) From your answer to part (a), how much more luminous is an average quasar at z = 2 than
at z = 0?
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FIGURE 16 The dimming of quasars with time. For z < 0.3, there are too few nearby objects to
provide an adequate sample for this figure. The empty region at the upper left has not been sampled by
observations in this study. (Figure adapted from Boyle, The Environment and Evolution of Galaxies,
Shull and Thronson (eds.), Kluwer Academic Publishers, Dordrecht, 1993.)
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(b) Consider a straight wire with a length ℓ = RS that rotates about one end with angular
velocity ωmax perpendicular to a uniform magnetic field of B = 1 T. What is the induced
voltage between the ends of the wire?

(c) If a battery with the voltage found in part (b) were connected to a wire with a resistance
of 30 -, how much power would be dissipated by the wire?

8 Repeat the derivation of below equation for the Strömgren radius, including the effect of the
ionized gas filling only a fraction, ϵ, of the total volume, and so arrive at Eq. ( 13) for the
radius of the narrow-line region.

9 Use the values in Example 2.2 to find the fraction of all photons in
the continuum (frequencies between 10 10Hz and 10 25Hz) that are capable of ionizing hydr-
ogen in the ground state.

10 Starting with Eq. ( 15) for superluminal motion, derive Eqs. ( 16), ( 17), ( 18), and
( 19).

11 Consider material that is ejected from a quasar directly toward Earth.
(a) If the redshift of the quasar is zQ and the redshift of the ejecta is zej, show that the speed

of the ejecta relative to the quasar is given by

v

c
= (1 + zQ)2 − (1 + zej)

2

(1 + zQ)2 + (1 + zej)2
.

(b) Consider a radio-emitting knot ejected from the quasar 3C 273 directly toward Earth. If
astronomers measure the speed of the approaching knot at v = 0.9842c, what is the speed
of the knot relative to the quasar? From the frame of reference of the quasar, what is the
value of the knot’s Lorentz factor?

rS ≃
(

3N

4πα

)1/3

n
−2/3
H .

rNLR ≈
(

3N

4παqmϵ

)1/3 1

n
2/3
e

. (13)
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v

c
= vapp/c

sin φ + (vapp/c) cosφ
. (15)

v2
app/c

2 − 1

v2
app/c

2 + 1
< cosφ < 1, (16)

vmin

c
=
√

v2
app/c

2

1 + v2
app/c

2
, (17)

cot φmin = vapp

c
. (18)

γmin = 1
√

1 − v2
min/c

2
≃
√

1 + v2
app/c

2 = 1
sin φmin

. (19)
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12 Consider a relativistic (γ ≫ 1) blazar jet that is coming directly toward the observer. If there
is a time variation #trest in the rest frame of the jet, use below equation  to show that the
variation observed at Earth is approximately

#tobs ≃ #trest

2γ
.

13 Estimate the effective index of refraction for light passing within 104 pc of a spherical cluster
of galaxies of a total mass of 1014 M⊙.

14 Verify that Eq. ( 20) gives the correct numerical value for the angular deflection of a light
ray that grazes the Sun’s surface.

15 Use the geometry of the gravitational lens shown in Fig. 35 and the value of φ given by
Eq. ( 20) to derive Eqs. ( 21), ( 22), and ( 23). Hint: Start by showing that

sin(θ − β)

dS − dL

= sin φ
dS

for the small angles involved in this problem.

"tobs = "trest
√

1 − u2/c2
[1 + (u/c) cos θ ].

φ = 4GM

r0c2
rad (20)

φ = 4GM

r0c2
rad (20)

θ2 − βθ − 4GM

c2

(

dS − dL

dSdL

)

= 0, (21)

β = θ1 + θ2. (22)

M = −θ1θ2c
2

4G

(

dSdL

dS − dL

)

. (23)

L

S

O
"

&

(

dL

dS

r0

FIGURE 35 The geometry for a gravitational lens. Light from the source, S, passes within a
distance of approximately r0 of a lensing point mass at L on its way to an observer at O. The angles
involved are actually just a fraction of a degree, and so r0 is very nearly the distance of closest
approach.
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16 Two images of the quasar Q0142−100 (also known as UM 673) are formed by a gravitational
lens. The redshift of the quasar is z = 2.727, and the redshift of the imaging galaxy is z = 0.493.
The images are separated by 2.22′′, and the lensing galaxy is along the line between the two
images, 0.8′′ from one of them. Estimate the mass of the lensing galaxy.

17 The Einstein ring MG1654+1346 has a diameter of 2.1′′. The redshift of the source is z = 1.74,
and the redshift of the lensing galaxy is z = 0.25. Estimate the mass of the lensing galaxy.

18 Large Magellanic
Cloud was described. Assume that a MACHO with a mass ten times that of Jupiter orbits
halfway between Earth and the LMC and that it moves perpendicular to our line of sight to the
LMC. How much time will it take for the MACHO to move through an angle

The detection of a MACHO by its gravitational microlensing of a star in the

of 2θE across a
lensed star in the LMC? Take the distance to the LMC to be 52 kpc and the orbital velocity
of the MACHO to be 220 km s−1. Neglect the motion of Earth and the LMC in this problem.
Comment on a comparison of your answer with the time shown in .the below figure 
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FIGURE The light curve of a star in the LMC brightened over a period of 33 days, apparently
because a MACHO passed through the line of sight. The data are shown for (a) blue light, (b) red
light, and (c) the ratio of blue light to red light. (Figure adapted from Alcock et al., Nature, 365, 621,
1993. Reprinted with permission, © 1993, Macmillan Magazines Limited.)

19 When a small object approaches a much more massive object, the smaller object can be tidally
disrupted. The distance of closest approach before being tidally disrupted is the Roche limit

is given by

rR = 2.4
(

ρBH

ρ⋆

)1/3

RS,
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hole, the Roche limit
(see below equation). If the small object is a star and the large object is a supermassive black



where RS is the Schwarzschild radius, ρBH is the density of the black hole, and ρ⋆ is the average
density of the star.

(a) Setting the average density of the supermassive black hole equal to its mass divided by
the volume contained within the Schwarzschild radius, derive an expression for the mass
of a black hole that would have rR = RS .

(b) If the Sun were to fall into a supermassive black hole, what maximum mass could the
black hole have if the Sun would be tidally disrupted before crossing the event horizon?
Compare your answer to the mass estimates of typical supermassive black holes in galactic
nuclei.

(c) If the supermassive black hole exceeded the mass found in part (b), what would be the
implications in terms of liberating the gravitational potential energy of the infalling star?
Could infalling stars effectively power AGNs in this case?

COMPUTER PROBLEM

20 Table 28.2 gives values of the monochromatic flux for Cygnus A at several radio wavelengths.
(a) Make a graph of log10 Fν vs. log10 ν, and determine the value of the spectral index at

log10 ν = 8 for the power law given by Eq. ( 1).

(b) Use a simple trapezoid rule to integrate the area under the curve of Fν vs. ν (not log10 Fν
vs. log10 ν!) for the data given, and use your answer to estimate the radio luminosity of
Cygnus A.

TABLE 28.2 Cygnus A Data for Problem 20.

log10 ν log10 Fν
(Hz) (W m−2 Hz−1)

7.0 −21.88
7.3 −21.55
7.7 −21.67
8.0 −21.86
8.3 −22.09
8.7 −22.38
9.0 −22.63
9.3 −22.96
9.7 −23.43

10.0 −23.79
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(

ρp

ρm

)1/3

Rp, (4)

Fν ∝ ν−α (1)
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Cosmology

1 Newtonian Cosmology
2 The Cosmic Microwave Background
3 Relativistic Cosmology
4 Observational Cosmology

NEWTONIAN COSMOLOGY

On December 27, 1831, a ship sailed out of Plymouth, England, on a voyage around the
world that would last nearly five years. Only 90 feet long, the Beagle was crowded with
74 people, one of whom was Charles Darwin. During stops in South America, the Gala-
pagos Islands, Tahiti, New Zealand, and Australia, he exercised his formidable powers of
observation. In 1859, after two decades of careful study and reflection, Darwin published
On the Origin of Species by Means of Natural Selection, or the Preservation of Favored
Races in the Struggle for Life. For the first time, people began to comprehend their own
origins.

Other discoveries followed during the next one hundred years, with careful observations
and brilliant deductions uncovering more about our beginnings. The elucidation of DNA
and plate tectonics revealed the mechanisms by which we and our planet evolved. The
ideas of stellar nucleosynthesis explained the manufacture of the chemical elements by
stars, implying the origin of our corporeal bodies and the ground on which we walk. Even
the universe itself was found to be expanding. Then, in 1964, two researchers at Bell
Laboratories measured the afterglow of the Big Bang, confirming the explosive origin of
everything in existence. It is difficult to imagine a more breathtaking leap from ignorance
to self-knowledge than that which occurred during this century of discovery.

Cosmology, taken as a whole, is the study of the origin and evolution of the universe.
In this chapter, cosmology will be considered from several different perspectives. To help
develop our intuition, this section will discuss the expansion of the universe from the
point of view of Newtonian mechanics, without the complications (or insights) provided by
general relativity or the modern ideas of particle physics. The discovery and implications
of the cosmic microwave background radiation are described in Section 2, followed, in
Section 3, by an introduction to the geometry of the universe as explained by general
relativity. Section 4 describes how some of the key parameters of cosmology may be
measured observationally.

1



Olbers’s Paradox

Newton believed in an infinite static universe filled with a uniform scattering of stars. If the
distribution of matter did not extend forever, he realized, then it would collapse inward due
to its own self-gravity. However, Newton’s contemporary, Edmund Halley, worried about a
sky filled with an infinite number of stars. Why then, asked Halley, is the sky dark at night?

This question was put in its strongest form by a German physician, Heinrich Olbers
(1758–1840). Olbers argued in 1823 that if we live in an infinite, transparent universe filled
with stars, then in any direction one looks in the night sky, one’s line of sight will fall on
the surface of a star. (Similarly, if standing in an infinite forest, in every direction you look
you will see a tree.) This conclusion is valid regardless of whether the stars are uniformly
distributed, as Newton believed, or grouped in galaxies. Olbers’s argument was so strong
that its disagreement with the obvious fact that the night sky is indeed dark became known
as Olbers’s paradox.

Olbers believed that the answer to this paradox was that space is not transparent. The ideas
of thermodynamics were still being developed at that time, and Olbers could not appreciate
that his explanation was incorrect. The flaw was that any obscuring matter hiding the stars
beyond would be heated up by the starlight until it glowed as brightly as a stellar surface.
Surprisingly, the first essentially correct answer came from American poet and author Edgar
Allan Poe (1809–1849). Poe proposed that because light has a finite speed and the universe
is not infinitely old, the light from the most distant sources has not yet arrived. This solution
was independently put on a firm scientific foundation by William Thomson (Lord Kelvin,
1824–1907). In more modern terms, the solution to Olbers’s paradox is that our universe is
simply too young for it to be filled with light.

Developing Our Intuition: A Newtonian Approach

You will soon discover that this chapter contains more mathematics than the preceding
material. The reward for the necessary effort is a quantitative description of how the uni-
verse unfolded that is much more satisfying than qualitative storytelling. Although general
relativity is required for a complete understanding of the structure and evolution of the
universe, it is useful to develop some intuition by first considering the expansion of the
universe from a Newtonian point of view.

The Cosmological Principle

It has been argued that Hubble’s law is a natural outcome of an expanding universe
that is both isotropic and homogeneous, appearing the same in all directions and at all
locations. This crucial assumption of an isotropic and homogeneous universe is called
the cosmological principle. To show that the expansion of the universe

It is sometimes argued that the cosmological redshift caused by the expansion of the universe is responsible for
the darkness of the night sky because it shifts starlight out of the visible spectrum. In fact, this effect is much too
small to contribute significantly to a dark night sky.
In some derivations, many of the intermediate steps have been omitted. Filling in these mathematical gaps has

been relegated to several of the end-of-chapter problems.
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FIGURE 1 The expansion of the universe, with Earth at the origin.

to all observers at all locations, let Earth be at the origin of the coordinate system shown in
Fig. 1, and consider two galaxies, A and B, located at positions rA and rB , respectively.
According to the Hubble law, the recessional velocities of the two galaxies are described by
the vectors

vA = H0rA

and

vB = H0rB.

The recessional velocity of Galaxy B as seen by an observer in Galaxy A is therefore

vB − vA = H0rB − H0rA = H0(rB − rA),

so the observer in Galaxy A sees all of the other galaxies in the universe moving away with
recessional velocities described by the same Hubble law as on Earth.

Although the value of the Hubble “constant,” H0, is assumed to be the same for all
observers, it is actually a function of time, H(t). If the present time is t0, then H0 ≡ H(t0).

A Simple Pressureless “Dust” Model of the Universe

To develop an understanding of how the expansion of the universe varies with time, imagine
a universe filled with a pressureless “dust” of uniform density, ρ(t), and choose an arbitrary
point for the origin. Unlike the actual universe, this model universe is both perfectly isotropic
and homogeneous at all scales. The pressureless dust represents all of the matter in the
universe after being homogenized and uniformly dispersed. It should not be confused with
the physical dust grains found throughout the interstellar medium. There are no photons or
neutrinos in this single-component model of the universe.

As the universe expands, the dust is carried radially outward from the origin. Let r(t)

be the radius of a thin spherical shell of mass m at time t ; see Fig. 2. This shell of mass

Cosmology



Dust

Mass m

r

FIGURE 2 Spherical mass shell in a dust-filled universe.

expands along with the universe with recessional velocity v(t) = dr(t)/dt , so it always
contains the same dust particles. Then the mechanical energy E of the shell is

K(t) + U(t) = E.

As the shell expands, the gravitational pull from the mass inside causes the kinetic energy,
K , to decrease while the gravitational potential energy, U , increases. However, by con-
servation of energy, the total energy, E, of the shell does not change as the shell moves
outward. For future convenience, the total energy of the shell is written in terms of two
constants, k and ϖ , such that E = − 1

2mkc2ϖ 2. The constant k has units of (length)−2;
its meaning will be explored in Section 3. The other constant, ϖ (“varpi”), labels this
particular mass shell and may be thought of as the present radius of the shell, so r(t0) = ϖ .
The statement of the conservation of the mass shell’s energy is then

1
2
mv2(t) − G

Mrm

r(t)
= −1

2
mkc2ϖ 2. (1)

In the left-hand side of Eq. ( 1), Mr is the mass interior to the shell,

Mr = 4
3
πr3(t)ρ(t).

Although the radius of the shell and the density of the dust are continually changing, the
combination r3(t)ρ(t) does not vary because the mass interior to a specific shell remains
constant as the universe expands. Canceling m and substituting for Mr in Eq. ( 1) gives

v2 − 8
3
πGρr2 = −kc2ϖ 2. (2)

The mass outside the shell does not contribute to the gravitational force on the shell.

3

3
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The constant k determines the ultimate fate of the universe:

• If k > 0, the total energy of the shell is negative, and the universe is bounded, or
closed. In this case, the expansion will someday halt and reverse itself.

• If k < 0, the total energy of the shell is positive, and the universe is unbounded, or
open. In this case, the expansion will continue forever.

• If k = 0, the total energy of the shell is zero, and the universe is flat, neither open
nor closed. In this case, the expansion will continue to slow down, coming to a halt
only as t → ∞ and the universe is infinitely dispersed.

The Newtonian cosmology of this section always takes place in a flat spacetime.
The terms closed, open, and flat above should be understood

as describing the dynamics of the universal expansion. In Section 3, these terms will be
reinterpreted to describe the geometry of spacetime.

The cosmological principle requires that the expansion proceed in the same way for all
shells; for example, the time required for every shell to double its distance from the origin
is assumed to be the same. This means that the radius of a particular shell (identified byϖ )
at any time can be written as

r(t) = R(t)ϖ. (3)

In this expression, r(t) is called the coordinate distance. Because ϖ labels a shell and
follows it as it expands,ϖ is referred to as a comoving coordinate; see Fig. 3. R(t) is a
dimensionless scale factor (the same for all shells) that describes the expansion; R(t0) = 1
corresponds to r(t0) = ϖ . The scale factor R is equal to Remitted/Robs. Thus

Mass m

r(t1) < r(t2)
but

!– = constant

r(t1)

r(t
2
)

FIGURE 3 An expanding mass shell seen at two different times, t1 < t2. As the mass shell
expands, its comoving coordinate, ϖ , is the same at times t1 and t2, while r(t1) < r(t2).
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redshift z are related by

R = 1
1 + z

, (4)

For example, looking back to a redshift of z = 3 implies a universe for which the scale
factor was R = 1/4.

The previous statement that r3ρ does not vary for a specific shell means that R3ρ remains
constant for all shells. That is, since R(t0) = 1,

R3(t)ρ(t) = R3(t0)ρ(t0) = ρ0, (5)

where ρ0 is the density of the dust-filled universe at the present time. Using Eq. ( 4), this
can also be written as

ρ(z) = ρ0(1 + z)3, (6)

which gives the average density of the universe as observed at redshift z. You are cautioned
that Eqs. ( 5) and ( 6) are valid only for a universe consisting of pressureless dust. The
more general counterpart of Eq. ( 5) will be derived at the end of this section.

The Evolution of the Pressureless ”Dust” Universe

The evolution of our Newtonian universe, which can be described by the time behavior of
the scale factor R(t), will be investigated in the next few pages.Abrief flurry of mathematics
will produce the needed tools. The first step is to write the Hubble parameter, H(t), in terms
of the scale factor. The Hubble law is

v(t) = H(t)r(t) = H(t)R(t)ϖ. (7)

Because v(t) is the time derivative of r(t), Eq. ( 3) gives

v(t) = dR(t)

dt
ϖ.

Comparing this with Eq. 7) shows that

H(t) = 1
R(t)

dR(t)

dt
. (8)

Inserting Eqs. ( 3) and ( 7) into Eq. ( 2) and canceling the ϖ 2 results in
(

H 2 − 8
3
πGρ

)

R2 = −kc2, (9)

or, employing Eq. ( 8),
[

(

1
R

dR

dt

)2

− 8
3
πGρ

]

R2 = −kc2. (10)
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The left-hand sides of Eqs. ( 9) and ( 10) apply to all shells and involve the functions of
time H(t), ρ(t), and R(t), while the right-hand sides are constant (the same for all positions
and times). Using Eq. ( 5), Eq. ( 10) can be written in terms of R and t only:

(

dR

dt

)2

− 8πGρ0

3R
= −kc2. (11)

This result, along with Eqs. ( 9) and ( 10), will be used to describe the expansion of
the universe.

Now we are ready to examine the motion of mass shells in the three cases of a flat, closed,
or open universe. First, consider the case of a flat universe (k = 0), corresponding to each
shell expanding at exactly its escape velocity. The value of the density that will result in a
value of k = 0 is known as the critical density, ρc(t). From Eq. ( 9),

ρc(t) = 3H 2(t)

8πG
. (12)

To evaluate this at the present time, it is useful to know that the Hubble constant in
conventional units is

H0 = 100h km s−1 Mpc−1 = 3.24 × 10−18h s−1 (13)

which, using the WMAP value of

[h]WMAP = 0.71,

is

[H0]WMAP = 71 km s−1 Mpc−1 = 2.30 × 10−18 s−1. (14)

The present value of the critical density, ρc,0, is then

ρc,0 = 3H 2
0

8πG

= 1.88 × 10−26h2 kg m−3,

(15)

with a WMAP value of

ρc,0 = 9.47 × 10−27 kg m−3. (16)

This is equivalent to about six hydrogen atoms per cubic meter. However, the WMAP value
of the average density of baryonic matter in the universe is about 4% of the critical density,

ρb,0 = 4.17 × 10−28 kg m−3 (for h = 0.71), (17)
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or 1 hydrogen atom per 4 m3 of space. By “baryonic matter,” we mean matter made of
baryons (e.g., protons and neutrons); hence the “b” subscript designating baryonic matter in
Eq. ( 17). As will be explained in Section 2, this value is consistent with that obtained
from comparing the theoretical and observed abundances of light elements, such as helium-
3 and lithium-7, that were formed in the early universe. The density of nonbaryonic dark
matter, which is of unknown composition, is not included in the value of ρb,0. Nonbaryonic
dark matter is revealed only by its gravitational influence on baryonic matter. Presumably it
interacts very weakly (if at all) with photons and charged particles via the electromagnetic
force, so it does not absorb, emit, or scatter appreciable amounts of light. Our model universe
of pressureless dust includes both types of matter, baryonic and nonbaryonic, luminous and
dark.

The ratio of a measured density to the critical density is an important parameter in
cosmology. Accordingly, it is useful to define the density parameter,

$(t) ≡ ρ(t)

ρc(t)
= 8πGρ(t)

3H 2(t)
, (18)

which has a present value of

$0 = ρ0

ρc,0
= 8πGρ0

3H 2
0

. (19)

Table 1 shows the mass-to-light ratios of a variety of astronomical systems and the
density parameters derived for them. With the exception of Big Bang nucleosynthesis, these
values were obtained by studying gravitational effects and thus include both baryonic and
dark matter. There is a significant trend that more extensive systems have larger mass-to-
light ratios and density parameters, but, as shown in Fig. 4, for the largest systems the
density parameters seem to reach a “ceiling” at a maximum value of $0 ≃ 0.3. This is
consistent with the WMAP result for the value of the average density of all types of matter,
baryonic and dark:

[$m,0]WMAP = (0.135 +0.008
−0.009)h

−2 = 0.27 ± 0.04 (for h = 0.71). (20)

This corresponds to a mass density of

ρm,0 = 2.56 × 10−27 kg m−3 (for h = 0.71) (21)

The “m” subscript, which stands for “mass,” anticipates models of the universe with more
than one component. This subscript will be suppressed for the present one-component
model.

Actually, anything made of known particles whose density obeys Eq. ( 5) counts as baryonic matter. This
excludes photons and neutrinos because, as we shall see in Section 2, a gas of either of these particles does not
obey Eq. ( 5). Such a gas exerts a pressure and therefore is inconsistent with our model universe of pressureless
dust.

4

4
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TABLE 1 Mass-to-Light Ratios and Density Parameters, Measured for a Variety of Systems.
The complicated dependence on h for the values from the X-ray halo of M87 and Local Group
timing is not shown. (Adapted from Binney and Tremaine, Galactic Dynamics, Princeton University
Press, Princeton, NJ, 1987, and Schramm, Physica Scripta, T36, 22, 1991.)

M/L

Method (M⊙/L⊙) $0

Solar neighborhood 3 0.002h−1

Elliptical galaxy cores 12h 0.007
Local escape speed 30 0.018h−1

Satellite galaxies 30 0.018h−1

Magellanic Stream > 80 > 0.05h−1

X-ray halo of M87 > 750 > 0.46h−1

Local Group timing 100 0.06h−1

Groups of galaxies 260h 0.16
Clusters of galaxies 400h 0.25
Gravitational lenses — 0.1 – 0.3
Big Bang nucleosynthesis — 0.065 ± 0.045

The WMAP value of the density parameter for baryonic matter is

[$b,0]WMAP = (0.0224 ± 0.0009)h−2 = 0.044 ± 0.004 (for h = 0.71). (22)

Thus, according to the WMAP results, baryonic matter accounts for only about 16% of the
matter in the universe; the other 84% is some sort of nonbaryonic dark matter.

The general characteristics of the expansion of our model universe composed of pres-
sureless dust can now be determined. First note that, from Eqs. ( 6) and ( 19),

$

$0
= ρ

ρ0

H 2
0

H 2
= (1 + z)3 H 2

0

H 2
,

so

$H 2 = (1 + z)3$0H
2
0 . (23)

Another relation between $ and H comes from combining the density parameter,
Eq. ( 18), with Eq. 9):

H 2(1 −$)R2 = −kc2 (24)

As a special case at t = t0,

H 2
0 (1 −$0) = −kc2. (25)

This confirms that:

• If $0 > 1, then k > 0 and the universe is closed.

Cosmology

(



H0 = 100

W = 1

W = 0.3

E

Sp

Rich clusters (med)
Morgan groups (med)
Hickson groups (med)
CFA groups (med)
X-ray groups
The Local Group
M101, M31, Milky Way
Spirals (med)
Ellipticals (med)
Cor Bor supercluster
Shapley supercluster
Cosmic virial theorem
Least action method
Virgo infall (range)
Bulk flows (range)

1
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M
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B
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0.01 0.1 1 10
Characteristic size (Mpc)

FIGURE 4 The mass-to-light ratio as a function of the characteristic size of a variety of systems.
H0 was taken to be 100 km s−1 Mpc−1 for this figure prior to publication of the WMAP results. (Figure
adapted from Dodelson, Modern Cosmology, Academic Press, New York, 2003, with permission from
Elsevier. Data from Bahcall et al., Ap. J., 541, 1, 2000.)
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• If $0 < 1, then k < 0 and the universe is open.

• If $0 = 1, then k = 0 and the universe is flat.

Remember that we are now dealing with a simple model of a one-component universe of
pressureless dust. Later we will study more realistic multicomponent models, which will
show that a measurement of the mass density parameter alone is not enough for us to draw
any conclusions about the ultimate fate of our physical universe.

Equating Eqs. ( 24) and ( 5), and using ( 4), we find

H 2(1 −$) = H 2
0 (1 −$0)(1 + z)2. (26)

Thus we have two equations, Eqs. ( 23) and ( 26), with the two unknowns $ and H .
These may be easily solved to find

H = H0(1 + z) (1 +$0z)
1/2 (27)

and

$ =
(

1 + z

1 +$0z

)

$0 = 1 + $0 − 1
1 +$0z

. (28)

Equation ( 27) implies that at very early times, as R → 0 and z → ∞, the Hubble pa-
rameter H → ∞. Equation ( 28) shows that the sign of $− 1 does not change, and in
particular that if $ = 1 at any time, then $ = 1 at all times. The character of the universe
does not change as the universe evolves; it is either always closed, always open, or always
flat. Equation ( 28) also shows that at very early times, as z → ∞, the density parameter
$ → 1 regardless of today’s value of$0. Therefore, the early universe was essentially flat;
see Fig. 5. The assumption of a flat early universe will greatly simplify the description
of the first few minutes of the universe.

Example 1.1. Later we will find that when the universe was about 3 minutes old,
protons and neutrons combined to form helium nuclei. This occurred at a redshift of z =
3.68 × 108. Using the WMAP value of [$m,0]WMAP = 0.27 for$0, we find that at the time
of helium formation, the value of $ was

$ = 1 + $0 − 1
1 +$0z

= 1 + 0.27 − 1
1 + (0.27)(3.68 × 108)

= 0.99999999265. (29)

At even earlier times the value of$ contains a much longer string of nines. During the late
twentieth century, it appeared absurd to theoreticians that a mechanism would exist to fine-
tune$ to a value so very close to unity without having an exactly flat universe with$ = 1.
And yet, observational measurements of the value of the density parameter continued to
hover around$0 ≃ 0.3. The solution to this puzzle will be described in Section 3, where
we will find that the theoreticians and the observers were both correct.
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W0 = 2
(closed)

W0 = 1
(flat)
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FIGURE 5 The evolution of the scale factor, R, for three model universes—open ($0 = 0.5),
flat ($0 = 1), and closed ($0 = 2)—as a function of time, measured from the present. The dotted
lines locate the position of today’s universe on the three curves. At the present time (R = 1) all three
universes have the same value of H0, as exhibited by the curves having the same slope. For the early
universe (R < 1) there is little difference among the kinematic behaviors of a flat, a closed, and an
open universe because the early universe was essentially flat. The elapsed time %t is in units of the
Hubble time, tH .

The expansion of a flat, one-component universe of pressureless dust as a function of
time may be found by solving Eq. (11) with k = 0 (so ρ 0 = ρc,0 and $0 = 1):

(

dR

dt

)2

= 8πGρc,0

3R
.

Taking the square root of each side and integrating (with R = 0 at t = 0) gives

∫ R

0

√
R′ dR′ =

√

8πGρc,0

3

∫ t

0
dt ′

or

Rflat = (6πGρc,0)
1/3t2/3 (30)

=
(

3
2

)2/3 (
t

tH

)2/3

(for $0 = 1), (31)

where the last expression was obtained by using Eq. ( 15), and tH ≡ 1/H0 for the Hubble
time. The increase in R for$0 = 1 is shown in Fig. 5, with time in units of the
Hubble time.
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If$0 ̸= 1, the density is not equal to the critical density and Eq. ( 11) is more difficult
to solve. If $0 > 1, the universe is closed and the solution can be expressed in parametric
form as

Rclosed = 4πGρ0

3kc2
[1 − cos(x)] (32)

= 1
2

$0

$0 − 1
[1 − cos(x)] (33)

and

tclosed = 4πGρ0

3k3/2c3
[x − sin(x)] (34)

= 1
2H0

$0

($0 − 1)3/2
[x − sin(x)] , (35)

where the variable x ≥ 0 merely parameterizes the solution. [This may be easily verified by
direct substitution into Eq. ( 11).] The behavior of this solution with $0 = 2 is shown
in Fig. 5. The “bounce” that occurs after the contraction of the universe is a mathematical

Ropen = 4πGρ0

3|k|c2
[cosh(x) − 1] (36)

= 1
2

$0

1 −$0
[cosh(x) − 1] (37)

and

topen = 4πGρ0

3|k|3/2c3
[sinh(x) − x] (38)

= 1
2H0

$0

(1 −$0)3/2
[sinh(x) − x] . (39)

Recall that the hyperbolic cosine is defined as cosh(x) ≡ (ex + e−x)/2 ≥ 1. Similarly, the
hyperbolic sine is given by sinh(x) ≡ (ex − e−x)/2 ≥ x, so Ropen increases monotonically
with t . See Fig. 5 for the appearance of the solution with $0 = 0.5. If $0 ≤ 1, then the
universe will continue to expand forever.

The Age of the Pressureless “Dust” Universe

We are now ready to calculate the age of the universe as a function of the redshift z. Before
continuing, a note of caution should be sounded about referring to any time t as the “age of
the universe.” The laws of physics, as we presently understand them, cannot remain valid
under the extreme conditions that must prevail as t → 0. In using t as a measure of the
time since the Big Bang, we must always keep in mind that this is an extrapolated time and
cannot be taken literally at the earliest instants (t < 10−43 s).

Cosmology
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of Eq. ( 11) is
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Keeping this admonition in mind, we now proceed by using Eq. ( 4) to replace R by
1/(1 + z) in Eq. ( 31) for a flat universe. The age of a flat universe (in units of the Hubble
time) that is observed at redshift z is then found to be

tflat(z)

tH
= 2

3
1

(1 + z)3/2
(for $0 = 1). (40)

Replacing R by 1/(1 + z) in Eq. ( 33) for a closed universe and using Eq. ( 35) to
eliminate x leads to

tclosed(z)

tH
= $0

2($0 − 1)3/2

[

cos−1
(

$0z −$0 + 2
$0z +$0

)

− 2
√

($0 − 1)($0z + 1)

$0(1 + z)

]

(for $0 > 1). (41)

Following a similar procedure using Eq. ( 37) for an open universe and using Eq. ( 39)
to eliminate x results in

topen(z)

tH
= $0

2(1 −$0)3/2

[

− cosh−1
(

$0z −$0 + 2
$0z +$0

)

+ 2
√

(1 −$0)($0z + 1)

$0(1 + z)

]

(for $0 < 1). (42)

In the limit of large redshift, Eqs. ( 40) through 42) all reduce to

t (z)

tH
= 2

3
1

(1 + z)3/2$
1/2
0

, (43)

where the higher-order terms may be neglected for $0 ̸= 1. Because the early universe
was flat to a very good approximation, precise observations are required to determine
whether the universe is flat, closed, or open. In Section 4, the observational aspects of
cosmology will be considered in more detail.

The current age of the universe, t0, may be easily found by setting z = 0 in Eqs.
(40– 42) to find

tflat,0

tH
= 2

3
(for $0 = 1) (44)

for a flat universe,

tclosed,0

tH
= $0

2($0 − 1)3/2

[

cos−1
(

2
$0

− 1
)

− 2
√
$0 − 1
$0

]

(for $0 > 1) (45)

for a closed universe, and

topen,0

tH
= $0

2(1 −$0)3/2

[

− cosh−1
(

2
$0

− 1
)

+ 2
√

1 −$0

$0

]

(for $0 < 1) (46)

for an open universe.
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FIGURE 6 The age of the universe as a function of the density parameter, $0. The age is
expressed as a fraction of the Hubble time, tH ≃ 1010h−1 yr. The right axis shows the age in billions
of years for h = 0.71.

The age of the universe for these models, expressed as a fraction of the Hubble time,
is shown in Fig. 6. According to the inflation scenario the universe should be essentially
flat, a scenario supported by recent observations. If the average density of the universe is
equal to the critical density, then the age of the universe is two-thirds of the Hubble time.
Using the WMAP value of [h]WMAP = 0.71 gives an age of about 9.2 Gyr. Although this
result is less than the currently accepted value of 13.7 Gyr, it is
model of an expanding universe of pressureless dust produces ages that are in rough
accordance with the mean age of the oldest globular clusters, 11.5 billion years.

Piecing together the history of the universe is a bit like working a jigsaw puzzle. As
progress is made and the pattern begins to emerge, the shapes of the missing pieces are
defined by those already in place. For our simple model of a pressureless dust universe,
the pieces overlap a bit; the age of the oldest stars is greater than the age of the universe.
However, there is more to the universe than pressureless dust. For example, the universe
is filled with photons—about two billion photons for every baryon. Photons, baryons, and
other constituents will play a role in resolving the discrepancy between the age of the oldest
globular clusters and the age of the universe.

The Lookback Time

The lookback time, tL, is defined as how far back in time we are looking when we view
an object with redshift z. This is just the difference between the present age of the universe
and its age at time t (z),

tL = t0 − t (z). (47)

A more accurate comparison between the age of the universe and the ages of globular clusters will be made in
Section 3.

5
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FIGURE 7 The lookback time as a function of the redshift, z, for a range of values of the density
parameter,$0. The lookback time is expressed as a fraction of the Hubble time, tH ≃ 1010h−1 yr. The
right axis shows the lookback time in billions of years if h = 0.71.

For example, for a flat universe, Eqs. ( 40) and ( 44) show that the lookback time is,
in units of the Hubble time,

tL

tH
= 2

3

[

1 − 1
(1 + z)3/2

]

(for $0 = 1). (48)

Figure 7 shows the lookback times for flat, closed, and open models of the universe.

Example 1.2. The redshift of the quasar SDSS 1030+0524 was found to be z = 6.28.
Assuming a flat universe of pressureless dust, Eq. ( 48) shows that the lookback time to
this quasar is

tL

tH
= 2

3
(1 − 0.0509) = 0.633.

Since the age of a flat universe is t0 = 2tH /3,

tL

t0
= 0.949.

This means that only 5% of the history of the universe had unfolded when the light left
this quasar. At that time the universe was smaller by about a factor of 7 when, according to
Eq. ( 4), the scale factor was

R = 1
1 + z

= 0.137.
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Extending Our Simple Model to Include Pressure

Let’s take stock of the basic equations we have derived so far and generalize them a bit,
anticipating some features of the equations of general relativity we will encounter in Sec-
tion 3. We start with Eq. ( 10),

[

(

1
R

dR

dt

)2

− 8
3
πGρ

]

R2 = −kc2.

With a nod toward Einstein’s Erest = mc2, we broaden the meaning of the density ρ to
include matter in all of its forms. For nonrelativistic particles, ρ is the usual mass density.
For relativistic particles, such as photons and neutrinos, ρ is the equivalent mass density—
that is, the energy density divided by c2.

Equation ( 5), R3ρ = ρ0, describes the conservation of mass within the expanding
shell. Again acknowledging the equivalence of mass and energy, this equation is also a
statement of the conservation of energy for a pressureless dust universe.

A thermodynamic argument supplies the generalization of Eq. ( 5) for models of the
universe that incorporate pressure-producing components. Imagine a universe filled with a
fluid (dust, photons, etc.) of uniform density ρ, pressure P , and temperature T , and choose
an arbitrary point for the origin. Let r be the radius of a comoving spherical surface, centered
on the origin. We will employ the first law of thermodynamics, which applies the law of
conservation of internal energy, U , to the fluid within the expanding sphere:

dU = dQ − dW. (49)

First note that the entire universe has the same temperature, so there can be no heat flow:
dQ = 0. That is, the expansion of the universe is adiabatic. Any change in internal energy
must be produced by work done by the fluid. Writing the result as a time derivative,

dU

dt
= −dW

dt
= −P

dV

dt
.

and substituting V = 4
3πr3, we obtain

dU

dt
= −4

3
πP

d(r3)

dt
.

If we define the internal energy per unit volume u as

u = U
4
3πr3

,

then we find

d(r3u)

dt
= −P

d(r3)

dt
.

We need not worry about photons leaving the sphere, because the cosmological principle assures us that the same
number of equivalent photons will enter the sphere.

6

6

Cosmology



Writing u in terms of the equivalent mass density ρ,

ρ = u

c2
,

gives

d(r3ρ)

dt
= −P

c2

d(r3)

dt
.

Finally, using r = Rϖ (Eq. 3), we obtain the fluid equation,

d(R3ρ)

dt
= −P

c2

d(R3)

dt
. (50)

For a universe of pressureless dust, P = 0 so R3ρ = constant, in agreement with Eq. ( 5).
An equation describing the acceleration of the universal expansion can be obtained by

multiplying Eq. ( 10) by R and then taking a time derivative. Using Eq. ( 50) to replace
d(ρR3)/dt and using Eq. ( 10) to eliminate the −kc2, we arrive at the acceleration
equation

d2R

dt2
= −4

3
πG

(

ρ + 3P

c2

)

R. (51)

Note that the effect of the pressure P is to slow down the expansion (assuming P > 0).
If this seems counterintuitive, recall that because the pressure is the same everywhere
in the universe, both inside and outside the shell, there is no pressure gradient to exert
a net force on the expanding sphere. The answer lies in the motion of the particles that
creates the fluid’s pressure. The equivalent mass of the particles’ kinetic energy creates a
gravitational attraction that slows down the expansion just as their actual mass does. In fact,
the assumption that P = 0 is valid for much of the history of the universe. For instance,
you will find that ρ ≫ P/c2 in today’s universe.

Equation ( 51) is an illustration of Birkhoff’s theorem. In 1923 the American mathe-
matician G. D. Birkhoff (1884–1944) proved quite generally that for a spherically symmetric
distribution of matter, Einstein’s field equations have a unique solution. As a corollary, the
acceleration of an expanding shell in our fluid universe is determined solely by the fluid
lying within the shell. Equation ( 51) shows that the acceleration does not depend on
any factors other than ρ, P , and R. Because Birkhoff’s theorem holds even when general
relativity is included, it is quite important in the study of cosmology.

Equations ( 10), ( 50), and ( 51) have three unknowns: R, ρ, and P . However,
the equations are not independent; any two may be used to derive the third. To solve these
two equations for R, ρ, and P , we need a third relation, an equation of state, that links the
variables. Such an equation of state can be written generally as

P = wu = wρc2, (52)
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where w is a constant. In words, the pressure is proportional to the energy density of the
fluid. For example, for mass in the form of pressureless dust, wm = 0, and for blackbody
radiation, with the equation of state Prad = urad/3, we have wrad = 1/3. Inserting the
general equation of state, Eq. ( 52), into the fluid equation, Eq. ( 50), quickly
produces the relation

R3(1+w)ρ = constant = ρ0, (53)

where ρ0 is the present value of the mass density (or equivalent mass density). For pres-
sureless dust (wm = 0), we recover Eq. ( 5), R3ρm = ρm,0.

The Deceleration Parameter

Finally, we introduce a useful dimensionless quantity that describes the acceleration of the
universal expansion: the deceleration parameter, q(t), which is defined as

q(t) ≡ −R(t) [d2R(t)/dt2]
[dR(t)/dt]2

. (54)

Both the name and the minus sign (to ensure that q > 0 for a deceleration) betray the cer-
tainty of twentieth-century astronomers that the expansion of the universe must be slowing
down with time. For a pressureless dust universe,

q(t) = 1
2
$(t), (55)

and so at the present time,

q0 = 1
2
$0. (56)

Thus, for a pressureless dust universe, q0 = 0.5 for a flat universe, while q0 > 0.5 and
q0 < 0.5 correspond to a closed and an open universe, respectively.

THE COSMIC MICROWAVE BACKGROUND

In 1946 George Gamow was pondering the cosmic abundances of the elements. Realizing
that the newborn, dense universe must have been hot enough for a burst of nuclear reactions
to occur, he proposed that a sequence of reactions in the very early universe could explain
the measured cosmic abundance curve. Gamow, together with Ralph Alpher, published
this idea two years later. Still later, however, detailed calculations by

In Section 3 this sense of certainty will be toppled.
Gamow, a Russian émigré, was famous for his Puckish sense of humor. When this paper first appeared, Gamow

added Hans Bethe as a co-author (without Bethe’s knowledge). Gamow thought it would be appropriate that a
paper on cosmic beginnings be authored by Alpher (α), Bethe (β), and Gamow (γ ), a play on the first three letters
of the Greek alphabet.
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Alpher and Robert Herman (1914–1997) showed that Gamow’s idea was flawed because
there were roadblocks to assembling succeedingly heavier nuclei simply by adding protons
or neutrons. There are no stable nuclei with five or eight nucleons, leaving 4

2He as the
heaviest element that can be formed as Gamow proposed. (A small amount of an isotope of
lithium, 7

3Li, is also formed in the early universe by the nuclear fusion of 4
2He with 3

1H and
the fusion of 4

2He with 3
2He. The latter produces 7

4Be, which radioactively decays to 7
3Li.)

At that time, there was also a large problem with the idea of a hot, dense universe coming
into existence approximately one Hubble time ago. Edwin Hubble’s original value of his
constant was H0 = 500 km s−1 Mpc−1, which corresponds to tH = 1/H0 = 109 yr for
the age of the universe. This is only a fraction of Earth’s age, which in 1928 had been
radioactively dated as several billion years. By the late 1940s further measurements
indicated that 1/H0 = 1.8 × 109 yr, which was still embarrassingly short. It was certainly
hard to understand how Earth could be older than the universe.

The Steady-State Model of the Universe

In 1946 at Cambridge University, Hermann Bondi (1919–2005), Thomas Gold (1920–
2004), and Fred Hoyle (1915–2001) attempted to find an alternative to Gamow’s unpalat-
able Big Bang universe. In papers published in 1948 and 1949, they proposed their model
of a steady-state universe. It extended the cosmological principle to include time, stating
that, in addition to the universe being isotropic and homogeneous, it also appears the same
at all times. A steady-state universe has no beginning and no end. It is infinitely old, and as
it expands, a continuous creation of matter is required to maintain the average density of
the universe at its present level. This changes the interpretation of the Hubble time; rather
than the characteristic age of the universe, tH becomes a characteristic time for the creation
of matter. If the universe roughly doubles in size in time tH , then its volume becomes eight
times greater, and so the rate of matter creation required to maintain the universe as it is
today is approximately 8ρ0/tH = 8H0ρ0. Just a few hydrogen atoms per cubic meter of
space would need to be created every ten billion years, a rate far too small to be mea-
sured experimentally. In the original steady-state models, the “when,” “where,” and “how”
of the spontaneous appearance of new matter (in violation of the law of conservation of
mass–energy) were questions left unanswered. The appeal of the steady-state universe was
its resolution of the timescale problem.10

Just as Gamow and his collaborators tried to explain the cosmic abundance curve
by using the nuclear reactions that would accompany a Big Bang, Hoyle sought an
explanation in the nuclear reactions that took place inside stars. He joined forces with two
English colleagues, Geoffrey and Margaret Burbidge (a theoretical physicist and an
astronomer, respectively), and William Fowler (1911–1995), an American physicist. In

Ironically, it was Fred Hoyle who came up with the term Big Bang. He used it derisively in a 1950 BBC radio
broadcast when he said, “This big bang idea seemed to me to be unsatisfactory even before examination showed
that it leads to serious difficulties. For when we look at our own Galaxy there is not the smallest sign that such an
explosion ever occurred.”
10The solution to the short Hubble time appeared in 1952, when Walter Baade discovered that there were two
types of Cepheid variable stars. This revised the period–luminosity relation that forms the foundation of the cosmic
distance scale.

9
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1957 they published their seminal paper, referred to as B2FH, that laid out the theory of
stellar nucleosynthesis.

The B2FH analysis was a success, and its results were compatible with both the Big
Bang and steady-state cosmologies. During the 1950s both theories had their supporters
and detractors. However, in addition to the unanswered questions about the continuous cre-
ation of matter, the steady-state theory had a serious problem explaining the large amount
of helium observed in the universe. Astronomers had established that about one-quarter
(0.274 ± 0.016) of the baryonic mass of the universe is in the form of helium. When
compared to the cosmic abundances of the heavier elements, it was clear that stellar nucle-
osynthesis could not account for the amount of helium observed, especially considering that
carbon, nitrogen, and oxygen are the results of exhaustively burning the star’s helium core.

Gamow, Alpher, and Herman had shown that the Big Bang could at
least explain the abundance of helium, but where was the proof that such a violent event had
ever occurred? To invoke an event that was apparently beyond the reach of investigation
seemed unscientific to many astronomers.

The Cooling of the Universe after the Big Bang

A key idea of the α–β–γ paper was that the dense, early universe must have been very hot.
In this hot, dense universe, the mean free path of photons would have been short enough to
maintain thermodynamic equilibrium. Although an expanding universe cannot be precisely
in equilibrium, this assumption of thermodynamic equilibrium is extremely good.

In 1948 Alpher and Herman published their description of how this blackbody radiation
would have cooled as the universe expanded, and they predicted that the universe should
now be filled with blackbody radiation at a temperature of 5 K.

The cooling of the blackbody radiation can be derived by considering its energy den-
sity u = aT 4. According to the fluid equation (Eq. 53) with wrad = 1/3 for
blackbody radiation and R(t0) = 1,

R3(1+wrad)urad = R4urad = urad,0. (57)

The energy density today, urad,0, is smaller than the earlier value urad by a factor of R4; a
factor of R3 is due to the fact that the volume of the universe has increased since then, and
the other factor of R comes from the lesser energy of today’s longer-wavelength photons
(Ephoton = hc/λ), a result of the cosmological redshift. Thus

R4aT 4 = aT 4
0 ,

and we find that the present blackbody temperature must be related to the temperature at an
earlier time by

RT = T0. (58)

That is, the product of the scale factor and the blackbody temperature remains constant as
the universe expands. When the universe was half as large, it was twice as hot.

Under these conditions the radiation field has a blackbody spectrum.
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An order-of-magnitude estimate of the present blackbody temperature of the universe
may be calculated by considering the temperature and baryonic mass density that must have
prevailed in the early universe when helium was being formed. The fusion of hydrogen nu-
clei requires roughly that T ≃ 109 K and ρb ≃ 10−2 kg m−3. If the temperature were any
higher, the deuterium nuclei involved in the fusion chain would have undergone photodis-
sociation due to the presence of energetic blackbody radiation, whereas a lower temperature
would have made the Coulomb barrier between the nuclei too difficult to overcome. The
quoted density is needed to produce the observed amounts of 3

2He and other nuclei. From
Eqs. ( 5) and ( 17), the value of the scale factor at the time of the helium formation
was roughly

R ≃
(

ρb,0

ρb

)1/3

= 3.47 × 10−9.

At that time, the universe was only a few billionths of its present size. Combining the
scale factor with T (R) = 109 K, the present temperature of the blackbody radiation can be
estimated from Eq. ( 58) as

T0 = RT (R) ≃ 3.47 K,

similar to Alpher and Hermann’s original estimate of 5 K in 1948. Wien’s law then gives
the peak wavelength of the blackbody spectrum as

λmax = 0.00290 m K
T0

≃ 8.36 × 10−4 m.

The Discovery of the Cosmic Microwave Background

Sixteen years after Alpher and Herman predicted that the universe had cooled to 5 K and
was filled with blackbody radiation, Robert Dicke (1916–1997) of Princeton University and
his postdoctoral student P. J. E. Peebles unknowingly followed in their footsteps. In 1964
Peebles calculated that the blackbody radiation left over from the Big Bang should have
a temperature of about 10 K. Unlike Alpher and Herman, however, Dicke was interested
in searching for the relic radiation. He didn’t realize that this cosmic background radiation
had just been found by two radio astronomers working a few miles away at Bell Labora-
tories in Holmdel, New Jersey.11 Arno Penzias and Robert Wilson were working with a
huge horn reflector antenna (shown in Fig. 8) that had been used to communicate with
the new Telstar satellite. Despite a year of effort, the two men had been unable to get rid
of a persistent hiss in the signal. The hiss came continually from all directions in the sky
and remained even after Penzias and Wilson had scrubbed their antenna clean, taped over
seams and rivets, and removed two pigeons that had nested inside the horn.12 They knew
that a 3 K blackbody would produce their interference but were unaware of any possible
source until Penzias learned of Peeble’s calculation of a 10-K background. Penzias called

11Interestingly, it was in Holmdel that Karl Jansky built his first radio telescope.
12The pigeons were freed 60 miles away. Unfortunately, they proved to be homing pigeons and had to be removed
again.
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FIGURE 8 Robert Wilson and Arno Penzias standing in front of the antenna used to first identify
the cosmic microwave background. (Courtesy of AT&T Archives.)

Dicke and invited him to Holmdel, and in 1965 the pieces of the puzzle finally fell together.
Penzias and Wilson had detected the blackbody radiation that fills the universe, with a peak
wavelength of λmax = 1.06 mm in the microwave region of the electromagnetic spectrum.
This afterglow of the Big Bang is now known as the cosmic microwave background, often
abbreviated as the CMB. Dicke, Peebles, and their co-workers at Princeton immediately
wrote a note for the Astrophysical Journal Letters detailing the theory of the cosmic mi-
crowave background that strongly supported the Big Bang cosmology, while Penzias and
Wilson wrote an accompanying letter, discreetly titled “A Measurement of Excess Antenna
Temperature at 4080 Megacycles per Second,” that described their discovery.

The discovery of the CMB was a death knell for steady-state cosmology. As further
measurements at other wavelengths confirmed that the shape of the CMB spectrum was
that of a blackbody, the number of astronomers supporting the Big Bang theory swelled
while those favoring a steady-state universe dwindled. In 1991 a striking measurement of
the cosmic microwave background was obtained by the COBE satellite.
The COBE measurement of the spectrum of the CMB is shown in Fig. 9. The data
points (whose errors are smaller than the points themselves) fall almost perfectly on the
theoretical spectrum of a 2.725-K blackbody. The Planck function Bν(T ) in Fig. 9 peaks
at a frequency of 160 GHz, corresponding to the frequency version of Wien’s law,13

νmax

T
= 5.88 × 1010 Hz K−1. (59)

The WMAP value for the CMB is

[T0]WMAP = 2.725 ± 0.002 K, (60)

remarkably close to our estimate of 3.47 K obtained from the simple estimate.

13This version of Wien’s law may be found by setting dBν(T )/dν = 0.
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FIGURE 9 The COBE measurement of the spectrum of the cosmic microwave background,
which is that of a blackbody with a temperature of 2.725 K. The horizontal axis (Frequency) is
actually 1/λ (cm−1); the spectrum peaks at a frequency of 160 GHz (5.35 cycles per centimeter).
(Figure adapted from Mather et al., Ap. J. Lett., 354, L37, 1990. Courtesy of NASA/GSFC and the
COBE Science Working Group.)

The Dipole Anisotropy of the CMB

The cosmic microwave background suffuses the entire universe. It does not emanate from
any object but, rather, originated in the Big Bang, when the entire universe was essentially
located at a single point (or event) of spacetime. For this reason, all observers at rest with
respect to the Hubble flow (no peculiar velocity) see the same spectrum for the CMB, with
the same intensity in all directions (the CMB is isotropic). In particular, two observers in
different galaxies that are being carried apart by the Hubble flow see the same blackbody
spectrum.14

However, there is a Doppler shift of the CMB caused by an observer’s peculiar velocity
through space, relative to the Hubble flow. Using Wien’s law, a shift in wavelength can be
expressed as a change in the temperature of the blackbody radiation. For example, a slight
blueshift (smaller λmax) would correspond to a slightly higher temperature. Suppose an ob-
server at rest relative to the Hubble flow determines that the cosmic microwave background
has a temperature Trest. Then, the temperature measured by an observer with a peculiar
velocity v relative to the Hubble flow is

Tmoving = Trest

√

1 − v2/c2

1 − (v/c) cos θ
, (61)

14It is assumed that the two observers agree on the age of the universe when their measurements are made. Of
course, each galaxy views the other as it appeared at an earlier time.
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where θ is the angle between the direction of observation and the direction of motion.
Both observers see a blackbody spectrum, but the moving observer measures a slightly
hotter temperature in the forward direction (θ = 0) and a slightly cooler temperature in the
opposite direction. If the peculiar velocity is v ≪ c, then

Tmoving ≃ Trest

(

1 + v

c
cos θ

)

(62)

(the proof is left as an exercise). The second term on the right-hand side, called the dipole
anisotropy of the CMB, has been detected and measured; see Fig. 10. The temperature
variation indicates that the peculiar velocity of the Sun relative to the Hubble flow is 370.6 ±
0.4 km s−1 in the direction (α, δ) = (11.2h, −7◦), between the constellations of Leo and
Crater. Of course, the Sun is orbiting the Galaxy, and the Milky Way is moving within the
Local Group of galaxies. When these motions are accounted for, the peculiar motion of the
Local Group relative to the Hubble flow is about 627 km s−1 toward (α, δ) = (11.1h, −27◦),
in the middle of the constellation Hydra. From this observation and measurements of the
velocities of other galaxies and clusters of galaxies, astronomers have discovered a large-
scale streaming motion of thousands of galaxies at ∼ 600 km s−1 in the direction of (α, δ) =
(13.3h, −44◦) in the constellation Centaurus. The Hydra–Centaurus supercluster is also
being carried along in this riverlike perturbation of the Hubble flow.

After the dipole anisotropy has been subtracted from the CMB, the remaining radiation
is incredibly isotropic, having nearly equal intensity in all directions. Sensitive instruments,
however, have revealed that the CMB does have hotter and cooler areas. The CMB appears
as a patchwork of small regions, about 1◦ degree or less in diameter, where the temperature
departs from the average value (T0) by about one part in 105. Careful observations and
analyses of these regions by WMAP and various ground-based and balloon-borne experi-
ments have produced the first precision measurement of cosmological parameters.

FIGURE 10 The dipole anisotropy in the CMB caused by the Sun’s peculiar velocity, shown
in Galactic coordinates. The figure is a combination of observations made at 53 GHz and 90 GHz.
Lighter shades are somewhat hotter, and darker shades are somewhat cooler, than the 2.725-K CMB.
The horizontal bright feature is due to Galactic sources. (Figure from Smoot et al., Ap. J. Lett., 371,
L1, 1991.)
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We will continue to use the WMAP values of these parameters throughout this chapter.

The Sunyaev–Zel’dovich Effect

It should be emphasized that an observer in a galaxy being carried along with the Hubble
flow (no peculiar velocity) does not measure a Doppler shift of the CMB. An observer in a
distant galaxy receding from us at an appreciable fraction of the speed of light sees the same
CMB spectrum that we do. Evidence of this is produced when low-energy photons of the
CMB pass through the hot (≃ 108 K) ionized intracluster gas in a rich cluster of galaxies.
A small fraction (typically 10−3 to 10−2) of the photons are scattered to higher energies
by the high-energy electrons in the gas. This inverse Compton scattering increases the
frequency of a scattered photon by an average amount %ν of

%ν

ν
= 4

kTe

mec2
, (63)

where Te is the temperature of the electron gas. The resulting distortion of the CMB
spectrum, shown in Fig. 11, is called the thermal Sunyaev–Zel’dovich effect
[named for two Russians, astrophysicist Rashid Sunyaev and physicist Yakov Zel’dovich
(1914–1987)].15 Although the spectrum no longer has the precise shape of a blackbody,
its translation to higher frequencies may be used to define an effective decrease %T in the
temperature T0 of the CMB of approximately16

%T

T0
≃ −2

kTe

mec2
τ (64)

where τ is the optical depth of the intracluster gas along the line of sight. Typical values
of %T/T0 are a few times 10−4. Observations of the Sunyaev–Zel’dovich effect for many
clusters of galaxies confirm that it is independent of the cluster’s redshift, as expected if the
CMB spectrum observed at a cluster is not affected by the cluster’s recessional velocity.
Figure 12 shows the Sunyaev–Zel’dovich effect surrounding two clusters of galaxies. In
addition to confirming the cosmological nature of the CMB, the Sunyaev–Zel’dovich effect
is a promising probe of the properties and evolution of rich clusters of galaxies in the early
universe.

Does the CMB Constitute a Preferred Frame of Reference?

It may seem to you that the frame of reference in which the CMB appears isotropic is a
preferred frame of reference that is truly motionless, in violation of the postulates of special
relativity. We should remember, however, that general relativity is concerned with
local inertial reference frames. There is no single frame

15If the cluster has a peculiar velocity, the bulk motion of the intracluster gas produces an additional Doppler shift
of the scattered photons. This smaller perturbation of the CMB spectrum is called the kinetic Sunyaev–Zel’dovich
effect.
16The leading coefficient in Eq. ( 64) is equal to −2 only on the Rayleigh–Jeans (long-wavelength) side of the
spectrum.
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FIGURE 11 The undistorted CMB spectrum (dashed line) and the spectrum distorted by the
Sunyaev–Zel’dovich effect (solid line). In a rich cluster of galaxies, CMB photons may be scattered
to higher frequencies by colliding with the electrons in the hot intracluster gas. For frequencies less
than the peak frequency, more photons are scattered out of a frequency interval than into it, so the
intensity at that frequency decreases. Similarly, for frequencies greater than the peak frequency, fewer
photons are scattered out of a frequency interval than into it, so the intensity at that frequency increases.
The net result is a shift of the CMB spectrum to higher frequencies. The calculated distortion has been
exaggerated by employing a fictional cluster 1000 times more massive than a typical rich cluster of
galaxies. (Figure adapted from Carlstrom, Holder, and Reese, Annu. Rev. Astron. Astrophys., 40, 646,
2002. Reproduced with permission from the Annual Review of Astronomy and Astrophysics, Volume
40, ©2002 by Annual Reviews Inc.)

of reference that is capable of covering the entire universe. Although we can define a local
reference frame at rest relative to the glow of the CMB, we can also define a local reference
frame at rest relative to the motions of nearby stars (the local standard of rest).

Both of these local inertial reference frames measure velocities relative to
an arbitrary standard of rest and do not violate the tenets of relativity.

A Two-Component Model of the Universe

Recall that in Section 1 we considered the expansion of a universe with a single compo-
nent, pressureless dust, that was slowing down due to its own self-gravity. According to the
relativistic equivalence of mass and energy, however, the effect of the cosmic microwave
background on the expansion must also be included. In fact, we now know that the gravita-
tional effect of the CMB photons dominated the dynamics of the early universe, although
their effect is completely negligible in the present universe.
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To incorporate this new feature, we introduce a two-component model of the universe,
one that includes both the total density of matter (baryonic and dark), ρm, and the equiv-
alent mass density of relativistic particles (such as neutrinos and CMB photons), ρrel. It
is the equation of state P = wu (Eq. 52) that determines whether we count a particle
as matter (wm = 0), a relativistic particle (a photon or neutrino, for which wrel = 1/3), or
(in Section 3) dark energy (w. = −1). (The gravitational effect of the neutrinos’ mass
clearly persists; however, we will neglect the neutrinos’ contribution to the value of $m,0

of roughly 0.003.)
Equation ( 53) shows that particles belonging to different categories are diluted dif-

ferently by the expansion of the universe. Of course, at earlier epochs when the universe
was much hotter, even massive particles were relativistic. For example, an electron gas at
T > 6 × 109 K has kT > mec

2, implying that the electron gas is relativistic and its equa-
tion of state is described by wrel = 1/3. However, we will ignore such complications
for the remainder of this chapter and will consider photons and neutrinos as our only
relativistic particles.

With both matter and relativistic particles included, Eq. ( 10) becomes

[

(

1
R

dR

dt

)2

− 8
3
πG (ρm + ρrel)

]

R2 = −kc2. (65)

The equivalent mass density of the CMB photons comes from the energy density of black-
body radiation,

urad = aT 4, (66)
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where a is the radiation constant. We will rewrite this in the form

urad = 1
2

gradT
4, (67)

where grad is the number of degrees of freedom of a photon. The value of g reflects the
number of spin states nspin and the possible existence of an antiparticle (nanti = 1 or 2). A
photon is its own antiparticle (nanti = 1) and can exist in nspin = 2 spin states, corresponding
to its two possible polarizations with its spin parallel or antiparallel to its motion. Thus

grad = 2 (68)

for photons, as expected.

Neutrino Decoupling

We will neglect the small mass of the other relativistic particle we are considering, the neu-
trino, and treat it as a massless particle. The very early universe was sufficiently dense that
neutrinos attained thermal equilibrium, with a spectrum very similar to that of blackbody
radiation, except the “−1” in the denominator of that equation becomes a “+1” for
neutrinos. This occurs because photons are bosons, described by Bose–Einstein statis-
tics, while neutrinos are fermions, described by Fermi–Dirac statistics.
Although the cosmic neutrino background has yet to be observed (not surprising given the
challenge of detecting solar neutrinos), we have confidence that it exists.

Recall that there are three types (or flavors) of neutrinos—electron neutrinos, muon
neutrinos, and tau neutrinos—and that each neutrino has a corresponding antineutrino. The
total energy density of all three flavors is given by

uν = 3 × 7
8

× aT 4
ν = 2.625 aT 4

ν , (69)

where the 7/8 derives from the “+1” in the expression for Fermi–Dirac statistics, and Tν
is the temperature of the neutrinos. As before, we write this as

uν = 1
2

(

7
8

)

gνT
4
ν , (70)

where

gν = 6 (71)

for neutrinos.
In general,

g = (# types)nantinspin. (72)

There is an antineutrino for each of the three types of neutrino so nanti = 2, and neutrinos
have one spin state (all neutrinos are left-handed) so nspin = 1. We therefore recover gν =
3 × 2 × 1 = 6.
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The usual T in cosmology is always taken to be the temperature of the blackbody
photons. However, the Tν in Eq. ( 70) is the temperature of the neutrinos. For T >

3.5 × 1010 K, these temperatures are the same, and T = Tν . However, as the temperature
dropped below about 3.5 × 1010 K, the expansion of the universe diluted the number density
of neutrinos, and the neutrinos ceased to interact with other particles. Essentially, the cosmos
expanded faster than the neutrino interaction rate, and the neutrinos decoupled from the
other constituents of the universe. Since the time of neutrino decoupling, the neutrinos
have expanded and cooled at their own rate, independently of the CMB.

The Energy Density of Relativistic Particles

Because the annihilation of electrons with positrons continued to supply energy to the pho-
tons (via e− + e+ → γ + γ ) but not to the neutrinos, the neutrino temperature is somewhat
less than the temperature of the CMB photons. Although it is beyond the scope of this book,
it can be shown that Tν is related to the temperature T of the CMB photons by

Tν =
(

4
11

)1/3

T . (73)

The total neutrino energy density is therefore

uν = 1
2

(

7
8

)

gν

(

4
11

)4/3

aT 4 = 0.681aT 4. (74)

Thus the energy density for relativistic particles, both photons and neutrinos, is

urel = 1
2

g∗T
4, (75)

where

g∗ = grad +
(

7
8

)

gν

(

4
11

)4/3

= 3.363 (76)

is the effective number of degrees of freedom of the relativistic particles. We also define
the equivalent mass density of relativistic particles as

ρrel = urel

c2
= g∗T 4

2c2
. (77)

This value of g∗ is valid back to the end of electron–positron annihilation, at about t = 1.3 s.
For the higher temperatures of the very early universe (t < 1 s),
however, we will encounter a greater number of relativistic particles, and the value of g∗
will grow accordingly.

The factors of 7/8 and (4/11)4/3 do not describe degrees of freedom, and therefore we separate them from the
definition of gν .
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Employing Eq. ( 8), Eq. ( 65) becomes

H 2 [1 − ($m +$rel)] R2 = −kc2, (78)

where

$m = ρm

ρc

= 8πGρm

3H 2
(79)

is the density parameter for matter (both baryonic and dark), and

$rel = ρrel

ρc

= 8πGρrel

3H 2
= 4πGg∗aT 4

3H 2c2
(80)

is the density parameter for relativistic particles (both photons and neutrinos). Note that
Eq. ( 78) implies that for a flat (k = 0) two-component universe,$m +$rel = 1. Inserting
T0 = 2.725 K, we find that

$rel,0 = 8.24 × 10−5,

which is very small compared with [$m,0]WMAP = 0.27.

Transition from the Radiation Era to the Matter Era

Recalling that wrel = 1/3 for relativistic particles, Eq. ( 53) yields

R4ρrel = ρrel,0, (81)

which shows how the equivalent mass density of relativistic particles varies with the scale
factor R. By comparing this with Eq. ( 5),

R3ρm = ρm,0, (82)

for massive particles, we notice that ρrel increases more rapidly than the mass density ρm

as the scale factor becomes smaller. As R → 0 in the early universe, therefore, there must
have been an early era when the radiation (i.e., all relativistic particles, not just photons and
neutrinos) dominated and governed the expansion of the universe. The transition from this
radiation era to the present matter era occurred when the scale factor satisfied ρrel = ρm,
or $rel = $m. From Eqs. (79–82), the equality of $rel and $m occurred when the scale
factor was

Rr,m = $rel

$m,0
= 4.16 × 10−5$−1

m,0h
−2,

with a WMAP value of

Rr,m = 3.05 × 10−4.

This corresponds to a redshift (Eq. 4) of

zr,m = 1
Rr,m

− 1 = 2.41 × 104$m,0h
2,
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which for WMAP values is

zr,m = 3270.

This is in very good agreement with the WMAP result,

[zr,m]WMAP = 3233 +194
−210,

for the redshift when the the universe passed from being radiation-dominated to being
matter-dominated.

Using RT = T0 (Eq. 58), the temperature at this transition was

Tr,m = T0

Rr,m

= 6.56 × 104$m,0h
2 K,

or

Tr,m = 8920 K

using WMAP values. Thus, when the universe had cooled to 8920 K and typical separations
were some 4 × 10−5 of their present extent, relativistic particles ceased to govern the cosmic
expansion, and matter assumed a dominant role.

Expansion in the Two-Component Model

We are now ready to determine how the early universe expanded with time. To discover how
the scale factor, R, behaved during the radiation era, we begin by substituting Eqs. ( 81)
and ( 82) into Eq. ( 65) to find

[

(

dR

dt

)2

− 8
3
πG

(ρm,0

R
+ ρrel,0

R2

)

]

= −kc2. (83)

Because the early universe was essentially flat, we can set k = 0 and use a bit of algebra to
obtain

∫ R

0

R′ dR′
√

ρm,0R′ + ρrel,0
=
√

8πG

3

∫ t

0
dt ′.

Integrating this eventually yields an expression for the age of the universe as a function of
the scale factor R:

t (R) = 2
3

R
3/2
r,m

H0
√

$m,0

[

2 +
(

R

Rr,m

− 2
)

√

R

Rr,m

+ 1

]

, (84)

where

2
3

R
3/2
r,m

H0
√

$m,0
= 5.51 × 1010h−4$−2

m,0 s = 1.75 × 103h−4$−2
m,0 yr.
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The time tr,m of the transition from a radiation-dominated to a matter-dominated universe
may be found by setting R/Rr,m = 1 and using WMAP values of h = 0.71 and$m,0 = 0.27
to obtain

tr,m = 1.74 × 1012 s = 5.52 × 104 yr. (85)

The form of Eq. ( 84) becomes simpler deep in the radiation era, when R ≪ Rr,m. It
is left for you to show that in this limit the factors of$m,0 cancel, resulting

R(t) =
(

16πGg∗a

3c2

)1/4

T0 t1/2 (86)

= (1.51 × 10−10 s−1/2)g1/4
∗ t1/2. (87)

This shows that during the radiation era, R ∝ t1/2. Using T = T0/R quickly reveals the
temperature deep in the radiation era:

T (t) =
(

3c2

16πGg∗a

)1/4

t−1/2 (88)

= (1.81 × 1010 K s1/2)g−1/4
∗ t−1/2. (89)

At the other extreme, for R ≫ Rr,m, Eq. ( 84) becomes

t (R) = 2
3

R3/2

H0
√

$m,0
(90)

so

R(t) =
(

3
2

H0t
√

$m,0

)2/3

=
(

3
√

$m,0

2

)2/3
(

t

tH

)2/3

, (91)

using tH = 1/H0 for the Hubble time. As expected, this displays the R ∝ t2/3 dependence
we found earlier in Eq. ( 30) for a flat universe of pressureless dust. Equation ( 90) can
be expressed in terms of z using R = 1/(1 + z) to obtain

t (z)

tH
= 2

3
1

(1 + z)3/2
√

$m,0
, (92)

which may be compared with Eq. ( 40) for a flat universe of pressureless dust. Evaluating
these for R = 1 (z = 0) and using WMAP values gives the age of the universe as 12.5 billion
years, a billion years more than the mean age of the oldest globular clusters.
However, as we will see later, this estimate of the age of the universe is still about one billion
years too short, as determined by a full analysis of the WMAP results.
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Big Bang Nucleosynthesis

The process that manufactured the lightest elements in the early universe is known as Big
Bang nucleosynthesis. We are now prepared to ask, why is approximately one-quarter
of the mass of the universe in the form of helium? The temperature at time t during the
radiation era is given by Eq. ( 89). At a temperature just below 1012 K (t ∼ 10−4 s),
the universe contained a mixture of photons (γ ), electron–positron pairs, and electron and
muon neutrinos and their antiparticles (νe, νµ, νe, νµ). There were also a smaller number
of protons and neutrons, about five for every 1010 photons, that were constantly being
transformed into each other via the reactions

n ! p+ + e− + νe (93)

n + e+ ! p+ + νe (94)

n + νe ! p+ + e−. (95)

These constant conversions were easily accomplished because the mass difference between
a proton and a neutron is only

(mp − mn)c
2 = 1.293 MeV,

while the characteristic thermal energy of particles at 1012 K is kT ≃ 86 MeV. The Boltz-
mann equation gives the equilibrium ratio of the number density of neutrons, nn,
to the number density of protons, np, as

nn

np

= e−(mp−mn)c
2/kT . (96)

At 1012 K, this ratio is 0.985. The numbers of neutrons and protons were nearly equal
because the mass difference between the protons and neutrons is negligible at such a high
temperature.

As the universe expanded and the temperature fell, the ratio of the number densities con-
tinued to be given by Eq. ( 96) as long as reactions (93– 95) proceeded fast enough
to reach equilibrium. Detailed calculations show, however, that when the temperature had
declined to about 1010 K, the timescale for these reactions exceeded the characteristic
timescale of the expansion given by 1/H(t) = 2t.

At a bit above 1010 K, the reaction rates decreased significantly, for two reasons. First,
the expansion had reduced the energy of the neutrinos until they were unable to participate
in reactions (93–95). Also, shortly thereafter, the characteristic thermal energy of the
photons, kT , fell below the 1.022-MeV threshold for creating electron–positron pairs via
the pair-production process γ → e− + e+. As a result, the electrons and positrons
annihilated each other without being replaced, leaving only a small remainder of excess
electrons. For these reasons, the neutrons could not be replenished as fast as they
were destroyed, and there was not enough time for these reactions to reach equilibrium.
In a sense, the creation of new neutrons could not keep up with the rate of expansion
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of the universe. The ratio of the number densities then became “frozen” at its value of
nn/np = 0.223 when T ≃ 1010 K.

At this point, there were 223 neutrons for every 1000 protons (or 446 neutrons for every
2000 protons, which will be used in what follows), and essentially no more neutrons were
being created. The beta decay reaction [the forward reaction in Eq. ( 93)] continued
to operate, however, converting neutrons into protons with a half-life of τ1/2 = 614 s =
10.2 min. It was not yet possible for the protons and neutrons to combine to form deuterium
nuclei (2

1H) via

p+ + n ! 2
1H + γ ,

because at temperatures exceeding 109 K, the energetic radiation quickly dissociated the
nuclei. As a result, the neutrons and protons remained separated until the temperature had
dropped from 1010 K to 109 K. According to Eq. ( 89) with g∗ = 3.363, this took
approximately

t (109 K) − t (1010 K) = 178 s − 1.78 s ≈ 176 s.

From the law of radioactive decay, in this amount of time the 446 neutrons mentioned
previously declined to 366, and the number of protons rose to 2080. Below 109 K the
neutrons and protons readily combined to form as many deuterium nuclei as possible.
A number of reactions then led to the formation of 4

2He, the most tightly bound nucleus
involved in Big Bang nucleosynthesis. The most efficient reactions leading to 4

2He include

2
1H + 2

1H ! 3
1H + 1

1H
3
1H + 2

1H ! 4
2He + n

and

2
1H + 2

1H ! 3
2He + n

3
2He + 2

1H ! 4
2He + 1

1H.

[Note that these reactions differ from those of the pp chain, which produce helium in
the cores of stars. ] No other nuclei were formed with abundances approaching that of
4
2He, although there were traces of 2

1H, 3
2He, and 7

3Li (from the reaction 4
2He + 3

1H → 7
3Li

+ γ ). Figure 13 shows the network of reactions involved in Big Bang nucleosynthesis.
Our sample of 366 neutrons and 2080 protons could form 183 4

2He nuclei, with 1714
protons (1

1H) left over. Because a 4
2He nucleus is four times more massive than a 1

1H
nucleus, the preceding analysis shows that the mass fraction of 4

2He in the universe
should have been about

4(183)

1714 + 4(183)
= 0.299.

The most obvious route to helium-4 is 2
1H + 2

1H ! 4
2He + γ . However, this is a “forbidden” reaction and has a

negligibly small cross section.
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1. p Æ̈ n
2. p(n, ")d
3. d(p, ")3He
4. d(d, n)3He
5. d(d, p)t
6. t (d, n)4He
7. t(#, ")7Li
8. 3He(n, p)t
9. 3He(d, p)4He

10. 3He(#, ")7Be
11. 7Li( p, #)4He
12. 7Be(n, p)7Li

FIGURE 13 The reaction network that is responsible for Big Bang nucleosynthesis. The letter
“d” stands for deuterium, and “t” stands for tritium. (Figure adapted from Nollett and Burles, Phys.
Rev. D, 61, 123505, 2000.)

This rough estimate is consistent with the primordial percentage of helium inferred from
observations, between 23% and 24%.

Because essentially all of the available neutrons were incorporated in the helium-4 (4
2He)

nuclei, the abundance of helium-4 was insensitive to the density of the universe at the time.
However, the amounts of deuterium, helium-3, and lithium-7 manufactured in this way
depend sensitively on the density of ordinary matter at the time of the reactions. Figure 14
shows the abundances of these nuclei as a function of the prevailing present density of
baryonic matter. Comparing the theoretical curves with the observations makes it apparent
that the present density of baryonic matter probably lies between 2 and 5 × 10−28 kg m−3,
only a few percent of the critical density of 1.88 × 10−26h2 kg m−3. This explanation of the
abundances of the light elements that were not manufactured by stars is one of the greatest
achievements of the Big Bang theory.

The Origin of the Cosmic Microwave Background

Now that we have described the nature of the universal expansion, let’s return to the question
of the origin of the CMB. When we observe the cosmic microwave background, what are we
actually viewing? The copious electrons in the hot environment of the very early universe
obstructed the photons of the cosmic microwave background, allowing them to travel only
relatively short distances before being scattered. The scattering of photons by free electrons
kept the electrons and photons in thermal equilibrium, meaning that they had the same
temperature. However, as the expansion of the universe diluted the number density of

The CMB photons are also scattered by free protons, but the cross section for photon–proton scattering is
smaller than the Thomson cross section for electrons, by a factor of m2

e/m2
p , so it can be neglected. The Coulomb

interaction between the electrons and protons kept the protons in thermal equilibrium with the electrons and
photons.
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FIGURE 14 The calculated mass abundances of helium-4, deuterium, helium-3, and lithium-
7 as a function of the present density of baryonic matter in the universe. The wide bar delineates
the consistency interval, the range of values of $b,0h

2 that agree with the observed abundances.
The narrow dark stripe at the right edge of the consistency interval corresponds to the abundances
of primeval deuterium measured using the Lyman-α forest of absorption lines in high-z molecular
clouds observed in front of quasars. The WMAP value of $b,0h

2 = 0.0224 runs down the center of
the dark stripe, and the WMAP value of the critical density ($b,0h

2 = 1h2 = 0.504) is shown at the
right. Note that the agreement between the theoretical and observed abundances spans nine orders of
magnitude. (Figure adapted from Schramm and Turner, Rev. Mod. Phys., 70, 303, 1998.)

free electrons, the average time between scatterings of a photon by an electron gradually
approached the characteristic timescale of the universal expansion,

τexp(t) ≡
(

1
R(t)

dR(t)

dt

)−1

= 1
H(t)

.

This expression is analogous to that of the pressure scale height. As the time of decoupling
approached, the photons became increasingly disengaged from the electrons.

If the electrons had remained free, decoupling would have occurred when the universe
was about 20 million years old. However, when the universe was only some one million
years old (1013 s), another important event altered the opacity of the
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rendered it transparent. The independent evolution of radiation and matter began when
the temperature had cooled sufficiently to allow the free electrons to combine with
nuclei of hydrogen and helium. This formation of neutral atoms is sometimes referred
to as recombination, an oddly inappropriate term since the electrons and nuclei had never
been previously combined into atoms! The loss of free electrons and the resulting drop
in opacity completed the decoupling of radiation and matter, freeing the photons to roam
unhindered throughout a newly transparent universe. The photons of the cosmic microwave
background that we observe today were last scattered during the time of recombination.

The Surface of Last Scattering

We define the surface of last scattering as a spherical surface, centered on the Earth, from
which the CMB photons just now arriving at Earth were last scattered before beginning
their unimpeded journey to us. (Of course, other observers in the universe are at the centers
of their own surfaces of last scattering.) The surface of last scattering is the farthest redshift
we can possibly observe at this moment in time. More accurately, because recombination
did not happen all at once, the surface of last scattering has a thickness%z. Just as the light
from the Sun was last scattered from somewhere within its photosphere, the CMB photons
originated within a layer, the “surface” of last scattering.20 The surface of last scattering
can therefore be thought of as a curtain that screens everything prior to decoupling from
the direct view of astronomers. The earliest moments of the universe are hidden behind this
veil and must be investigated indirectly.

The Conditions at Recombination

The temperature at recombination can be estimated through use of the Saha equation,

NII

NI
= 2ZII

neZI

(

2πmekT

h2

)3/2

e−χI/kT .

Assuming (incorrectly) a composition of pure hydrogen for simplicity, we use ZI = 2 and
ZII = 1. It is useful to define f to be the fraction of hydrogen atoms that are ionized, so

f = NII

NI + NII
= NII/NI

1 + NII/NI
, (97)

or

NII

NI
= f

1 − f
. (98)

20The difference between the Sun’s photosphere and the surface of last scattering is that the photosphere has a
spatial thickness, while the surface of last scattering has a thickness in terms of redshift or, equivalently, time.
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For ionized hydrogen there is one free electron for every proton, ne = np, so the number
density of free electrons depends on f as

ne = np = f (np + nH ) = fρb

mH

, (99)

where ρb is the density of baryonic matter. Note that in obtaining Eq. ( 99) from
Eq. ( 97), NI corresponds to nH , the number density of neutral hydrogen atoms, and
NII corresponds to np, the number density of protons (ionized hydrogen atoms). Using
Eq. ( 82), we can write this as

ne(R) = fρb,0

mHR3
, (100)

Substituting Eqs. ( 98) and ( 100) into the Saha equation, together with Eq. ( 58) for
the blackbody temperature, we find

f

1 − f
= mHR3

fρb,0

(

2πmekT0

h2R

)3/2

e−χIR/kT0 , (101)

where T0 = 2.725 K and χI = 13.6 eV. This can be solved numerically to find that the
universe had cooled sufficiently for one-half of its electrons and protons to combine to
form atomic hydrogen (f = 0.5) when the value of the scale factor was approximately
R ≈ 7.25 × 10−4 (z ≈ 1380), corresponding to a temperature of about 3760 K [again from
Eq. ( 58)].

More precisely, the WMAP value for the redshift at the time of decoupling (i.e., the
surface of last scattering) is

[zdec]WMAP = 1089 ± 1.

We will adopt this as the value of the redshift for both recombination and decoupling. Using
Eqs. ( 4) and ( 58) yields a temperature at recombination of

Tdec = T0(1 + zdec) = 2970 K.

This is lower than our estimate of 3760 K because the photons created by the formation
of some atoms were then absorbed by other atoms, putting these atoms into excited states
from which they were easier to ionize. Thus a slightly cooler temperature was needed
to complete the recombination process. It is important to remember that at times earlier
than recombination, the radiation and matter shared a common temperature, whereas after
recombination, the temperatures of the radiation and matter must be distinguished. For the
remainder of the text, it is the radiation temperature (the temperature of the CMB) that will
be of interest after recombination.

The WMAP value for the time at which recombination and decoupling occurred is

[tdec]WMAP = 379+8
−7 kyr. (102)
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Of course, these events did not occur at a single instant of time; the WMAP value of the
decoupling time interval is

[%tdec]WMAP = 118+3
−2 kyr.

This corresponds to the surface of last scattering having a thickness (in redshift) of

[%zdec]WMAP = 195 ± 2.

The Dawn of Precision Cosmology

Before ending this section, it is worth taking a few moments to reflect on the power of
simple mathematics to illuminate the earliest stages of the universe. Before the discovery of
the cosmic microwave background, theorizing about the early universe was not considered
to be legitimate science by many physicists. The point is well made by Steven Weinberg in
his book The First Three Minutes:

This is often the way it is in physics—our mistake is not that we take our
theories too seriously, but that we do not take them seriously enough. It is
always hard to realize that these numbers and equations we play with at our
desks have something to do with the real world. . . . The most important thing
accomplished by the ultimate discovery of the 3◦ K radiation background in
1965 was to force us all to take seriously the idea that there was an early
universe.

The results of the Wilkinson Microwave Anisotropy Probe have now taken cosmology to
a level that was hardly imaginable when the first edition of An Introduction to Modern
Astrophysics was published in 1996. In remarks made at the WMAP press conference on
February 11, 2003, astrophysicist John Bahcall said,

Every astronomer will remember where he or she was when they first heard the
WMAP results. I certainly will. . . . For cosmology, the formal announcement
today represents a “rite of passage” from speculation to precision science.

RELATIVISTIC COSMOLOGY

The appearance of objects at truly cosmological distances is affected by the curvature of the
spacetime through which the light travels on its way to Earth. The geometrical properties
of the universe as a whole will be best understood by starting with simple analogies before
proceeding to the more comprehensive description that only Einstein’s general theory of
relativity can provide.

Euclidean, Elliptic, and Hyperbolic Geometries

The foundations of plane geometry (appropriate for a flat universe) were laid by Euclid
sometime around 300 b.c. Euclid’s Elements consists of 13 “books” (chapters) that contain
465 theorems. These theorems, in turn, are derived from just five postulates that embody
self-evident truths and so are stated without proof. In Euclid’s words,
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1. It is possible to draw a straight line from any point to any point.

2. It is possible to produce [extend] a finite straight line continuously in a straight line.

3. It is possible to describe a circle with any center and distance [radius].

4. All right angles are equal to one another.

Euclid’s statement of his fifth postulate is awkward and opaque:

5. If a straight line falling on two straight lines makes the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely, meet
on the side on which the angles are less than the two right angles.

A moment’s thought will show that Euclid’s fifth postulate concerns the behavior of parallel
lines.21 It is equivalent to the following statement, due to an English mathematician, John
Playfair (1748–1819):

5a. Given, in a plane, a line L and a point P not on L, then through P there exists one
and only one line parallel to L.

Figure 15(a) illustrates Playfair’s version of the parallel postulate in Euclidean geometry.
The cumbersome statement of Euclid’s fifth postulate led some mathematicians to sus-

pect that it might be derived from the first four. In the nineteenth century, mathematicians
mounted an attack on the parallel postulate by denying it, in hopes that they would reach a
contradiction. Such a proof by contradiction would make the fifth postulate dependent on the
rest of geometry and so abolish its stature as an independent postulate. To their astonishment,
instead of arriving at a contradiction as they expected, several renowned mathematicians
realized that they had developed alternative geometries, each as self-consistent as Euclid’s.

P
P

P

L

L L
(a) (b) (c)

FIGURE 15 The parallel postulate, illustrated for three alternative geometries: (a) Euclidean,
(b) elliptic, and (c) hyperbolic.

21Euclid defines parallel lines as “straight lines which, being in the same plane and being produced indefinitely in
both directions, do not meet one another in either direction.”

Cosmology



Foremost among these mathematicians were Carl Frederich Gauss (1777–1855), Nikolai
Lobachevski (1793–1856), János Bolyai (1802–1860), and Bernhard Riemann (1826–
1866). There are three different fifth postulates, each of which leads to a perfectly well-
behaved geometry. In 1868 it was proved that the two additional, non-Euclidean geometries
are as logically consistent as Euclid’s original version. In addition to Playfair’s version of
the parallel postulate given above for Euclidean geometry, there is the fifth postulate of the
elliptic geometry developed by Riemann:

5b. Given, in a plane, a line L and a point P not on L, then through P there exists no
line parallel to L.

As Fig. 15(b) shows, this describes the geometry of the surface of a sphere, where two
lines that both start out perpendicular to the sphere’s equator meet at its poles. In elliptic
geometry, the angles of a triangle add up to more than 180◦, and the circumference of a
circle is less than 2πr .

On the other hand, the fifth postulate of the hyperbolic geometry, developed indepen-
dently by Gauss, Bolyai, and Lobachevski, is more generous than Euclid’s:

5c. Given, in a plane, a line L and a point P not on L, then through P there exist at least
two lines parallel to L.

Figure 15(c) shows this geometry applied to a saddle-shaped hyperboloid. Neither of
the two lines shown passing through point P intersects the line L, and it is possible to draw
(in this example) infinitely many more. In hyperbolic geometry, the angles of a triangle add
up to less than 180◦, and the circumference of a circle exceeds 2πr .

The logical independence of the parallel postulate means that it cannot be derived from
Euclid’s earlier postulates. Which geometry to adopt is an arbitrary choice, since all three
are equally valid from a mathematical viewpoint. Which of these three geometries describes
the spatial structure of the physical universe is a question that must be answered empirically,
by observation. Gauss himself conducted such an experiment beginning in 1820, when he
directed a survey of the Germanic state of Hanover. After carefully measuring the distances
between three mountaintops that formed a huge triangle (the longest side was 107 km),
he determined that the sum of the triangle’s angles was 180◦—within experimental error.
Gauss’s experiment was not sensitive enough to measure the curvature of space near Earth’s
surface.

The Robertson–Walker Metric for Curved Spacetime

The spacetime surrounding any massive object is indeed curved. The spatial curvature
is revealed in the radial term of the Schwarzschild metric

However, the Schwarzschild metric is valid only outside matter. We will have
to find another metric to describe the spacetime of the dust-filled universe of Section 1.
Although a derivation of this metric is beyond the scope of this book, the following ar-
gument should help elucidate some of its properties. Our search for the metric is made
somewhat easier by the cosmological principle. In a homogeneous and isotropic universe,
although the curvature of space may change with time, the curvature must have the same
value everywhere at a given time since the Big Bang.
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Let’s begin by considering the curvature of a two-dimensional surface. “Curvature” has
a precise mathematical meaning; for example, a sphere of radius R has a constant curvature,
K , that is defined to be K ≡ 1/R2. Gauss realized that the curvature of any surface can be
determined locally, on an arbitrarily small patch of its surface. It is instructive to imagine
how the curvature of a sphere of radius R might be measured by a tiny (but talented) ant
on the sphere’s surface. It is free to roam about the sphere’s surface but is unable to gain an
outside perspective and view the sphere as a whole. How could the inquisitive ant determine
the sphere’s curvature?

Starting at the north pole of the sphere (call this point P ; see Fig. 16), the ant could
mark a series of other points all of which are a distance D from P . When connected, these
points form a circle with P at its center. The ant now measures the circumference, Cmeas,
of the circle and compares it with the expected value of Cexp = 2πD. However, the two
values do not agree; since D = Rθ ,

Cexp = 2πRθ

while

Cmeas = 2πR sin θ = 2πR sin(D/R).

When the ant divides the fractional discrepancy between these two values of the circumfer-
ence by the expected area of the circle, Aexp = πD2, and then multiplies by 6π , the result
(in the limit D → 0) is the curvature of the sphere. That is, the ant starts with

6π · Cexp − Cmeas

CexpAexp
= 6π · 2πD − Cmeas

(2πD)(πD2)
= 3
π

2πD − Cmeas

D3
.

R$

D

P

R sin $

FIGURE 16 A local measurement of the curvature of a sphere.
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Substituting for Cmeas, the clever ant then uses a Taylor series for sin(D/R),

3
π

2πD − 2πR sin(D/R)

D3
= 6

D3

{

D − R

[

D

R
− 1

3!

(

D

R

)3

+ 1
5!

(

D

R

)5

+ · · ·
]}

= 1
R2

− 1
20

D2

R4
+ · · · .

In the limit D → 0, this is 1/R2, the curvature of the sphere. In fact, the prescription

K = 3
π

lim
D→0

2πD − Cmeas

D3
(103)

can be used to calculate the curvature at any point on a two-dimensional surface; see
Fig. 17. For a flat plane, K = 0, while for a saddle-shaped hyperboloid, K is negative
because the measured circumference exceeds 2πD.22

The next step toward the spacetime metric that describes a uniform dust-filled universe
comes from considering how a small distance is measured in two dimensions. For a flat
plane, polar coordinates are an appropriate choice of variables, and the differential distance
dℓ between two nearby points P1 and P2 on the plane [see Fig. 18(a)] is given by

(dℓ)2 = (dr)2 + (r dφ)2.

Polar coordinates can also be used to measure the differential distance between two
nearby points on the surface of a sphere. As an example, we will return to the surface of the

C = 2%D C < 2%D C > 2%D

Zero curvature Positive curvature Negative curvature

(a) (b) (c)

FIGURE 17 Calculating the curvature of a surface in three geometries: (a) a flat plane, (b) the
surface of a sphere, and (c) the surface of a hyperboloid.

22Unfortunately, it is not possible to visualize the negative curvature of the hyperboloid because its surface (unlike
a sphere’s) has infinite area. We cannot “step back” to view it as a whole.
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FIGURE 18 dℓ as measured for (a) a flat plane and (b) the surface of a sphere.

sphere of radius R and curvature K = 1/R2 considered previously. Then, as shown in
Fig. 18(b), the distance dℓ between two points P1 and P2 on the sphere is now given by

(dℓ)2 = (dD)2 + (r dφ)2 = (R dθ)2 + (r dφ)2.

But r = R sin θ , so dr = R cos θ dθ and

R dθ = dr

cos θ
= R dr√

R2 − r2
= dr
√

1 − r2/R2
.

The differential distance on the sphere’s surface may therefore be written as

(dℓ)2 =
(

dr
√

1 − r2/R2

)2

+ (r dφ)2,

in terms of the plane polar coordinates r and φ. More generally, in terms of the curvature
K of a two-dimensional surface,

(dℓ)2 =
(

dr√
1 − Kr2

)2

+ (r dφ)2.

The extension to three dimensions is accomplished simply by making a transition from
polar to spherical coordinates,

(dℓ)2 =
(

dr√
1 − Kr2

)2

+ (r dθ)2 + (r sin θ dφ)2, (104)

where r now measures the radial distance from the origin.
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Equation ( 104) shows the effect of the curvature of our three-dimensional universe
on spatial distances. Although the curvature of a two-dimensional spherical surface can be
seen by stepping back from the sphere and viewing it immersed in its three-dimensional
surroundings, there is unfortunately no fourth spatial dimension into which we can step
back to view the curvature of our universe.

The final step toward the spacetime metric comes from recalling that by “distance,” we
mean the proper distance between two spacetime events that occur simultaneously accord-
ing to an observer. In an expanding universe, the positions of two points must be recorded
at the same time if their separation is to have any meaning. In an isotropic, homogeneous
universe, there is no reason why time should pass at different rates at different locations;
consequently, the temporal term should simply be c dt .23 If we take

(ds)2 = (c dt)2 −
(

dr√
1 − Kr2

)2

− (r dθ)2 − (r sin θ dφ)2

as the metric for an isotropic, homogeneous universe, then for the proper distance agrees
with Eq. ( 104). That is, the differential proper distance is just dL =

√

−(ds)2 with
dt = 0.

All that remains is to express this metric in terms of the dimensionless scale factor, R(t),
defined by r(t) = R(t)ϖ (Eq. 3). Because the expansion of the universe affects all of
its geometric properties, including its curvature, it is useful to define the time-dependent
curvature in terms of a time-independent constant, k, as

K(t) ≡ k

R2(t)
. (105)

These substitutions for r and K result in

(ds)2 = (c dt)2 − R2(t)

[

(

dϖ√
1 − kϖ 2

)2

+ (ϖ dθ)2 + (ϖ sin θ dφ)2

]

, (106)

which is known as the Robertson–Walker metric. The Robertson–Walker metric deter-
mines the spacetime interval between two events in an isotropic, homogeneous universe,
just as the Schwarzschild metric is used to measure the interval between two events in
the curved spacetime surrounding a massive object. The name honors Howard Percy
Robertson (1903–1961) and Arthur Geoffrey Walker (1909–2001), who independently
demonstrated, in the mid-1930s, that this is the most general metric possible for describing
an isotropic and homogeneous universe.

In fact, we will use the same technique to defineϖ for a curved spacetime to specify the
radial coordinate r . From the Robertson–Walker metric, the area today (t = t0 so R(t0)= 1)
of a spherical surface centered on the point ϖ = 0 is 4πϖ 2. By definition, this surface is
located at the coordinate ϖ . It is important to remember that

23You should compare this with the Schwarzschild metric, where the presence of a central mass produces a
more complicated time dependence.
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comoving coordinate that follows a given object as the universe expands. Furthermore,
the time, t , is a universal time that essentially measures the time that has elapsed since the
Big Bang. This is not an absolute time, but merely reflects a choice of how the clocks of
distant observers are to be synchronized. For example, observers at various locations
throughout the universe could, theoretically, synchronize their clocks using the cosmo
logical principle by noting the precise temperature of the cosmic microwave background or
the exact value of the Hubble constant.

The Friedmann Equation

Solving Einstein’s field equations for an isotropic, homogeneous universe leads to a
description of the dynamic evolution of the universe in the form of a differential equation
for the scale factor, R(t). This is known as the Friedmann equation,

[

(

1
R

dR

dt

)2

− 8
3
πGρ

]

R2 = −kc2, (107)

named for the Russian meteorologist and mathematician Aleksandr Friedmann (1888–
1925).24 In 1922 Friedmann solved Einstein’s field equations for an isotropic, homogeneous
universe to obtain this equation for a nonstatic universe. The same equation was derived
independently in 1927 by the Belgian cleric Abbé Georges Lemaître (1894–1966).

The Cosmological Constant

Einstein realized that, as originally conceived, his field equations could not produce a static
universe. Hubble’s discovery of the expanding universe had not yet been made, so in 1917
Einstein modified his equations by adding an ad hoc term that contained the cosmological
constant, .. With this addition, the general solution of Einstein’s field equations is

[

(

1
R

dR

dt

)2

− 8
3
πGρ − 1

3
.c2

]

R2 = −kc2. (108)

Except for the cosmological constant, this is the same as the Friedmann equation. The
additional term containing . would result from the Newtonian cosmology of Section 1
if a potential energy term,

U. ≡ −1
6
.mc2r2,

24According to general relativity, the density ρ includes the equivalent mass density of photons and neutrinos, as
in Eq. ( 77).

Lemaître was the first person to propose that the present universe evolved from a highly dense beginning and
so is sometimes called “the father of the Big Bang.”

Some authors incorporate a factor of c2 into the definition of .; in this text, . has units of (length)−2.
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were added to the left-hand side of Eq. ( 1). The conservation of mechanical energy
applied to an expanding shell of mass m then becomes

1
2
mv2 − G

Mrm

r
− 1

6
.mc2r2 = −1

2
mkc2ϖ 2.

The force due to this new potential is

F. = −∂U.

∂r
r̂ = 1

3
.mc2r r̂ (109)

which is radially outward for . > 0. In effect, a positive cosmological
constant produces a repulsive force on the mass shell. This allowed Einstein to achieve his
goal of balancing his static, closed universe against a gravitational collapse in an (unsta-
ble) equilibrium. Later, after the expansion of the universe had been discovered, Einstein
expressed his regret at including the .-term in his field equations and has been quoted as
referring to it as “the biggest blunder of my life.”

A nonzero cosmological constant implies that space would be curved even in an empty
universe that is devoid of matter, an idea that Einstein disliked because it conflicted with
his ideas concerning mass as the cause of spacetime curvature. Ironically, Willem de Sitter
used Einstein’s field equations with the .-term to describe an expanding, empty universe,
with the expansion powered by the cosmological constant, and Hubble viewed the distance-
dependent redshift of de Sitter’s universe as theoretical support for an expanding universe
in his 1929 paper.

The Effects of Dark Energy

Nature has the final say, and in the late 1990s, observations forced astronomers to recognize
a nonzero cosmological constant. Although we will defer a discussion of the physical origin
of the cosmological constant to the next chapter, for the sake of discussion we will give the
physical source of the cosmological constant a name: dark energy.

We begin by rewriting the Friedmann equation (including the .-term) in a form that
makes it explicit that we are dealing with a three-component universe of mass (baryonic
and dark), relativistic particles (photons and neutrinos), and dark energy,

[

(

1
R

dR

dt

)2

− 8
3
πG(ρm + ρrel) − 1

3
.c2

]

R2 = −kc2. (110)

The fluid equation (Eq. 50) also emerges from solving Einstein’s field equations with
the cosmological constant included, as

d(R3ρ)

dt
= −P

c2

d(R3)

dt
, (111)

where ρ and P are the density and pressure due to every component of the universe (includ-
ing, as we shall see, dark energy). Note that although.was included in the field equations,

The term dark energy originated with cosmologist Michael Turner.
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it does not appear in the fluid equation. As was done in Section 1, the Friedmann and
fluid equations can be combined to produce the acceleration equation,

d2R

dt2
=
{

−4
3
πG

[

ρm + ρrel + 3(Pm + Prel)

c2

]

+ 1
3
.c2

}

R. (112)

(Although Pm = 0 for a pressureless dust universe, it is included in the acceleration equation
for the sake of completeness.)

If we define the equivalent mass density of the dark energy to be

ρ. ≡ .c2

8πG
= constant = ρ.,0, (113)

then the Friedmann equation becomes, in parallel with Eq. ( 65),
[

(

1
R

dR

dt

)2

− 8
3
πG(ρm + ρrel + ρ.)

]

R2 = −kc2. (114)

Because ρ. remains constant as the universe expands, more and more dark energy must
continually appear to fill the increasing volume.

The pressure due to dark energy, as calculated from Eq. ( 111), is

P. = −ρ.c2. (115)

Thus w. = −1 in the general equation of state P = wρc2 (Eq. 52). This equation of
state is unlike any other we have encountered.Apositive cosmological constant corresponds
to a positive mass density and a negative pressure! Substituting the expressions for ρ. and
P. into Eq. ( 112), the acceleration equation, yields

d2R

dt2
=
{

−4
3
πG

[

ρm + ρrel + ρ. + 3(Pm + Prel + P.)

c2

]}

R. (116)

With the inclusion of ρ. and P., these equations have the same form as their Newtonian
counterparts, Eqs. ( 10), ( 50), and ( 51). However, the interpretation of the constant
k has changed. In Section 1, k was related to the mechanical energy of an expanding
mass shell by Eq. ( 1). Here, it is seen to be the present value of the curvature of the
universe [Eq. ( 105) with R = 1].

Using Eq. ( 8) and recalling from Eq. ( 12) that 3H 3/8πG = ρc, the Friedmann
equation can be written as

H 2 [1 − ($m +$rel +$.)] R2 = −kc2, (117)

There are more general models in which the cosmological constant, ., is not really constant. In these models,
dark energy is replaced by quintessence (“fifth element”), a time-dependent energy density. We will not pursue
these models.

In some texts, the comoving coordinate, ϖ , is scaled so that k takes on the values of 0, +1, or −1 for a flat,
closed, or open universe.
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where

$. = ρ.

ρc

= .c2

3H 2
. (118)

We define the total density parameter as30

$ ≡ $m +$rel +$.. (119)

The Friedmann equation then becomes

H 2(1 −$)R2 = −kc2, (120)

so for a flat universe (k = 0), we must have $(t) = 1. It is useful to note that, as a special
case at t = t0,

H 2
0 (1 −$0) = −kc2. (121)

Using Eqs. ( 120) and ( 121) along with Eqs. ( 79), ( 80), and ( 118), the Hubble
parameter as a function of the redshift z is found to be

H = H0(1 + z)

[

$m,0(1 + z) +$rel,0(1 + z)2 + $.,0

(1 + z)2
+ 1 −$0

]1/2

(122)

(cf. Eq. 27).
The WMAP values for $m,0, $rel,0, and $.,0 are

[$m,0]WMAP = 0.27 ± 0.04,

$rel,0 = 8.24 × 10−5,

[$.,0]WMAP = 0.73 ± 0.04,

where the value of $rel,0 was obtained from Eq. ( 80). Adding these results from the
Wilkinson Microwave Anisotropy Probe reveals that

$0 = $m,0 +$rel,0 +$.,0 = 1;

that is, the universe is flat (k = 0), and dark energy now dominates the expansion of the
universe. More precisely, the WMAP result is

[$0]WMAP = 1.02 ± 0.02,

which is consistent with $0 = 1. We can never prove the $0 is exactly 1 because any
measurement will necessarily be accompanied by a small (we hope) uncertainty.

30The symbol “$” without a subscript “m,” “rel,” or “.” always denotes the total density parameter for all of the
components of that particular model.
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The deceleration parameter (Eq. 54) may be written as

q(t) = 1
2

∑

i

(1 + 3wi)$i (t), (123)

where w is the coefficient from the equation of state Pi = wiρic
2 and the “i” subscript

identifies one of the components of the universe (i.e., pressureless dust, relativistic particles,
or dark energy). Using wm = 0, wrel = 1/3, and w. = −1, we obtain

q(t) = 1
2
$m(t) +$rel(t) −$.(t). (124)

With WMAP values we find that the current value of the deceleration parameter is

q0 = −0.60.

The minus sign indicates that expansion of the universe is now accelerating!31

Assuming. > 0, the equivalent mass density of dark energy ρ. adds to the effect of the
other densities in the Friedmann equation (Eq. 114) on the curvature of the universe, k.
However, in the acceleration equation, the negative pressure P. opposes the gravitational
effect of a positive ρ. and acts to increase the acceleration of the universe, as seen by
the positive term .c2/3 added to the acceleration equation, Eq ( 112). The presence of
a cosmological constant therefore decouples the geometry of the universe (open, closed,
flat), which is described by k, from the dynamics of the universe, which are governed by
the interplay of ρm, ρrel, and ρ.. As we shall see, our universe may be flat (k = 0), yet it
may have an accelerating expansion—a combination that is not possible within the more
restricted model of a one-component universe of pressureless dust.

The ! Era

The.-terms in Eqs. ( 114) and ( 116) became dominant as the scale factor R increased
becauseρ. is constant while the mass densityρm ∝ R−3 andρrel ∝ R−4. Just as the radiation
era yielded to the mass era when the universe was about 55,000 years old (Eq. 85), the
mass era has segued into the ! era. Dark energy now governs the expansion of the universe.
The transition from the matter era to the present. era occurred when the scale factor satisfied
ρm = ρ.. Since ρ. is constant, Eq. ( 82) can be used to show that the transition value of
R is

Rm,. =
(

$m,0

$.,0

)1/3

.

Inserting WMAP values gives

Rm,. = 0.72, (126)

31By “accelerating,” we mean d2R/dt2 > 0.
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which corresponds to a redshift of

zm,. = 1
Rm,.

− 1 = 0.39. (127)

The acceleration equation with WMAP values shows that the acceleration of the universe
changed sign (from negative to positive) when the scale factor was

Raccel = 2−1/3Rm,. = 0.57,

corresponding to

zaccel = 0.76,

meaning that the acceleration became positive before the.-term dominated the Friedmann
equation. As R → 0 we can deduce that the effects of the cosmological constant are negli-
gible in the early universe because ρm ∝ R−3 and ρrel ∝ R−4 (Eqs. 81 and 82) while
ρ. remains constant. The happy outcome is that all of the results for the early universe
obtained in Sections 1 and 2 are valid for the present relativistic cosmology as well

The behavior of the scale factor R for a flat universe can be found by setting k = 0 in
the Friedmann equation (Eq. 114). A little algebra and Eqs. ( 79) and ( 118) lead to

t =
√

3
8πG

∫ R

0

R′ dR′
√

ρm,0R′ + ρrel,0 + ρ.,0R′4
. (128)

Although this can be integrated numerically, it has no simple analytic solution. Figure 19
displays a numerical solution of Eq. ( 128) using WMAP values, showing the different
behaviors of the scale factor in the radiation, matter, and . eras.

To make further progress, we will neglect the reign of relativistic particles during the
first 55,000 years or so of the universe by setting ρrel,0 = 0. Integrating eventually yields,
for k = 0,

t (R) = 2
3

1

H0
√

$.,0
ln

[
√

(

$.,0

$m,0

)

R3 +
√

1 +
(

$.,0

$m,0

)

R3

]

. (129)

The present age of the universe may be obtained by substituting R = 1 into Eq. ( 129).
Using the WMAP values for $m,0 and $.,0, we obtain

t0 = 4.32 × 1017 s = 1.37 × 1010 yr.

This is in good agreement with the best determination of the age of the universe currently
available, the published WMAP value of 32

[t0]WMAP = 13.7 ± 0.2 Gyr.

32When the first edition of this text was written, the authors could not have anticipated that the age of the universe,
to this precision, would be included in the second edition!

.
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FIGURE 19 A logarithmic graph of the scale factor R as a function of time. During the radiation
era, R ∝ t1/2; during the matter era, R ∝ t2/3; and during the . era, R grows exponentially.

The acceleration of the universe changed sign (from negative to positive) when R =
Raccel = 0.57. According to Eq. ( 129), the expansion of the universe began to speed up
when its age was

taccel = 2.23 × 1017 s = 7.08 Gyr.

Thus the expansion of the universe has been accelerating for approximately the second half
of its existence. For this reason, t0 is very nearly equal to the Hubble time:

t0 = 0.993 tH .

At the present epoch, the effects of deceleration during the radiation and matter eras and
acceleration during the . era nearly cancel, so the age of the universe is what we would
have calculated for a constant rate of expansion.

Equation ( 129) can be inverted to obtain, for k = 0,

R(t) =
(

$m,0

4$.,0

)1/3
(

e3H0t
√
$.,0/2 − e−3H0t

√
$.,0/2

)2/3
(130)

=
(

$m,0

$.,0

)1/3

sinh2/3
(

3
2
H0t

√

$.,0

)

(131)

Figure 20 shows the evolution of the scale factor as a function of time. In the limit of
3H0t

√

$.,0/2 ≪ 1 (essentially when t ≪ tH ), Eq. ( 131) reduces to Eq. ( 91),

R(t) ≃
(

3
2

H0t
√

$m,0

)2/3

=
(

3
√

$m,0

2

)2/3
(

t

tH

)2/3

, (132)
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FIGURE 20 The scale factor R as a function of time, measured from the present, for a WMAP
universe with t0 ≃ tH , and a flat, one-component universe of pressureless dust with t0 = 2tH /3
(Eq. 44). The dotted lines locate the position of today’s universe on the two curves.

as appropriate for a matter-dominated universe. But when t ≫ tH , the second exponential
in Eq. ( 131) can be neglected, leaving

R(t) ≃
(

$m,0

4$.,0

)1/3

eH0t
√
$.,0 . (133)

When the cosmological constant dominates the Friedmann equation, the scale factor R

grows exponentially with a characteristic time of tH /
√

$.,0. As we will discover in the
next section, an exponentially expanding universe has profound implications for the long-
term future of observational astronomy.

Model Universes on the "m,0–"!,0 Plane

Every model of a three-component universe (matter, relativistic particles, and dark energy) is
specified by the values of the three density parameters$m,0,$rel,0, and$.,0. At the present
epoch $rel,0 is negligible, so we can consider a two-dimensional plot of $m,0 vs. $.,0, as
shown in Fig. 21. The $m,0–$.,0 plane is divided into several regions. The Friedmann
equation (Eq. 117) shows that the line$m,0 +$.,0 = 1 determines the sign of k and so
divides the $m,0–$.,0 plane into open and closed universes. The sign of the deceleration
parameter (Eq. 123) is determined by the sign of the quantity $m,0 − 2$.,0, so the
line $m,0 − 2$.,0 = 0 divides the $m,0–$.,0 plane into accelerating and decelerating
universes.

Although it seems that our universe will expand forever, driven by dark energy, it is
easy to conceive of other model universes that will eventually recollapse. This includes any
universe with $.,0 < 0, as well as universes with $λ,0 > 0 but containing enough matter
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FIGURE 21 Model universes on the $m,0–$.,0 plane. Every point on this plane represents a
possible universe. The point ($m,0 = 0.27, $.,0 = 0.73) is indicated by the circle.

to bring the expansion to a halt before dark energy dominates. When the expansion stops,
dR/dt = 0. Equation ( 114), together with Eqs. ( 81), ( 82), ( 113), and ( 15),
can be used to express dR/dt as

(

dR

dt

)2

= H 2
0

(

$m,0

R
+ $rel,0

R2
+$.,0R

2 + 1 −$m,0 −$rel,0 −$.,0

)

. (134)

Setting the left-hand side equal to zero, canceling the H 2
0 , and neglecting the radiation era,

we have a cubic equation for the scale factor R.

$m,0

R
+$.,0R

2 + 1 −$m,0 −$.,0 = 0. (135)

We want to know when this cubic equation for R has a positive, real root. It turns out
that if$m,0 < 1 and$λ,0 > 0, Eq. ( 135) has no positive, real root, and we conclude that
these universes will expand forever.33 But a universe with $m,0 > 1 will expand forever
only if

$.,0 > 4$m,0

{

cos
[

1
3

cos−1
(

1
$m,0

− 1
)

+ 4π
3

]}3

.

33You are referred to Felten and Isaacman 1986 for a complete analysis of this diagram.
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On this diagram, lines of constant age t0 are roughly diagonal from the lower left to the
upper right, and t0 increases from lower right to upper left. In fact, t0 becomes infinite as
we approach a line across the upper-left corner of the diagram where there is an (unstable)
equilibrium between the inward pull of gravity and the outward push of dark energy. Models
on this line are infinitely old, meaning that they never unfolded from a hot, dense Big Bang.
This line is given by

$.,0 = 4$m,0

{

cos
[

1
3

cos−1
(

1
$m,0

− 1
)]}3

,

if $m,0 > 0.5; otherwise, “cos” should be replaced by “cosh.” Models beyond this line
represent “bounce” universes that are now on the rebound from an earlier collapse. We
merely state the result that these “bounce” models have a maximum redshift (at the bounce)
that satisfies

zbounce ≤ 2 cos
[

1
3

cos−1
(

1 −$m,0

$m,0

)]

− 1 (136)

if$m,0 > 0.5; otherwise, “cos” should be replaced by “cosh.” Because objects are observed
beyond this maximum redshift, these “bounce” models may be rejected.

Astronomers have the task of determining which point on Fig. 21 represents our
universe. This task is possible because the dynamics of the expansion of the universe
determinesq0 = $m,0/2 −$.,0, and the geometry of the universe determines$0 = $m,0 +
$.,0. In the next section we will learn how q0 is measured.

OBSERVATIONAL COSMOLOGY

Most of the key parameters of cosmology encountered in the previous section, such as H0,
q0, and the various $0’s, are not quantities that can be directly measured by astronomers.
Observers are primarily limited to measuring the spectrum, redshift, radiant flux, and po-
larization of the starlight from a distant object. We now proceed to link these observables
to the theoretical framework we have erected.

The Origin of the Cosmological Redshift

Let’s begin by uncovering the origin of the cosmological redshift. We start with the
Robertson–Walker metric, Eq. ( 106), with ds = 0 for a light ray, and dθ = dφ = 0
for a radial path traveled from the point of the light’s emission at comoving coordinateϖe

to its arrival at Earth at ϖ = 0. Taking the negative square root (so ϖ decreases with
increasing time) gives

−c dt

R(t)
= dϖ√

1 − kϖ 2
.
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Integrating this from a larger ϖfar at an initial time ti to a smallerϖnear at time tf , we have
∫ tf

ti

c dt

R(t)
= −

∫ ϖnear

ϖfar

dϖ√
1 − kϖ 2

=
∫ ϖfar

ϖnear

dϖ√
1 − kϖ 2

. (137)

A moment’s thought reveals that the same result describes an outwardly moving light ray.
Suppose that one crest of the light wave was emitted at time te and received at t0, and the next
wave crest was emitted at te +%te and received at t0 +%t0. These times, which describe
how long it takes for the successive crests of the light wave to travel to Earth, satisfy the
relations

∫ t0

te

c dt

R(t)
=
∫ ϖe

0

dϖ√
1 − kϖ 2

(138)

for the first crest and
∫ t0+%t0

te+%te

c dt

R(t)
=
∫ ϖe

0

dϖ√
1 − kϖ 2

(139)

for the next. The right-hand sides are the same, since the comoving coordinate of an object
does not change as the universe expands (assuming its peculiar velocity is negligible).
Subtracting Eq. ( 138) from Eq. ( 139) produces

∫ t0+%t0

te+%te

dt

R(t)
−
∫ t0

te

dt

R(t)
= 0. (140)

But
∫ t0+%t0

te+%te

dt

R(t)
=
∫ te

te+%te

dt

R(t)
+
∫ t0

te

dt

R(t)
+
∫ t0+%t0

t0

dt

R(t)
,

so
∫ t0+%t0

t0

dt

R(t)
−
∫ te+%te

te

dt

R(t)
= 0.

Any change in R(t) during the time intervals%te and%t0 between the emission of the two
successive wave crests can safely be neglected. This allows us to treat R(t) as a constant
with respect to the time integration, so that, using R(t0) = 1,

%t0 = %te

R(te)
. (141)

The times %te and %t0 are just the periods of the emitted and received light waves and are
related to their wavelengths by λ = c%t . Making this substitution into Eq. ( 141) and
using the definition of the redshift z results in the expression for the cosmological redshift,

1
R(te)

= λ0

λe

= 1 + z. (142)
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This derivation shows that the cosmological redshift is due to the wavelength of a photon
expanding along with the space through which the photon moves during its journey to Earth.
Equation ( 142) is just Eq. ( 4) discussed previously. Combining Eqs. ( 141) and
( 142) results in the formula for cosmological time dilation,

%t0

%t e
= 1 + z. (143)

Note that these relations for the cosmological redshift and time dilation hold regardless of the
functional form of the scale factor, R(t). Experimental confirmation of cosmological time
dilation has been frustrated by the lack of a reliable natural clock located at cosmological
distances. However, a measurement of cosmological time dilation has been made using the
temporal changes in the spectrum of a moderate-redshift (z = 0.361) Type Ia supernova.
The results were consistent with Eq. ( 143). [See Foley et al. (2005) for details of this
measurement of cosmological time dilation.]

Distances to the Most Remote Objects in the Universe

To make further progress in our quest to survey the universe and determine its geometry and
dynamics, we must next learn how to measure the distance to objects in the most remote
regions of the universe. The proper distance of an object from Earth can be found from
the Robertson–Walker metric. Recall that the differential proper distance is just
√

−(ds)2 with dt = 0. Furthermore, if the comoving coordinate of the object is ϖ (with
Earth at ϖ = 0), then dθ = dφ = 0 along a radial line from Earth to the object. Inserting
these into the Robertson–Walker metric (Eq. 106), we can find the proper distance, dp(t),
to the object at time t by integrating

dp(t) = R(t)

∫ ϖ

0

dϖ ′
√

1 − kϖ ′ 2
. (144)

Using Eq. ( 138), this becomes

dp(t) = R(t)

∫ t0

te

c dt ′

R(t ′)
. (145)

The physical meaning of this is readily apparent. As the photon moves in from ϖe, in each
interval of time dt it travels a small distance of c dt . These intervals cannot simply be added
up, because the universe expands as the photon travels. Dividing c dt by the scale factor
at the time, R(t), converts this small distance to what it would be at the present time, t0.
Integrating then yields the proper distance fromϖe toϖ = 0 today, at time t0. Multiplying
by the scale factor R(t) then converts this to the distance at some other time t . It is worth
emphasizing that the current value of the proper distance, dp,0 ≡ dp(t0), to an object is how
far away it is today, and not its distance when its light was emitted. As long as the object has
zero peculiar velocity (constant comoving coordinate ϖ ), it suffices to find dp,0 because
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the proper distance at any other time can be obtained from

dp(t) = R(t)dp,0. (146)

In particular, if the object’s redshift is z, then its distance at time te, when its light was
emitted, is

dp(te) = dp,0R(te) = dp,0

1 + z
. (147)

Integrating Eq. ( 144) and using R(t0) = 1 shows that the expression for the present
proper distance in a flat universe is

dp,0 = ϖ (for k = 0), (148)

the expression for a closed universe is

dp,0 = 1√
k

sin−1(ϖ
√

k) (for k > 0), (149)

and the expression for an open universe is

dp,0 = 1√|k| sinh−1(ϖ
√

|k|) (for k < 0). (150)

In a flat universe, the present proper distance to an object is just its coordinate distance
dc,0 = ϖ (cf. Eq. 3). However, the coordinate distance will not agree with the proper
distance if k ̸= 0. Because sin−1(x) ≥ x, in a closed universe (k > 0) the proper distance
to an object is greater than its coordinate distance. Similarly, sinh−1(x) ≤ x, so in an open
universe (k < 0) the proper distance to an object is less than its coordinate distance. Later
we will find expressions for the proper distance dp,0 and the comoving coordinate ϖ as
functions of the redshift z. First, however, we pause to examine the above equations for
dp,0 because measuring distances in an expanding universe has some interesting aspects.

Distances in a closed universe (k > 0) are especially interesting. Solving Eq. ( 149)
for ϖ gives

ϖ = 1√
k

sin(dp,0

√
k). (151)

Note that in a closed universe there is a maximum value of the comoving coordinate of
ϖmax = 1/

√
k. Also, there are an infinite number of distances along a radial line to the same

point X in space, located, say, atϖX. If dp,0 is one value of the present proper distance to X

at time t , then for any integer n, dp,0 + 2πn/
√

k will also bring us back to X, with the same
value of ϖX. The extra multiples of 2π/

√
k correspond to traversing the circumference of

the universe n times before stopping at X. However, such a journey, running circles around
the universe, would not be physically possible. As it happens, a photon emitted at t = 0 in
a closed, matter-dominated universe with . = 0 would return to its starting point just as
the universe ended in a Big Crunch.
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In a similar manner, our tiny ant that lives on the surface of a sphere could walk from pole
to pole to pole, encircling the sphere n times before proceeding on to its final destination.
This illustrates that although there is no boundary to a closed universe, it contains only
a finite amount of space, like the unbounded surface of a sphere. Furthermore, a closed
universe curves back on itself; moving outward from Earth (or from any other choice of
origin), the farthest you can get from home is a point where ϖ = 1/

√
k. From that point,

a step in any direction brings you closer to where you started.
You should be warned that suggestive phrases like “the circumference of the universe”

and “curves back on itself” do not imply a curved path through three-dimensional space,
since there is no deviation from a radial line asϖ increases. Despite these caveats, we can
define the circumference of a closed universe (including the time-dependence) as

Cuniv(t) = 2πR(t)√
k

(152)

which is the proper distance along a radial line that brings you back to your starting point.
This expression for the circumference is consistent with our definition of curvature since,
from Eq. ( 105), the radius of curvature of a closed universe at time t is 1/

√
K(t) =

R(t)/
√

k. Nevertheless, the radius of curvature must not be thought of as the radius of an
actual circular path.

The Particle Horizon and the Horizon Distance

As the universe expands and ages, photons from increasingly distant objects have more time
to complete their journey to Earth. This means that as time increases, we might expect that
more of the universe will come into causal contact with the observer. The proper distance to
the farthest observable point (called the particle horizon) at time t is the horizon distance,
dh(t). Note that two points separated by a distance greater than dh are not in causal contact.
Thus dh may be thought of as the diameter of the largest causally connected region.

We will now derive an expression for dh(t), the size of the observable universe as a
function of time. (It is important to note that because the farthest observable point moves
outward through increasingly larger values ofϖ , dh(t) is not proportional to R(t).) Consider
an observer at the origin (ϖ = 0), and let the particle horizon for this observer be located
at ϖe at time t . This means that a photon emitted at ϖe at t = 0 would reach the origin at
time t . With an appropriate change of limits in Eq. ( 145), the horizon distance at time t

is found to be

dh(t) = R(t)

∫ t

0

c dt ′

R(t ′)
. (153)

First we consider distances in the early universe, when the effect of dark energy was
negligible (so . may be set equal to zero). During the radiation era, the universe was
essentially flat and the scale factor was of the form R(t) = Ct1/2, where C is a constant
(see Eq. 87). Inserting this into Eq. ( 153) gives

dh(t) = 2ct (radiation era). (154)
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After the radiation era, the expansion of the universe was governed by the effects of matter
and, later, dark energy.

For the matter era, assuming a flat universe, the scale factor is given by Eq. ( 91), which
is of the form R(t) = Ct2/3, where again C is a constant. (Since the radiation era lasted
only 55,000 years following the Big Bang, for the purposes of the following calculations
we will ignore radiation and set the lower limit to t = 0.) Substituting this into Eq. ( 153)
results in

dh(t) = 3ct (for k = 0). (155)

Using Eqs. ( 4) and ( 90), this expression can be rewritten in terms of the redshift as

dh(z) = 2c

H0
√

$m,0

1
(1 + z)3/2

(for k = 0). (156)

We can obtain a rough estimate for the present horizon distance by setting z = 0 to obtain

dh,0 ≈ 2c

H0
√

$m,0
= 5.02 × 1026 m = 16,300 Mpc = 16.3 Gpc (157)

using WMAP values.
Finally, in the. era, we substitute Eq. ( 131) for the scale factor into Eq. ( 153) for

the horizon distance to get, for k = 0,

dh(t) =
(

$m,0

$.,0

)1/3

sinh2/3
(

3
2
H0t

√

$.,0

)
∫ t

0

c dt ′
(

$m,0

$.,0

)1/3
sinh2/3 ( 3

2H0t ′
√

$.,0
)

.

(158)

This has no simple analytic solution and must be integrated numerically. Using t0 = 13.7 bil-
lion years, we calculate that at the present time, the distance to the particle horizon in a flat
universe is

dh,0 = 4.50 × 1026 m = 14,600 Mpc = 14.6 Gpc (159)

Figure 22 uses WMAP values and shows dh, the size of the observable universe, as a
function of time. Of course, when viewing an object near the particle horizon, astronomers
see it as it was when the light was emitted, not as it would appear in today’s universe.

Note that the distance to the particle horizon in Eqs. ( 154) and ( 155) is proportional
to t , while the scale factor in the radiation and matter eras is proportional to t1/2 and t2/3,
respectively. This means that during those eras the size of the observable universe increased
more rapidly than the universe expanded, so the universe became increasingly causally
connected as it aged. However, the integral in Eq. ( 158)—without the term in front—is
just the present distance to the point that will be at the particle horizon at time t , as we can
see by comparing Eq. ( 153) with Eq. ( 145), evaluated at t0 with te = 0. As t → ∞,
this integral converges to 19.3 Gpc. This means that the proper distance today to the farthest
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FIGURE 22 The proper distance from Earth to the particle horizon as a function of time, using
WMAP values. The horizon distance is expressed as a fraction of ctH . The right axis shows dh in
billions of parsecs.

object that will ever be observable in the future is 19.3 Gpc. Everything within a sphere,
centered on Earth, of radius 19.3 Gpc will eventually become visible, while everything
beyond will be forever hidden. In the future, the particle horizon and the scale factor will
both grow exponentially as eH0t

√
$.,0 (Eq. 133).

Ultimately, an object located at the particle horizon will remain at the particle horizon as
the universe expands. The particle horizon will never catch up to any object that is presently
more than 19.3 Gpc away, and so its light will never reach us. What will we observe when
looking at an object at the ultimate (t → ∞) particle horizon? Although photons from the
object will continue to arrive, they will be increasingly deeply redshifted, and their arrival
rate will decline toward zero due to cosmological time dilation (Eq. 143). Thus the object
will fade from view, apparently frozen in time, as its redshift diverges to infinity. This bears
a striking similarity to the description of how we would view an astronaut falling into a
black hole, although the physics of the two situations is completely different.

Example 4.1. Helium nuclei were being formed when the temperature was roughly
109 K and t = 178 s. From Eq. ( 58), the scale factor at that time was R = 2.73 × 10−9.
From Eq. ( 154), the horizon distance was then about

dh(t) = 2ct = 1.07 × 1011 m = 0.7 AU.

This is the diameter of a causally connected region, which we call C, when the universe
was 178 s old.

The region C (which has a comoving boundary, so it always contains the same mass)
has been expanding along with the rest of the universe since t = 178 s. How large is C

continued
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today? Assuming a flat universe, Eq. ( 146) shows that C has expanded by a factor of
1/R = 3.66 × 108, with a present diameter of

dh(t)

R(t)
= 3.92 × 1019 m,

about 1.3 kpc. In other words, the largest region that was causally connected at t = 178 s
is now just over a kiloparsec across, roughly 8.7 × 10−8 of the present horizon distance,
dh,0. This illustrates that as the early universe aged, the amount of material that is in causal
contact increased dramatically. Today’s causally connected universe extends far beyond C
because, since t = 178 s, light from more distant regions has had time to arrive and causally
connect those regions with C. The comoving boundary of C cannot keep up with the more
rapid recession of the particle horizon.

The Arrival of Photons

You may be wondering, if the scale factor R was zero at the Big Bang and everything was
right next to everything else, then why has it taken the age of the universe for a Big Bang
photon to reach Earth? What is the path followed by the photon?

In the following discussion, the actual complications of the Big Bang will be neglected.
Instead, we will consider a perfectly transparent, expanding, flat universe where a single
photon is emitted at comoving coordinateϖe at time t = 0. What, then, is the proper distance
of that photon from our position (ϖ = 0) at a later time t? The coordinate,ϖ , of the photon
at time t may be found from Eq. ( 137) with k = 0,

∫ t

0

c dt ′

R(t ′)
=
∫ ϖe

ϖ

dϖ ′. (160)

To simplify the calculation, we will ignore the . era and adopt a flat, matter-dominated
universe with a scale factor given by Eq. ( 132),

R(t) =
(

3
2

H0t
√

$m,0

)2/3

. (161)

Setting R = 1, the age of this model universe is found to be

t0 = 2

3H0
√

$m,0
, (162)

so the scale factor is simply

R(t) =
(

t

t0

)2/3

.

Integrating Eq. ( 160) yields

ϖ = ϖe − 3ct0

(

t

t0

)1/3

. (163)
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We can evaluate ϖe by noting that at t = t0, ϖ = 0; thus

ϖe = 3ct0, (164)

the present horizon distance for this model (Eq. 155). Inserting this value for the photon’s
starting point into Eq. ( 163) and multiplying both sides by the scale factor R(t) shows
that the proper distance of the photon from Earth is, as a function of time,

dp(t) = 3ct0

[

(

t

t0

)2/3

−
(

t

t0

)

]

(165)

for our model flat universe.
Since the Big Bang, the entire system of comoving coordinates has been stretching out

from its compact beginning. Indeed, the “Big Stretch” would be a more appropriate term
than the “Big Bang” for this event! As shown in Fig. 23, the initial expansion of the
universe actually carried the photon away from Earth. Although the photon’s comoving
coordinate was always decreasing from an initial value of ϖe toward Earth’s position at
ϖ = 0, the scale factor R(t) increased so rapidly that at first the proper distance between
the photon and Earth increased with time. This means that a photon emitted from the present
particle horizon at t = 0 is only now reaching Earth. Photons emitted from a greater ϖ ,
beyond the present particle horizon, have yet to arrive—and in fact may never arrive if ϖ
is sufficiently large that the exponential expansion of the universe ultimately carries the
photon away from Earth.
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FIGURE 23 The proper distance from Earth of a photon emitted from the present particle horizon
at the time of the Big Bang. The photon’s proper distance is expressed as a fraction of 3ct0.
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The Maximum Visible Age of a Source

The previous calculation assumes that the photon was emitted at t = 0. Is it possible that
the exponential expansion of space could carry a presently visible object away from Earth
so fast that the object would never again be seen in the sky from some future time forward?
To answer this, consider an object (say, a galaxy) that is now visible, meaning that its light
was emitted at an earlier time te and it arrives today at t0. Assuming that the galaxy is still
visible at some time in the future, we will let the time of the emission of its future photons
be ti and their arrival time here be tf , where te < ti and t0 < tf . Applying these conditions
to Eq. ( 140) gives

∫ t0

te

dt

R(t)
=
∫ tf

ti

dt

R(t)
, (166)

where the scale factor R is given by Eq. ( 131) for a flat universe (k = 0). Because the
scale factor increases monotonically, it may be, for sufficiently large ti , that no value of tf
can satisfy this equality. In that case, a photon emitted at time ti will never reach Earth. The
latest time of emission, tmva, for photons to eventually reach us (the maximum visible age
of the source) may be found by setting tf = ∞.33

Just like an object located at the ultimate particle horizon, as photons from this galaxy
continue to arrive, they will be increasingly deeply redshifted and their flux will drop toward
zero. The galaxy will fade from view, apparently frozen in time, as its redshift diverges to
infinity. The farther a source is, the sooner it will fade away. This places a fundamental
limit on extragalactic astronomy. We will never be able to watch galaxies continue to age
and evolve through the millenia. Figure 24 shows that if the redshift of an object is
roughly larger than 1.8, then tmva < tH , and we will never see it even as it appears today.
That is, the light emitted by the object today will never reach Earth because those photons
will eventually be carried away from us by the accelerating Hubble flow. Objects with
a redshift in the range 5–10 can be observed only as they appeared when the universe
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FIGURE 24 The maximum visible age of a source, in units of tH = 1/H0, as a function of its
current redshift. (Figure adapted from Loeb, Phys. Rev. D, 65, 047301, 2002.)

33Actually, tmva is the age of the universe when the source emitted the last photons to reach Earth.

Cosmology



was approximately 4 to 6 billion years old. As more light is carried away from Earth by the
expansion of the universe, the observable sky will become increasingly empty. Similarly,
any signal we send toward a galaxy with z ≈ 1.8 or more will never arrive. Because there
can be no contact between that galaxy and Earth anytime in the future, we are no longer in
causal contact with it. As the universe ages, it is becoming causally fragmented, with one
region no longer capable of influencing another.

The Comoving Coordinate ϖ (z)

Returning to Eqs. (148–150), we want to express the comoving coordinate ϖ as a
function of the redshift z. We begin by using Eq. ( 145) to find another expression for the
present proper distance dp,0. Writing dt = dR/(dR/dt), Eq. ( 145) may be written as

dp,0 =
∫ R(t0)

R(te)

c dR

R(dR/dt)
.

It is useful to use R(t0) = 1, R(te) = 1/(1 + z), dR = −R2 dz [from differentiating
Eq. ( 4), R = 1/(1 + z)] and Eq. ( 8) to define the dimensionless integral

I (z) = H0

∫ 1

1
1+z

dR

R(dR/dt)
= H0

∫ z

0

dz′

H(z′)
. (167)

Using Eq. ( 122), we obtain

I (z) ≡
∫ z

0

dz′
√

$m,0(1 + z′)3 +$rel,0(1 + z′)4 +$.,0 + (1 −$0)(1 + z′)2
. (168)

With this definition of the integral I (z), the present proper distance is

dp,0(z) = c

H0
I (z). (169)

Comparing this with Eqs. (148–150) and using Eq. ( 121) for k, we find our expressions
for the comoving coordinate ϖ (z):

ϖ (z) = c

H0
I (z) ($0 = 1) (170)

= c

H0
√
$0 − 1

sin
[

I (z)
√

$0 − 1
]

($0 > 1) (171)

= c

H0
√

1 −$0
sinh

[

I (z)
√

1 −$0

]

($0 < 1). (172)

and
Galaxy will not become causally fragmented.

35
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These exact expressions must be evaluated numerically. For later reference, we define

S(z) ≡ I (z) ($0 = 1) (173)

≡ 1√
$0 − 1

sin
[

I (z)
√

$0 − 1
]

($0 > 1) (174)

≡ 1√
1 −$0

sinh
[

I (z)
√

1 −$0

]

($0 < 1), (2175)

so we may simply write

ϖ (z) = c

H0
S(z). (176)

Note that because sin(x) = x − x3/3! + x5/5! + · · · and sinh(x) = x + x3/3! + x5/5! +
· · · we have the useful approximation (to second order in z) that S(z) ≃ I (z). Thus

ϖ (z) ≃ c

H0
I (z). (for z ≪ 1) (177)

Because the comoving coordinateϖ is so important in observational cosmology, it will
be helpful to find an approximate expression for the integral I (z). (Again we will ignore the
brief radiation era, so $rel,0 = 0 and $0 = $m,0 +$.,0.) The integrand may be expressed
as a Taylor series about z = 0 as

I (z) =
∫ z

0

{

1 − (1 + q0)z
′ +

[

1
2

+ 2q0 + 3
2
q2

0 + 1
2
(1 −$0)

]

z′ 2 + · · ·
}

dz′ (178)

where we have used (Eq. 124) for the deceleration parameter, q0 = 1
2$m,0 −$.,0. In-

tegrating gives our result,

I (z) = z − 1
2

(1 + q0)z
2 +

[

1
6

+ 2
3
q0 + 1

2
q2

0 + 1
6
(1 −$0)

]

z3 + · · · . (179)

Eqs. (170–172) then provide series expressions for the comoving coordinateϖ of an object
observed at a redshift z.

Note that the squared term in Eq. ( 179) involves only q0 and thus depends only on the
dynamics of the expanding universe, while the cubed term involves both q0 and k (through
Eq. 121) and so depends on both the dynamics and the geometry of the cosmos. A further
simplification comes from using only the first two terms of the series expression for I (z)

along with Eq ( 177) to obtain, to second order in z,

ϖ ≃ cz

H0

[

1 − 1
2

(1 + q0)z

]

(for z ≪ 1). (180)

Equation ( 180) is valid regardless of whether or not the universe is flat and whether
or not the cosmological constant, ., is nonzero. In fact, Eq. ( 180) can be derived very
generally, without reference to the Friedmann equation or any specific model of the universe.
The procedure uses the fact that the deceleration parameter is defined as a second time
derivative of the scale factor; recall Eq. ( 54).
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The Proper Distance

We have arrived at our goal, an approximate expression for the proper distance of an object
at the present time. According to Eq. ( 169), this is

dp,0 ≃ cz

H0

[

1 − 1
2

(1 + q0)z

]

(for z ≪ 1). (181)

The first term is just the Hubble law, after applying for the redshift. Since q0 = $m,0/

2 −$.,0 , we see from the second term that larger values of$m,0 imply smaller distances
(more mass to slow down the expansion of the universe), as do smaller values
of $.,0 (less dark energy pressure to speed up the expansion). As we shall see, the second
term involves a departure from the linearity of the Hubble law that can be used to determine
the deceleration parameter, q0. For q0 = −0.6, the second term is 10% of the first when
z = 0.13.

The Luminosity Distance

Now we are ready for the concept of the luminosity distance (as measured by the inverse
square law). Then we will be prepared to describe some of the classic observational tests
of cosmological models. First, we associate the source of the emitted photons with the
rate at which energy arrives at a telescope’s detectors. Suppose that a radiant flux F

is measured for a source of light with a known luminosity L. (For now, we will assume
that F is a bolometric flux, measured over all wavelengths.) Then the inverse square law
can be used to define the luminosity distance, dL, of the star by

d2
L ≡ L

4πF
. (182)

Let a source of light be located at the origin (ϖ = 0) of a comoving coordinate system.
The source emits photons that arrive at a spherical surface around the origin for which
ϖ = constant > 0. From the Robertson–Walker metric, Eq. ( 106), the surface area of
the sphere at the present time (R = 1) is 4πϖ 2; see Fig. 25. After traveling out to ϖ
from the source, the photons will be spread over this surface area, and so the radiant flux
will diminish as 1/ϖ 2. Two effects, in addition to the inverse square law, act to further
reduce the value of the radiant flux measured at this sphere. The cosmological redshift,
Eq. ( 142), shows that the energy of each photon, Ephoton = hc/λ, is reduced by a factor
of 1 + z. Also, cosmological time dilation, Eq. ( 143), affects the average time interval
between photons emitted by the source. This means that the rate at which the photons arrive
at the sphere is less than the rate at which they leave the source by another factor of 1 + z.
Combining these effects, the radiant flux at the sphere’s surface is

F = L

4πϖ 2(1 + z)2
.

We emphasize that although the surface area of a sphere centered at the origin is 4π[R(t)ϖ ]2, the proper distance
of the surface from the origin is not R(t)ϖ when k ̸= 0; see Eqs. ( 149) and ( 150).
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FIGURE 25 An element of area on the surface of a sphere centered at ϖ = 0. Integrating over
the angles θ and φ shows that the surface area of the sphere is 4π [R(t)ϖ ]2.

Substituting this into Eq. ( 182), we find that

dL = ϖ (1 + z), (183)

whereϖ must be evaluated numerically using Eq. 168) and Eqs. (170–172). The
luminosity distance, dL, is the distance actually measured by the distance modulus m − M .
Although the luminosity distance is not the same as either the present proper distance
(Eqs. 148–150) or the coordinate distance (Eq. 3), the three distances do agree for z ≪ 1.

Equation ( 176) shows that the luminosity distance is exactly given by

dL(z) = c

H0
(1 + z)S(z). (184)

Using our approximation to second order in z, Eq. ( 180),

dL(z) ≃ cz

H0

[

1 + 1
2
(1 − q0)z

]

(for z ≪ 1). (185)

Comparing this with Eq. ( 181), we see that the luminosity distance is approximately
equal to the proper distance only when z is very small and the first term in each expansion
dominates. For larger values of z, dp(z) < dL(z). Ultimately, the exact expressions for both
dp(z) and dL(z) are the most useful: Eqs. ( 169) and ( 184), respectively, evaluated by
numerical integration.

The Redshift–Magnitude Relation

We are finally in a position to describe some of the most exciting observational tests of
cosmology. The redshift–magnitude relation comes from using the luminosity distance
for the distance modulus,

m − M = 5 log10(dL/10 pc) (186)
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Equation ( 184), along with H0 = 100h km s−1 Mpc−1 (Eq. 13), quickly produces

m − M = 5 log10

[

c

(100 km s−1 Mpc−1)(10 pc)

]

− 5 log10(h)

+ 5 log10(1 + z) + 5 log10[S(z)]

= 42.38 − 5 log10(h) + 5 log10(1 + z) + 5 log10[S(z)]. (187)

In the same manner, using the approximate Eq. ( 185) for the luminosity distance with
Eq. ( 186) leads to, for z ≪ 1,

m − M ≃ 5 log10

[

c

(100 km s−1 Mpc−1)(10 pc)

]

− 5 log10(h)

+ 5 log10(z) + 5 log10

[

1 + 1
2
(1 − q0)z

]

(for z ≪ 1).

Expanding the last term on the right in a Taylor series about z = 0 and keeping only the
first-order terms in z results in

m − M ≃ 42.38 − 5 log10(h) + 5 log10(z) + 1.086(1 − q0)z (for z ≪ 1). (188)

Figure 26 shows the redshift z plotted on a logarithmic scale as a function of m − M .
For z ≪ 1, the redshift–magnitude relation is linear. Observations confirm the linearity of
the log10(z) term (which is just the Hubble law) for small z. Then, at larger z, the fourth term
on the right-hand side of Eq. ( 188), 1.086(1 − q0)z, will cause the line to curve upward.
Accurately measuring this departure from a straight line allows the value of the deceleration
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parameter to be determined. At still larger z, the curve is sensitive to the individual values
of $m,0 and $.,0.

The cosmological redshift affects the measurement of an object’s spectrum because
these observations are usually made within a specific wavelength region. For example,
observations made in the V -band at 550 nm can be affected as the cosmological redshift
brings shorter-wavelength radiation into the V band. This effect can be corrected for by
adding a compensating term called the K-correction to Eq. ( 188) if the spectrum, Iλ, of
the object is known.

In the mid-1990’s two rival teams of astronomers—the Supernova Cosmology Project
(SCP, led by Saul Perlmutter) and the High-Z Supernova Search Team (HZSNS Team,
headed by Brian Schmidt)—made observations of Type Ia supernovae at cosmological dis-
tances. Both teams were astonished to discover that supernovae observed with a redshift of
z ≈ 0.5 were about 0.25 magnitude dimmer than expected for a universe with $m,0 ≃ 0.3
and . = 0. The supernovae were farther away than they would be in this canonical decel-
erating universe. The possibility of an accelerating universe and a nonzero cosmological
constant immediately leapt to their minds, but it took nearly a year of intense work to elim-
inate several plausible alternative explanations. For example, about 20% of the light from
a distant supernova could be absorbed at high z by a hypothetical “gray dust.” Or perhaps
evolutionary effects were misleading the astronomers, since at high z we observe a younger
generation of supernovae, formed in a younger galactic environment where heavy elements
were less abundant. One by one, these possibilities were considered and eliminated. The
redshift–magnitude diagram in Fig. 27 shows a more recent compilation of the results
of these two teams. Both groups found that their analyses ruled out a flat universe with
$m,0 = 1 and. = 0 (the scenario championed by most theorists at the time) and were also
incompatible with an open universe having $m,0 ≃ 0.3 and . = 0. Instead, their findings
favored a universe with $m,0 ≃ 0.3 and $.,0 = 0.7. Figure 28 shows, for each team,
the location on the $m,0–$.,0 plane of the most likely set of values that are consistent
with the high-z supernovae results. Their evidence for a nonzero cosmological constant is
persuasive.

If we look at supernovae beyond zaccel = 0.76, when the universe started accelerating,
we should find the signature of a decelerating universe. Figure 29 shows further results of
observations of high-z supernovae, including six with z > 1.25. It includes SN 1997ff, the
most distant supernova yet observed at z = 1.7. SN 1997ff and others in this high-z sample
appear brighter than they would if the universe had expanded at a constant rate (i.e., with
$ = 0), as expected for the deceleration phase of the early universe. These observations
rule out the alternative explanations of acceleration, “gray dust” and evolutionary effects,
as indicated in the figure. Clearly, astronomers will have to grapple with the implications
of an accelerating universe whose dynamics are dominated by dark energy.

It is perhaps surprising that the values of the Hubble constant obtained from the redshift–
magnitude diagrams (H0 ∼ 70 ± 10 km s−1 Mpc−1) are not better determined. The spread
in the values of H0 obtained by various groups using supernovae is due to their different
calibrations of Cepheid distances. This systematic uncertainty does not affect the values

A “gray dust” of large grains would absorb light nearly equally at all wavelengths and so would produce no
detectable reddening of a supernova’s spectrum.
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FIGURE 27 The redshift–magnitude relation measured for high-z supernovae. The K-correction
has been applied to the apparent magnitudes. The lower graph shows the data after subtracting the
theoretical curve for$m,0 = 0.3,$λ,0 = 0. [Figure adapted from Perlmutter and Schmidt, Supernovae
and Gamma-Ray Bursters, K. Weiler (ed.), Lecture Notes in Physics, 598, 195, 2003. Data from
Perlmutter et al, Ap. J., 517, 565, 1999 (SCP) and Riess et al, A. J., 116, 1009, 1998 (HZSNS).]

of $m,0 and $.,0 because these are determined by the departures from linearity in the
redshift–magnitude diagram.

Angular Diameter Distance

Another measure of an object’s distance may be found by comparing its linear diameter
D (assumed known) with its observed angular diameter θ (assumed small). The angular
diameter distance, dA is then defined to be

dA ≡ D

θ
. (189)
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Schmidt, Supernovae and Gamma-Ray Bursters, K. Weiler (ed.), Lecture Notes in Physics, 598, 195,
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To place this into context with our previous results, consider a galaxy of redshift z located at
comoving coordinate ϖ . We can use dL =

√

−(ds)2 to find an expression for D, the
proper distance from one side of the galaxy to the other. Integrating the Robertson–
Walker metric (Eq. 106) across the galaxy in the plane of the sky with dt = dϖ = dφ =
0, we obtain

D = R(te)ϖ θ = ϖ θ

1 + z
.

[Note from Eq. ( 146) that for a flat universe this is the usual Euclidean geometric relation.]
Of course, D is the galaxy’s diameter at the time te, when the light we observe was emitted.
Since the light from the galaxy traveled a radial path to Earth, θ is the angular size of the
galaxy as measured by astronomers. Equation ( 176) can be used to express the diameter
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as

D = c

H0

S(z)θ

1 + z
. (190)

Thus the angular diameter distance is

dA = c

H0

S(z)

1 + z
. (191)

From Eq. ( 183), we find that the angular diameter distance and the luminosity distance
are related by

dA = dL

(1 + z)2
. (192)

Figure 30 shows a graph of θ in units of H0D/c,

cθ

H0D
= (1 + z)

S(z)
, (193)

as a function of the redshift z for several model universes. It is surprising that the angular
diameter of a galaxy does not continue to decrease with distance. In fact, beyond a certain
redshift, the angular size actually increases with distance. This is due to the universe acting

Cosmology



2

3

4

5

6

1 2 3 4 5
z

W m,0
 = 1, W L,0

 = 0

W m,0 =
 0.3, WL,0 =

 0

WMAP

c$
/H

0D

FIGURE 30 The angular diameter θ of a galaxy in units of H0D/c for several values of $m,0

and $.,0.

as a sort of gravitational lens, enlarging the appearance of a galaxy beyond what would be
expected in a static Euclidean universe. In principle, observations of galaxies of a known
linear diameter D would allow observers to determine which values of cosmological pa-
rameters are preferred. In practice, however, galaxies do not have sharp boundaries, and
they evolve as the universe ages. As of this writing, the most productive use of the angular
diameter distance has been coupled with observations of the Sunyaev–Zel’dovich effect.

The Sunyaev–Zel’dovich effect provides an independent determination of the Hubble
constant. Measurements of %T/T0 (Eq. 64) along with the X-ray flux FX and tempera-
ture Te of the intracluster gas in rich clusters of galaxies can be used to model the physical
properties of the cluster. Comparing the calculated diameter D of the cluster with its mea-
sured angular diameter θ yields dA, the cluster’s angular diameter distance. On the other
hand, the measured X-ray flux from the cluster and for the X-ray luminosity of the
intracluster gas determine the cluster’s luminosity distance. The connection between these
two distances, Eq. ( 192), can then be used to calculate the Hubble constant.

H0 = Cf (z)
FXT

3/2
e

θ(%T/T0)2
,

where f (z) is a function of the redshift z of the cluster and C is a constant. One team of
astronomers measured the value of the Hubble constant for five clusters and obtained an
average of H0 = 65 km s−1 Mpc−1, consistent with the values obtained from other recent
measurements.

See Jones et al. (2005) for details of how H0 was determined.
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Cosmology

PROBLEM SET

1 It might be argued that the inverse square law for light, shown below, would provide a solution
to Olbers’s paradox. To see that this is not so, consider a uniform distribution of stars with n

stars per unit volume, each of luminosity L. Imagine that two thin, spherical shells of stars
with radii r1 and r2 are centered on Earth; let the thickness of each shell be %r . Show that
the same energy flux reaches Earth from each shell.

2 Suppose that all of the matter in the universe were converted into energy in the form of
blackbody radiation. Take the average density of matter to be the WMAP value for the density
of baryonic matter, ρb,0. Use the below equation for the energy density of blackbody radiation

spectrum peak? In what region of the electromagnetic spectrum is this wavelength
found? Explain how your result may be applied to Olbers’s paradox.

3 Show by substitution that Eqs. ( 32) and ( 34) are solutions to Eq. ( 11) for a closed
universe (k > 0).

4 Show by substitution that Eqs. ( 36) and ( 38) are solutions to Eq. ( 11) for an open
universe (k < 0).

to find the temperature of the universe in this situation. At what wavelength would the
blackbody

F = L

4πr2

u = 4π
c

∫ ∞

0
Bλ(T ) dλ = 4σT 4

c
= aT 4

Rclosed = 4πGρ0

3kc2
[1 − cos(x)] (32)

tclosed = 4πGρ0

3k3/2c3
[x − sin(x)] (34)

(

dR

dt

)2

− 8πGρ0

3R
= −kc2. (11)

Ropen = 4πGρ0

3|k|c2
[cosh(x) − 1] (36)

topen = 4πGρ0

3|k|3/2c3
[sinh(x) − x] (38)

From Chapter 29 of An Introduction to Modern Astrophysics Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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5 Derive Eqs. (33) and (35) from Eqs. (32) and (34), respectively.

6 Derive Eqs. (37) and (39) from Eqs. (36) and (38), respectively.

7 (a) Use Eq. ( 11) to find an expression for the maximum scale factor R in a closed universe.
Does your answer agree with Eq. (33)?

(b) Find the lifetime of a closed universe (expressed as a multiple of the Hubble time, tH ) as
a function of the density parameter, $0.

8 Derive Eqs. ( 40– 42) for the age of the universe using Eqs. ( 31), ( 33), ( 35),
(37), (39), and (4).

Rclosed = 4πGρ0

3kc2
[1 − cos(x)] (32)

= 1
2

$0

$0 − 1
[1 − cos(x)] (33)

tclosed = 4πGρ0

3k3/2c3
[x − sin(x)] (34)

= 1
2H0

$0

($0 − 1)3/2
[x − sin(x)] (35)

Ropen = 4πGρ0

3|k|c2
[cosh(x) − 1] (36)

= 1
2

$0

1 −$0
[cosh(x) − 1] (37)

topen = 4πGρ0

3|k|3/2c3
[sinh(x) − x] (38)

= 1
2H0

$0

(1 −$0)3/2
[sinh(x) − x] . (39)

(

dR

dt

)2

− 8πGρ0

3R
= −kc2. (11)

= 1
2

$0

$0 − 1
[1 − cos(x)] (33)

R = 1
1 + z

, (4)

=
(

3
2

)2/3 (
t

tH

)2/3

(for $0 = 1), (31)
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= 1
2

$0

$0 − 1
[1 − cos(x)] (33)

= 1
2H0

$0

($0 − 1)3/2
[x − sin(x)] , (35)

= 1
2

$0

1 −$0
[cosh(x) − 1] (37)

= 1
2H0

$0

(1 −$0)3/2
[sinh(x) − x] . (39)

9 Consider a one-component universe of pressureless dust.
(a) Show that

$(t) = ρ(t)

ρc(t)
= 1 + kc2

(dR/dt)2
, (194)

which describes how $ varies with time. What does this have to say about the nature of
the early universe?

(b) Show that dR/dt → ∞ as t → 0. What does this say about the difference between a
closed, a flat, and an open universe at very early times?

10 For a one-component universe of pressureless dust, show that

1
$

− 1 =
(

1
$0

− 1
)

(1 + z)−1. (195)

What happens as z increases?

11 Show that in the limit (1 + z) ≫ 1/$0, Eq. ( 41) reduces to Eq. ( 43). Hint: First write
Eq. ( 41) in terms of a variable u ≡ 1/[$0(1 + z)], and then expand the equation in a Taylor
series about u = 0. You may find

cos−1(1 − x) =
√

2x1/2 +
√

2
12

x3/2 + · · ·

for x ≪ 1 to be useful.

tclosed(z)

tH
= $0

2($0 − 1)3/2

[

cos−1
(

$0z −$0 + 2
$0z +$0

)

− 2
√

($0 − 1)($0z + 1)

$0(1 + z)

]

(for $0 > 1). (41)

t (z)

tH
= 2

3
1

(1 + z)3/2$
1/2
0

(43)
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tflat(z)

tH
= 2

3
1

(1 + z)3/2
(for $0 = 1). (40)

tclosed(z)

tH
= $0

2($0 − 1)3/2

[

cos−1
(

$0z− $0 + 2
$0z +$0

)

− 2
√

($0− 1)($0z + 1)

$0(1 + z)

]

(for $0 > 1). (41)

topen(z)

tH
= $0

2(1 −$0)3/2

[

− cosh−1
(

$0z −$0 + 2
$0z +$0

)

+ 2
√

(1 −$0)($0z + 1)

$0(1 + z)

]

(for $0 < 1). (42)
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13 Assuming that P = 0, show that Eq. ( 51) for the acceleration of a mass shell can be found
from Newton’s second law by considering the gravitational force on an expanding shell.

14 Consider a model of the universe consisting of neutral hydrogen atoms for which the average
(rms) speed of the atoms is 600 km s−1 (approximately the speed of the Local Group relative to
the Hubble Flow). Show that ρ ≫ P/c2 for the gas. For an adiabatically expanding universe,
for what value of R and z will ρ = P/c2?

15 By inserting the equation of state P = wρc2 into the fluid equation, Eq. ( 50), show that
R3(1+w)ρ = constant = ρ0, where ρ0 is the present value of ρ.

16 Show that for a pressureless dust universe, q(t) = 1
2 $(t), which is Eq. (55).

17 The deuterium (2
1H) nucleus is not very tightly bound.

d2R

dt2
= −4

3
πG

(

ρ + 3P

c2

)

R. (51)

d(R3ρ)

dt
= −P

c2

d(R3)

dt
. (50)

q(t) = 1
2
$(t), (55)

(a) Calculate the binding energy of the deuterium nucleus, using values of mH = 1.007825 u,
mn = 1.008665 u, and mD = 2.014102 u.

(b) What is the wavelength of a photon with this energy?

(c) From Wien’s law, at what temperature is this the characteristic energy of a blackbody
photon?

18 The carbon absorption lines that are formed when the light from a distant quasar, Q1331+70,
passes through an intergalactic cloud have been measured by Antoinette Songaila and her
colleagues. The relative strengths of the lines indicate that the temperature of the cloud is
7.4 ± 0.8 K, and the lines show a redshift of z = 1.776. How does the temperature of the
cloud compare with the temperature of the CMB at that redshift? (If there are sources of
heating for the cloud in addition to the CMB, then its temperature must be considered as an
upper limit to the temperature of the CMB.)

19 In 1941, microwave observations detected absorption lines due to cyanogen molecules (CN) in
molecular clouds. A cyanogen molecule has three first excited rotational states, each of which
is degenerate and has an energy that is 4.8 × 10−4 eV above the ground state. An analysis
of the absorption lines shows that for every 100 molecules in the ground state, there are 27
others that are in one of the three first excited states. Assuming that the molecular clouds are
in thermal equilibrium with the CMB, use the Boltzmann equation shown below to estimate
the temperature of the CMB.

Nb

Na

= gb e−Eb/kT

ga e−Ea/kT
= gb

ga

e−(Eb−Ea)/kT .
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12 Derive the acceleration equation, Eq. (51).

d2R

dt2
= −4

3
πG

(

ρ + 3P

c2

)

R. (51)



20

u = ⟨S⟩/c.)

21 Use the below equation for the relativistic Doppler shift to derive Eq. (61). Show that
Eq. (61) reduces to Eq. (62) when v ≪ c.

22 Calculate the magnitude of the variation in the temperature of the CMB due to the Sun’s
peculiar velocity.

23 In this problem you will approximate the physics that produces the Sunyaev–Zel’dovich effect.

(a) First, estimate the shift in the frequency of a low-energy CMB photon as it is scattered by
a high-energy electron (inverse Compton scattering) of speed ve in the hot intracluster gas
of a rich cluster of galaxies. Although photons can be scattered from any direction into any
direction, we will consider the four equally likely situations shown in Fig. 31. Show
that the average shift in the frequency of these four photons is

%ν

ν
= v2

e

c2
= 3

kTe

mec2
,

where Te is the temperature of the electron gas. Evaluate this expression using Te = 108 K,
and explain why you could assume that in the rest frame of the electron, the change in the
wavelength (∼ λC) of the photon could be neglected.

(b) About what fraction of the CMB photons will be scattered as they pass through the intra-
cluster gas? Assume an electron number density of ne = 104 m−3 and a cluster radius of
3 Mpc.

νobs = νrest

√

1 − u2/c2

1 + (u/c) cos θ
= νrest

√

1 − u2/c2

1 + vr/c

Tmoving = Trest

√

1 − v2/c2

1 − (v/c) cos θ
, (61)

Tmoving ≃ Trest

(

1 + v

c
cos θ

)

(62)

Photon

Before scattering After scattering

Electron

To Earth

1.

2.

3.

4.

FIGURE 31 Inverse Compton scattering of a CMB photon by a high-energy electron.

Cosmology: Problem Set

.

Channel 6 on your television consists of radio waves with wavelengths between 3.41 m and 
3.66 m. Consider a 25,000-watt television station located 70 km from your home. Use the be-
low equation for the energy density of blackbody radiation to estimate the ratio of the number 
of channel 6 photons to the number of CMB photons that your television antenna picks up in 
this wavelength band. (Hint: For the television broadcast, recall that the energy density of an 
electromagnetic wave is related to the time-averaged Poynting vector by



(c) Use the increase %ν of the peak frequency with Wien’s law (Eq. 59) to obtain an
approximate expression for the effective decrease in the temperature of the CMB,%T/T0

(the Sunyaev– Zel’dovich effect).

24 Show that in the general equation of stateP = wu (Eq. 52), w = 1/3 for relativistic particles
(E ≫ mc2). Hint: The pressure integral, may prove useful.

25 Consider a comoving sphere whose surface expands with the universe. Let it be centered at
the origin and filled with CMB photons. Show that Eq. ( 81), R4ρrel = ρrel,0, is consistent
with the conservation of energy within the sphere.

26 Some quantities obey an exponential time-behavior of the form f (t) = f0e
t/τ , where τ is the

characteristic time for the system under consideration.

(a) Show that

τ =
(

1
f

df

dt

)−1

.

This expression can be used to define a characteristic time for any function, regardless of
whether its behavior is exponential.

(b) Use the scale factor, R(t), to show that the characteristic time for the expansion of the
universe is τexp(t) = 1/H(t).

(c) Assuming a flat universe containing only matter and radiation, find an expression (valid
in both the radiation era and the matter era) for the characteristic expansion time τexp as a
function of the scale factor R.

27 (a) Show that deep in the radiation era when R ≪ Rr,m, Eq. ( 84) is well approximated by
Eq. (86).

(b) Solve the Friedmann equation for a flat, one-component universe that contains only rela-
tivistic particles, and compare your result with Eq. (86).

νmax

T
= 5.88 × 1010 Hz K−1. (59)

P = wu = wρc2, (52)

P = 1
3

∫ ∞

0
nppv dp.

R4ρrel = ρrel,0 (81)

t (R) = 2
3

R
3/2
r,m

H0
√

$m,0

[

2 +
(

R

Rr,m

− 2
)

√

R

Rr,m

+ 1

]

, (84)

R(t) =
(

16πGg∗a

3c2

)1/4

T0 t1/2 (86)
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28 Use a procedure similar to that used to obtain Eq. ( 28) to show that a one-component
universe of relativistic particles is flat in the limit z → ∞.

$ =
(

1 + z

1 +$0z

)

$0 = 1 + $0 − 1
1 +$0z

. (28)

29 Assuming that the present density of baryonic matter is given by Eq. ( 17), what was the
density of matter at the time of Big Bang nucleosynthesis, when T ∼ 1010 K?

30 One factor that contributed to the cessation of the reactions that formed neutrons at roughly
1010 K [Eqs. ( 93– 95)] was the annihilation of electron–positron pairs that occurred at that
time. When the temperature became too low, the electron–positron pairs could not be replaced
by pair production. (This removed the supply of electrons that could combine with protons to
form neutrons.) By setting the characteristic thermal energy of a photon, kT , equal to the rest
energy of an electron–positron pair, estimate the temperature below which an annihilated pair
will not readily be replaced.

31 In this problem, you will show that when the temperature of the universe was about 109 K, all
of the neutrons would have combined with protons to form helium nuclei.

(a) Using arguments similar to those leading up to the equation below show that the number of
%t is npσv%t , where np

is the number density of protons, σ is the neutron’s collision cross section, and v is the
speed of the neutron.

(b) Evaluate npσv%t . If the result is ≫ 1, then each neutron had ample opportunity to combine
with a proton. Let %t be the characteristic timescale of the universe at the time of helium
formation, and use σ = π(2r)2, where r ≃ 10−15 m is the radius of a neutron. The number
density of protons can be estimated from the baryonic mass density when T = 109 K.

32 (a) Use the cross section for electron scattering shown below to find an expression for the

(b) Assuming that the electrons remain free, at what value of R and z will the average time
between scatterings equal the characteristic expansion time τexp of Problem 26? (Use
WMAP values.) What is the age of the universe when this occurs? This is when a flat
universe of matter and radiation would have become transparent due solely to its expansion
(no recombination).

ρb,0 = 4.17 × 10−28 kg m−3 (for h = 0.71), (17)

n ! p+ + e− + νe (93)

n + e+ ! p+ + νe (94)

n + νe ! p+ + e−. (95)

collisions between a neutron and a proton that occur within a time

ℓ = vt

nσvt
= 1

nσ
.

average time between scatterings of a photon by free electrons.

σT = 1
6πϵ2

0

(

e2

mec2

)2

= 6.65 × 10−29 m2.
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33 Solve Eq. ( 101) for a composition of pure hydrogen to find the temperature when half of
the electrons and protons have combined to form neutral atoms.

34 Calculate the time of decoupling, tdec, for a universe of matter and radiation using the WMAP
values for zdec = 1089 and other quantities. Compare your answer with the WMAP result of
379 +8

−7 kyr.

35 Using WMAP values for a universe of matter and radiation, estimate the time interval %t

between when recombination began (say, when 99% of the hydrogen atoms were ionized) and
when recombination ended (say, when 1% of the hydrogen atoms were ionized). What is the
difference%z between the values of the redshift z at these two times? This is the thickness (in
terms of z) of the “surface” of last scattering. Compare your answers with the WMAP results
of %t = 118 +3

−2 kyr and %z = 195 ± 2. Assume a composition of pure hydrogen.

36 Suppose that Earth were a perfectly smooth sphere. If you drew a circle of radius D = 100 me-
ters on Earth’s surface, what discrepancy would you find between the expected and measured
values of the circle’s circumference?

37 Follow a procedure similar to that used to obtain Eq. ( 28) to derive an expression for
the total density parameter, $(z), as a function of z. Verify that your expression reduces to

f

1 − f
= mHR3

fρb,0

(

2πmekT0

h2R

)3/2

e−χIR/kT0 (101)

$ =
(

1 + z

1 +$0z

)

$0 = 1 + $0 − 1
1 +$0z

. (28)

Eq. ( 28) if $rel,0 = $.,0 = 0. What does your expression say about the geometry of an
early, three-component universe?

38 Use the Robertson–Walker metric, Eq. ( 106), to show that the proper area (dt = 0) of
a spherical surface, centered at the origin and passing through comoving coordinate ϖ , is
4π [R(t)ϖ ]2.

39 Einstein originally introduced the cosmological constant . to stabilize his model of a pres-
sureless dust universe against expansion or contraction.

(a) Find an expression for. in terms of the density ρm of a static model of a pressureless dust
universe with a cosmological constant.

(b) Find an expression for the curvature k for this static model. Is this model universe closed,
open, or flat?

(c) Explain why Einstein’s static model is in an unstable equilibrium, so any departure from
equilibrium (expansion or contraction) will tend to increase.

40 Evaluate $m, $rel, and $. at the time of decoupling (z = 1089) using WMAP values.

(ds)2 = (c dt)2 − R2(t)

[

(

dϖ√
1 − kϖ 2

)2

+ (ϖ dθ)2 + (ϖ sin θ dφ)2

]

(106)
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41 Show that Eq. (122) may be written as

H = H0

[

∑

i

$i,0(1 + z)3(1+wi ) + (1 −$0) (1 + z)2

]1/2

, (196)

where w is the coefficient from the equation of state Pi = wiρic
2 and the “i” subscripts

identify one of the components of the universe (i.e., pressureless dust, relativistic particles, or
dark energy).

42 Derive Eq. (123) for a general expression of the deceleration parameter,

q(t) = 1
2

∑

i

(1 + 3w )$ (t).i i

43 Use the acceleration equation to show that the acceleration of the universe changed sign (from
negative to positive) when the scale factor was

Raccel =
(

$m,0

2$.,0

)1/3

.

Evaluate the value of Raccel and zaccel at this time with WMAP values.

44 (a) Use Eq. ( 129) to find an expression for the lookback time, tL, as a function of the
redshift z.

(b)
function of redshift. Using your expression for the lookback time with WMAP values,

replot the “ChoMP + CDF + ROSAT” data (marked with filled circles) with tL/tH on
the horizontal axis (the lookback time as a fraction of the Hubble time). How would you
characterize the decline in the space density of AGN with increasing lookback time?

H = H0(1 + z)

[

$m,0(1 + z) +$rel,0(1 + z)2 + $.,0

(1 + z)2
+ 1 −$0

]1/2

(122)

q(t) = 1
2

∑

i

(1 + 3w )$ (t)i i (123)

t (R) = 2
3

1

H0
√

$.,0
ln

[
√

(

$.,0

$m,0

)

R3 +
√

1 +
(

$.,0

$m,0

)

R3

]

. (129)

The below shows the comoving space density of active galactic nuclei (AGN) as
a
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45 The cosmological constant becomes dominant as the scale factor R becomes increasingly
larger in the . era.

(a) Show that the Hubble parameter is a constant in a flat universe deep in the . era.

(b) Suppose that, starting today (t = t0, when R = 1), only the cosmological constant con-
tributes to the Friedmann equation. Solve the Friedmann equation and show that for
. > 0, the scale factor will increase exponentially.

(c) Use WMAP values to evaluate the characteristic time for the exponential expansion (cf.
Problem 26).

46 In the matter era, the distance to the particle horizon for a closed, one-component universe of
pressureless dust is given by

dh(z) = c

H0(1 + z)
√
$0 − 1

cos−1

[

1 − 2($0 − 1)

$0(1 + z)

]

. (197)

In this problem, you will derive this expression for dh. First change variables in Eq. ( 153)
to obtain

dh(t) = R(t)

∫ 1
1+z

0

c dR

R(dR/dt)
,

where the limits of integration range from R = 0 (at t = 0) to R = 1/(1 + z) (at time t). Then
show that

(

dR

dt

)2

= H 2
0

(

$0

R
−$0 + 1

)

,

*

Such a universe is called a de Sitter universe, named for the Dutch mathematician Willem de Sitter (1872–1934).*
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and make this substitution into the denominator of the integral. You may find
∫

dx√
bx − ax2

= 1√
a

[

cos−1

(

1 − 2ax

b

)

− π

2

]

to be useful.

47 Use the results of Problem 46 to find the ratio of the distance to the particle horizon to the
circumference of a closed, matter-dominated universe. What happens at very early times, as
z → ∞? Show that at the time of maximum expansion (just before the closed universe begins
to collapse), this ratio is equal to one-half. This means that at the moment of the Big Crunch
ending the collapse, the particle horizon encompasses the entire universe.

48 Using Eq. ( 163) for the comoving coordinate, ϖ , of a photon just now arriving from the
present particle horizon in a flat universe, find the maximum proper distance of the photon
during its journey. Express your answer as a fraction of the model’s particle horizon, dh,0 =
3ct0. At what time (t/t0) is the photon at this distance? Carefully explain the meaning of the
phrase “just now arriving from the present particle horizon.”

49 Consider the (unrealistic) model of a flat, one-component universe of pressureless dust, as
described in Section 1 of Cosmology .
(a) Show that for this model,

ϖ = 2c

H0

(

1 − 1√
1 + z

)

. (198)

(b) Find an expression for the proper distance to an object with redshift z for this model.

ϖ = ϖe − 3ct0

(

t

t0

)1/3

. (163)

(c) Find an expression for the horizon distance in this model. Evaluate this using WMAP
values, and compare your result with the more accurate value of Eq. (159).

50 Derive Mattig’s relation for a one-component universe of pressureless dust,

ϖ = 2c

H0

1
1 + z

1
$2

0

[

$0z − (2 −$0)(
√

1 +$0z − 1)
]

, (199)

or in terms of the deceleration parameter q0 = $0/2 (valid for this one-component model),

ϖ = c

H0

1
1 + z

1
q2

0

[

q0z − (1 − q0)(
√

1 + 2q0z − 1)
]

. (200)

Show that this is valid for a flat, an open, and a closed one-component universe of pressureless
dust. Note that Eq. ( 198) in the previous problem and Eq. ( 199) are in agreement when
$0 = 1.

dh,0 = 4.50 × 1026 m = 14,600 Mpc = 14.6 Gpc (159)

51 Show that Eq. (178) is the Taylor-series expansion of Eq. (168) about z = 0.

I (z) ≡
∫ z

0

dz′
√

$m,0(1 + z′)3 +$rel,0(1 + z′)4 +$.,0 + (1 −$0)(1 + z′)2
. (168)

I (z) =
∫ z

0

{

1 − (1 + q0)z
′ +

[

1
2

+ 2q0 + 3
2
q2

0 + 1
2
(1 −$0)

]

z′ 2 + · · ·
}

dz′ (178)
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52 In this problem, you will carry out a general derivation of Eq. ( 180) without reference to
any specific model of the universe.

(a) Expand the scale factor, R(t), in a general Taylor series about the present time, t0, and
obtain

R(t) = R(t0) + dR

dt

∣

∣

∣

∣

t0

(t − t0) + 1
2

d2R

dt2

∣

∣

∣

∣

t0

(t − t0)
2 + · · ·

= 1 − H0(t0 − t) − 1
2
H 2

0 q0(t0 − t)2 + · · · . (201)

(b) Show that 1/R(t) is then given by

1
R(t)

= 1 + H0(t0 − t) + H 2
0

(

1 + 1
2
q0

)

(t0 − t)2 + · · · .

[Hint: Use long division to divide 1 by R(t).]
(c) Use Eq. ( 142), 1/R(t) = 1 + z, with the result of part (b) to write the expansion for z

about the present time. Now solve for t0 − t and express the result as a series in z to get

t0 − t = z

H0
−
(

1 + 1
2
q0

)

z2

H0
+ · · · .

(d) Consider a photon that is emitted at comoving coordinate ϖ at time t and received on
Earth at the present time t0. Use an equation similar to Eq. ( 138) to find an approximate
expression for ϖ . You need only use the first two terms in the expansion in part (b) for
1/R(t) in the left-hand integral. For the right-hand integral, use a two-term Taylor series
for 1/

√
1 − kϖ 2. You should find that

ϖ = c(t0 − t)

[

1 + 1
2
H0(t0 − t)

]

+ · · · .

(e) By substituting the expression for t0 − t from part (c) into this equation forϖ , show that,
to second order in z,

ϖ = cz

H0

[

1 − 1
2
(1 + q0)z

]

+ · · · .

ϖ ≃ cz

H0

[

1 − 1
2

(1 + q0)z

]

(for z ≪ 1). (180)

1
R(te)

= λ0

λe

= 1 + z. (142)

∫ t0

te

c dt

R(t)
=
∫ ϖe

0

dϖ√
1 − kϖ 2

(138)

This result is very important because it does not rely on any particular model of the universe.
It is valid even if the cosmological constant, ., is not equal to zero.

53 Use Eq. ( 196) from Problem 41 to show that the luminosity distance may be written as

dL = c(1 + z)

H0
√|1 −$0|

sinn

{

√

|1 −$0|
∫ z

0

dz′
[
∑

i $i,0(1 + z′)3(1+wi ) + (1 −$0) (1 + z′)2
]1/2

}

,

(202)
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where

sinn(x) ≡ sinh(x) if $0 < 1,

≡ x if $0 = 1,

≡ sin(x) if $0 > 1.

This is Eq. (1) of Garnavich et al. (1998), which explains how this equation may be used with
the distance modulus, Eq. ( 186), to place limits on the value of w. for the equation of state
of dark energy. The WMAP result is that w. < −0.78.

m − M = 5 log10(dL/10 pc) (186)

54 Assume a flat, one-component universe of pressureless dust for this problem.

(a) Show that the angular diameter observed for an extended object of linear diameter D at
redshift z is

θ = H0D

2c

(1 + z)3/2

√
1 + z − 1

.

(b) Find the value of the redshift for which θ is a minimum. Compare your result with
Fig. 30.
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W m,0
 = 1, W L,0
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W m,0 =
 0.3, WL,0 =

 0

WMAP

c$
/H

0D

FIGURE 30 The angular diameter θ of a galaxy in units of H0D/c for several values of $m,0

and $.,0.

(c) What is the smallest value of θ when observing a cluster of galaxies with a diameter of
1 Mpc? Use h = 0.71.

55 Model the hot intragalactic gas in a rich cluster of galaxies as a homogeneous sphere of radius
R and temperature Te. Let FX be the X-ray flux observed for the gas, and let θ be the angular
diameter of the gas, as observed from Earth.

(a) Show that if the Sunyaev–Zel’dovich effect, %T/T0, is measured for the cluster, then the
Hubble constant may be calculated as

Cosmology: Problem Set



H0 = Cf (z)
FXT 3/2

e

θ(%T/T0)2
.

where f (z) is a function of the redshift z of the cluster and C is a constant factor you must
determine.

(b) Use the data in Fig. 12 for the clusters, together with θ = 46′′ and kTe = 8.0 keV for
Abell 697, and θ = 69′′ and kTe = 7.2 keV for Abell 2218 (from Jones et al., 2005) to
evaluate h, the Hubble parameter. To crudely compensate for the gas not being isothermal,
take Te to be half the value obtained from the data. How do your answers compare with
the WMAP value of h = 0.71?
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FIGURE 12 Radio contours showing the Sunyaev–Zel’dovich effect superimposed on ROSAT
images of the clusters Abell 697 (%T = 1047 µK, z = 0.282) and Abell 2218 (%T = 797 µK,
z = 0.171). The contour interval is 60 µJy (left) and 80 µJy (right). The dashed contours indicate
a decrease in the received radio flux density. (Figure adapted from Jones et al., MNRAS, 357, 518,
2005.)

COMPUTER PROBLEMS

56 In Eq. ( 166), the limits of integration on the left-hand side span a time interval that lies
entirely in the past. Use Eq. ( 132) to approximate the scale factor on the left-hand side.
On the right-hand side, consider the case of tmva > t0, so the limits of integration span a time
interval that lies entirely in the future. Use Eq. ( 133) for the scale factor on the right-hand
side. [Note that very distant objects have already emitted the last photon that will ever reach us
(tmva < t0), so we must restrict our attention to nearer objects to ensure that tmva > t0.] Show
that

tmva ≃ tH
√

$.,0
ln

⎡

⎣

(

√

$m,0

2
√

$.,0

)1/3 ( √
1 + z√

1 + z − 1

)

⎤

⎦ .

Using WMAP values, what is the largest redshift for which tmva > tH ? Find the maximum
visible age, in units of tH , for sources at values of z of 0.1, 0.5, 1, and 1.5.
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R(t) ≃
(

3
2

H0t
√

$m,0

)2/3

=
(

3
√

$m,0

2

)2/3
(

t

tH

)2/3

, (132)

R(t) ≃
(

$m,0

4$.,0

)1/3

eH0t
√
$.,0 . (133)

∫ t0

te

dt

R(t)
=
∫ tf

ti

dt

R(t)
(166)

58 Use WMAP values for this problem.
(a) On a single graph, plot the luminosity distance, the present proper distance, the angular

diameter distance, the relativistic Hubble law distance estimate the  below  equation, and
z between 0 and 4.

c/H0.

(b) From your results, determine the value of z when the relativistic Hubble law distance
estimate differs from the proper distance by more than 10%.

59 A distant radio galaxy, 8C 1435+63, has a redshift of z = 4.25. Assume WMAP values for
this problem.
(a) How old was the universe at this redshift? Express your answer both in terms of years and

as a fraction of the present age of the universe.
(b) What is the present proper distance (in Mpc) to 8C 1435+63?
(c) What was the proper distance (in Mpc) to 8C 1435+63 when its light was emitted?
(d) What is the luminosity distance to 8C 1435+63?
(e) What is the angular diameter distance to 8C 1435+63?
(f) The angular diameter of the nucleus of 8C 1435+63 is about 5′′. What is the linear diameter

of the galaxy (in units of kpc)?
(g) Suppose the galaxy’s redshift were z = 1. What would its linear diameter be [using the

same angular diameter as in part (d)]?
Further information about 8C 1435+63, which may be the progenitor of a cD elliptical

galaxy, can be found in Spinrad, Dey, and Graham (1995).

the non-relativistic Hubble law distance shown below for values of
Express these distances in units of

d ≃ c

H0

(z + 1)2 − 1
(z + 1)2 + 1

,

d = cz

H0
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The Early Universe

An Introduction to Modern Astrophysics



The Early Universe

1 The Very Early Universe and Inflation
2 The Origin of Structure

1 THE VERY EARLY UNIVERSE AND INFLATION

Fundamental Particles

Standard Model

leptons e± µ± τ± νe νµ ντ
νe νµ ντ

quarks

hadrons
baryons mesons

force-carrying particles

W± Z

quark–hadron
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TABLE 2
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∑
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FIGURE 1 g∗
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(Tν/T ) = ( / ) /

kT ≈
g∗ kT

g∗ = .

∼
g∗ = .

g∗
kT ∼

g∗ = .

g∗ ≃
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g∗ ≃ T (t) g∗
g∗

Hot and Cold Dark Matter
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hot dark matter
cold dark matter

. /c

axion mc ≈ −

!CDM model

The Planck Limits on Time, Mass, and Length

Planck time

tP ≡
√
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c
= . × − .

M
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#p ≈ !

#x
≈ !
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.
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− GM

RS

= .
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G
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Unification and Spontaneous Symmetry Breaking

Theory of Everything

spontaneous symmetry breaking

kT

FIGURE 2
−

−

tP = × −
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grand unified theories

kT
−

× −

W± Z

kT ∼

×

Problems with the Standard Theory of the Big Bang
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Why is the cosmic background radiation so smooth?

◦

A

B C B C

δT/T ∼ −

horizon problem

Why is the universe so nearly flat & ≃ &
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& = .

& ≃ . & = .

& ≃
& = .

& =

& =

flatness problem

Why have we found no magnetic monopoles?

Defects

magnetic monopole

∼
mc ∼

monopole problem

t =

Inflation

t
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exponential expansion
& = very

inflation

Virtual Particles and the Energy of the Vacuum

∼

vacuum vacuum

vacuum

#x#p ≈ ! #E#t ≈ !

m ≈ (#E)/c

L ≈ #x

#t ≈ !/#E ≈ !/mc .

The Early Universe

virtual particles ΔE
Δt

an electron confined to a small region can be calculated to have a certain minimum energy, 
its ground-state energy. This energy cannot be lost or extracted from the electron, since 
there is no lower quantum state to which the electron can make a transition. The existence 
of the vacuum has been verified by observations of the Casimir effect (named for Dutch 
physicist Hendrick Casimir, 1909–2000). Two uncharged parallel flat conducting plates 
with a very small separation will alter the properties of the vacuum between the plates. 
This change in the vacuum creates an attractive force between the plates, which has been 
measured. Unfortunately, the Casimir effect cannot be used to calculate the value of the 
energy density of the vacuum.
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L
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!
.
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!c/G

u ≈ mP c

!
≈ c

!G
,

u ≈ −

u ≈ −

constant

P = −ρ c = −u ,

u ≡ ρ(c = ρc, &(, c = . × − − .
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The False Vacuum

t ∼ − T ∼
false vacuum

−

far below

u ≈ − = . × − .

Quantum Fluctuations and the Onset of Inflation

t < −

ti = −

inflaton field
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Solutions to the Problems of the Standard Big Bang Theory
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Matter–Antimatter Asymmetry
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matter–antimatter asymmetry

X

X

X

X mXc ∼

X X

X ! q + q

X ! q + q.

kaon pion
K → π− + e+ + νe K → π+ + e− + νe

X X

t ∼ −

T ∼ ×
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The CMB and the Decoupling of Matter and Radiation

R ∝ t /

t ≃ ×

2 THE ORIGIN OF STRUCTURE

Adiabatic and Isothermal Density Fluctuations

photon–baryon fluid
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scale-invariant

adiabatic fluctuations curvature
fluctuations

isothermal fluctuations isocurvature fluctuations
potential

The Development of Adiabatic Density Fluctuations

−

ρ(t)

ρ ′(t) > ρ(t)

nearly
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(
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Acoustic Oscillations and Damping

c/
√

The Minimum Mass Required to Survive Damping
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Silk
damping

d

z =
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R
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ρ = ρb
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The Isothermal Density Fluctuations
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The Timing of Structure Formation

⊙ ⊙

Example 2.1.
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Principles of Physical Cosmology
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Determining When the First Stars and Galaxies Formed
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epoch of reionization
Gunn–Peterson trough
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Top-Down Galaxy Formation and Hot Dark Matter
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Bottom-Up Galaxy Formation and Cold Dark Matter
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PROBLEM SET

1 or the number density of blackbody photons:

n = u

2.70kT
= aT 3

2.70k
.

Use this result along with the baryon density, ρb,0, to estimate the ratio of the number of baryons
to the number of photons in today’s universe. For convenience, assume that the universe is
made solely of hydrogen.

2 (a) Suppose observations of the microlensing of stars in the Large Magellanic Cloud showed
that most of the dark matter in the Milky Way’s dark halo is in the form of ordinary brown
dwarfs and Jupiter-sized objects. Explain whether this would favor hot or cold dark matter
for the nonbaryonic matter in the universe, and why.

(b) In fact, observations indicate that this is probably not the case: Less than 20% of the Milky
Way’s dark halo is in the form of ordinary brown dwarfs and Jupiter-sized objects. How
do these observations change the conclusion you reached in part (a)?

3 An example of spontaneous symmetry breaking can be obtained by considering a small ball
of mass m = 1/9.8 kg that is free to roll on a surface whose height (in meters) is given by

h(x) = kx2 + εx4,

where k = ±1 m−1 and ε = 0.5 m−3. The gravitational potential energy of the ball is then
V (x) = mgh(x).
(a) Make two graphs of V (x) from x = −2 m to x = 2 m, one for each choice of sign for k.
(b) The case of k = 1 m−1 corresponds to the symmetric false vacuum. Where is the point of

equilibrium? Is this point stable or unstable? (In the case of stable equilibrium, if the ball
is displaced slightly, it will return to the equilibrium point.)

(c) The case of k = −1 m−1 corresponds to the broken symmetry of the true vacuum. Where are
the three points of equilibrium? Which of these points are stable, and which are unstable?

(d) For the case of k = −1 m−1, consider the ball at rest at the origin. What are the implications
of the uncertainty principle given in below equation  for the ball remaining in that
position? is this situation analogous to that of the supercooled false vacuum

4 Compare the energy density of CMB photons at the end of the GUTs epoch to that of the false
vacuum.

5 According to the standard Big Bang cosmology, what was the value of the scale factor, R, in
the radiation era at the Planck time? When inflation is considered (take t/τi = 100), what was

F

the value of the scale factor at the Planck time? For both situations, what was the size of the
presently observable universe at the Planck time?

6 Estimate the thickness of a typical cosmic string.

The Early Universe
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7 (a) Estimate the mass of baryonic matter contained within a causally connected region
(diameter = the horizon distance) when T = 109 K during the radiation era. Express your
answer in solar units. How does this compare with the Jeans mass shown in Fig. 7?

(b) Show that during the radiation era, the mass of the baryonic matter inside this causally
connected region varied as T −3. What does this say about the relative magnitudes of the
region’s mass and the Jeans mass throughout the radiation era?

8 Estimate the mass of baryonic matter contained within a causally connected region at the time
of the transition from the radiation era to the matter era. Express your answer in solar units.
(For convenience, set &0 = 1 and h = 1.) From the magnitude of your answer, did most of
the baryonic density fluctuations become sub-horizon-sized during the radiation era or during
the matter era?

9 Show that if a baryonic density perturbation at the present time is (δρ/ρ)0 = 1, then its value
at a redshift z in the matter era was δρ/ρ = (1 + z)−1. By what factor does any δρ/ρ < 1
increase between a redshift z1 and a redshift z2 (z1 > z2) in the matter era? You may assume
that the universe is nearly flat and that z < 1100 for baryonic fluctuations.

10 Follow the linearization procedure and show that the variations in the temperature of the
CMB are related to the baryonic density fluctuations by Eq. (30).

11 Assuming a flat universe, find the angular size of the largest causally connected region of the
CMB. Hint: We see this region as it existed at the time of decoupling, when the CMB photons
were set free.

12 Estimate the value of ℓwhen Silk damping becomes important for the angular power spectrum
of the CMB anisotropies.

13 According to the WMAP CMB polarization results, how old was the universe when the first
stars ignited?
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FIGURE 7 The variation of the Jeans mass, MJ , with temperature as the universe expands. The
sharp peak at the time of recombination is actually leveled off by the presence of dark matter at about
MJ ≃ 1016 M⊙.
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APPENDIX

Astronomical and Physical Constants

Astronomical Constants
Solar mass 1 M⊙ = 1.9891 × 1030 kg
Solar irradiance S = 1.365(2) × 103 W m−2

Solar luminosity 1 L⊙ = 3.839(5) × 1026 W
Solar radius 1 R⊙ = 6.95508(26) × 108 m
Solar effective temperature Te,⊙ ≡ L⊙/(4πσR2

⊙)1/4

= 5777(2) K

Solar absolute bolometric magnitdue Mbol = 4.74
Solar apparent bolometric magnitude mbol = −26.83
Solar apparent ultraviolet magnitude U = −25.91
Solar apparent blue magnitude B = −26.10
Solar apparent visual magnitude V = −26.75
Solar bolometric correction BC = −0.08

Earth mass 1 M⊕ = 5.9736 × 1024 kg
Earth radius (equatorial) 1 R⊕ = 6.378136 × 106 m

Astronomical unit 1 AU = 1.4959787066 × 1011 m
Light (Julian) year 1 ly = 9.460730472 × 1015 m
Parsec 1 pc = 206264.806 AU

= 3.0856776 × 1016 m
= 3.2615638 ly (Julian)

Sidereal day = 23h56m04.0905309s

Solar day = 86400 s
Sidereal year = 3.15581450 × 107 s

= 365.256308 d
Tropical year = 3.155692519 × 107 s

= 365.2421897 d
Julian year ≡ 3.1557600 × 107 s

≡ 365.25 d
Gregorian year ≡ 3.1556952 × 107 s

≡ 365.2425 d
Note: Uncertainties in the last digits are indicated in parentheses. For instance,
the solar radius, 1 R⊙, has an uncertainty of ±0.00026 × 108 m.

From Appendix A o f An Introduction to Modern Astrophysic Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 
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Physical Constants
Gravitational constant G = 6.673(10) × 10−11 N m2 kg−2

Speed of light (exact) c ≡ 2.99792458 × 108 m s−1

Permeability of free space µ0 ≡ 4π × 10−7 N A−2

Permittivity of free space ϵ0 ≡ 1/µ0c
2

= 8.854187817 . . . × 10−12 F m−1

Electric charge e = 1.602176462(63) × 10−19 C
Electron volt 1 eV = 1.602176462(63) × 10−19 J
Planck’s constant h = 6.62606876(52) × 10−34 J s

= 4.13566727(16) × 10−15 eV s
! ≡ h/2π

= 1.054571596(82) × 10−34 J s
= 6.58211889(26) × 10−16 eV s

Planck’s constant × speed of light hc = 1.23984186(16) × 103 eV nm
≃ 1240 eV nm

Boltzmann’s constant k = 1.3806503(24) × 10−23 J K−1

= 8.6173423(153) × 10−5 eV K−1

Stefan–Boltzmann constant σ ≡ 2π5k4/(15c2h3)

= 5.670400(40) × 10−8 W m−2 K−4

Radiation constant a = 4σ/c

= 7.565767(54) × 10−16 J m−3 K−4

Atomic mass unit 1 u = 1.66053873(13) × 10−27 kg
= 931.494013(37) MeV/c2

Electron mass me = 9.10938188(72) × 10−31 kg
= 5.485799110(12) × 10−4 u

Proton mass mp = 1.67262158(13) × 10−27 kg
= 1.00727646688(13) u

Neutron mass mn = 1.67492716(13) × 10−27 kg
= 1.00866491578(55) u

Hydrogen mass mH = 1.673532499(13) × 10−27 kg
= 1.00782503214(35) u

Avogadro’s number NA = 6.02214199(47) × 1023 mol−1

Gas constant R = 8.314472(15) J mol−1 K−1

Bohr radius a0,∞ ≡ 4πϵ0!2/mee
2

= 5.291772083(19) × 10−11 m
a0,H ≡ (me/µ)a0,∞

= 5.294654075(20) × 10−11 m
Rydberg constant R∞ ≡ mee

4/64π3ϵ2
0!3c

= 1.0973731568549(83) × 107 m−1

RH ≡ (µ/me)R∞
= 1.09677583(13) × 107 m−1

Note: Uncertainties in the last digits are indicated in parentheses. For instance, the universal
gravitational constant, G, has an uncertainty of ±0.010 × 10−11 N m2 kg−2.
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APPENDIX

Unit Conversions

SI to cgs Unit Conversions
Quantity SI Unit cgs Unit Conversion Factora 

Distance meter (m) Centimeter 10−2

Mass Kilogram (kg) gram (g) 10−3

Time second (s) second (s) 1
Currentb ampere (A) esu s−1 3.335640952 × 10−10

Chargec coulomb (C; A s) esu 3.335640952 × 10−10

Velocity m s−1 cm s−1 10−2

Acceleration m s−2 cm s−2 10−2

Linear momentum kg m s−1 g cm s−1 10−5

Angular momentum kg m2 s−1 g cm2 s−1 10−7

Force newton (N; kg m s−2) dyne (g cm s−2) 10−5

Energy (work) joule (J; N m) erg (dyne cm) 10−7

Power (luminosity) watt (W; J s−1) erg s−1 10−7

Pressure pascal (Pa; N m−2) dyne cm−2 10−1

Mass density kg m−3 g cm−3 103

Charge density C m−3 esu cm−3 3.335640952 × 10−4

Current density A m−2 esu s−1 cm−2 3.335640952 × 10−6

Electric potential volt (V; J C−1) statvolt (erg esu−1) 2.997924580 × 102

Electric field V m−1 statvolt cm−1 2.997924580 × 104

Magnetic field tesla (T; N A−1 m−1) gauss (G; dyne esu−1) 10−4

Magnetic flux weber (Wb; T m2) G cm2 10−8

a Multiply the SI unit by the conversation factor to obtain the equivalent cgs unit; e.g., 10−2 m = 1 cm.
b The ampere is the fundamental electromagnetic unit in the SI system.
c The esu (electrostatic unit) is the fundamental electromagnetic unit in the cgs system.
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SI to Miscellaneous Unit Conversions
Quantity SI Unit Misc. Unit Conversion Factor (SI to Misc.)d 

Distance meter (m) angstrom (Å) 10-10

Distance nanometer (nm) angstrom (Å) 10-1

Spectral flux density W m-2 Hz-1 Jansky (Jy) 10-26

d Multiply the SI unit by the conversion factor to obtain the equivalent Miscellaneous Unit.

SI -cgs Electromagnetic Equation Conversions
Selected Equations of 
Electromagnetism SI Version cgs Version 

Poynting Vector
S = E B

1
2 0 0µ0

S =
c

E B
8 0 0p

Coulomb’s Law F =
q q
r

1
4

1 2
2pe0

F =
q q
r
1 2

2

Lorentz Equation F (E v B)= q + ¥ F E
v

B= q +
c

¥Ê
ËÁ

ˆ
¯̃

Magnetic pressure P =
B2

2 0µ P =
B2

8p
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APPENDIX

Solar System Data

Planetary Physical Data
Equatorial Average Sidereal

Massa Radiusb Density Rotation Oblateness Bond
Planet (M⊕) (R⊕) (kg m−3) Period (d) (Re − Rp)/Re Albedo

Mercury 0.05528 0.3825 5427 58.6462 0.00000 0.119
Venus 0.81500 0.9488 5243 243.018 0.00000 0.750
Earth 1.00000 1.0000 5515 0.997271 0.0033396 0.306
Mars 0.10745 0.5326 3933 1.02596 0.006476 0.250
Jupiter 317.83 11.209 1326 0.4135 0.064874 0.343
Saturn 95.159 9.4492 687 0.4438 0.097962 0.342
Uranus 14.536 4.0073 1270 0.7183 0.022927 0.300
Neptune 17.147 3.8826 1638 0.6713 0.017081 0.290
Pluto 0.0021 0.178 2110 6.3872 0.0000 0.4 – 0.6
2003 UB313 0.002? 0.188 2100? 0.6?

Planetary Orbital and Satellite Data
Sidereal Orbital Equatorial Number

Semimajor Orbital Orbital Inclination Inclination Natural
Planet Axis (AU) Eccentricity Period (yr) to Ecliptic (◦) to Orbit (◦) Satellites
Mercury 0.3871 0.2056 0.2408 7.00 0.01 0
Venus 0.7233 0.0067 0.6152 3.39 177.36 0
Earth 1.0000 0.0167 1.0000 0.000 23.45 1
Mars 1.5236 0.0935 1.8808 1.850 25.19 2
Jupiter 5.2044 0.0489 11.8618 1.304 3.13 63
Saturn 9.5826 0.0565 29.4567 2.485 26.73 47
Uranus 19.2012 0.0457 84.0107 0.772 97.77 27
Neptune 30.0476 0.0113 164.79 1.769 28.32 13
Pluto 39.4817 0.2488 247.68 17.16 122.53 3
2003 UB313 67.89 0.4378 559 43.99 1
aM⊕ = 5.9736 × 1024 kg
bR⊕ = 6.378136 × 106 m
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Data of Selected Major Satellites
Orbital Semimajor

Parent Mass Radius Density Period Axis
Satellite Planet (1022 kg) (103 km) (kg m−3) (d) (103 km)
Moon Earth 7.349 1.7371 3350 27.322 384.4
Io Jupiter 8.932 1.8216 3530 1.769 421.6
Europa Jupiter 4.800 1.5608 3010 3.551 670.9
Ganymede Jupiter 14.819 2.6312 1940 7.155 1070.4
Callisto Jupiter 10.759 2.4103 1830 16.689 1882.7
Titan Saturn 13.455 2.575 1881 15.945 1221.8
Triton Neptune 2.14 1.3534 2050 5.877 354.8

SUGGESTED READING

Technical

Arnett, Bill, The Nine Planets: A Multimedia Tour of the Solar System,
http://www.nineplanets.org/.

Beatty, J. Kelly, Petersen, Carolyn Collins, and Chaikin, Andrew, The New Solar System,
Fourth Edition, Sky Publishing Corporation, Cambridge, 1999.

Cox, Arthur N. (ed.), Allen’s Astrophysical Quantities, Fourth Edition, Springer-Verlag,
New York, 2000.

Lodders, Katharina, and Fegley, Jr., Bruce, The Planetary Scientist’s Companion, Oxford
University Press, New York, 1998.

National Space Science Data Center, http://nssdc.gsfc.nasa.gov.
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APPENDIX

The Constellations

R. A. Dec.
Latin Name Genitive Abbrev. Translation h deg
Andromeda Andromedae And Princess of Ethiopia 1 +40
Antlia Antliae Ant Air Pump 10 −35
Apus Apodis Aps Bird of Paradise 16 −75
Aquarius Aquarii Aqr Water Bearer 23 −15
Aquila Aquilae Aql Eagle 20 +5
Ara Arae Ara Altar 17 −55
Aries Arietis Ari Ram 3 +20
Auriga Aurigae Aur Charioteer 6 +40
Boötes Boötis Boo Herdsman 15 +30
Caelum Caeli Cae Chisel 5 −40
Camelopardalis Camelopardis Cam Giraffe 6 +70
Cancer Cancri Cnc Crab 9 +20
Canes Venatici Canum Venaticorum CVn Hunting Dogs 13 +40
Canis Major Canis Majoris CMa Big Dog 7 −20
Canis Minor Canis Minoris CMi Little Dog 8 +5
Capricornus Capricorni Cap Goat 21 −20
Carina Carinae Car Ship’s Keel 9 −60
Cassiopeia Cassiopeiae Cas Queen of Ethiopia 1 +60
Centaurus Centauri Cen Centaur 13 −50
Cepheus Cephei Cep King of Ethiopia 22 +70
Cetus Ceti Cet Sea Monster (whale) 2 −10
Chamaeleon Chamaeleontis Cha Chameleon 11 −80
Circinus Circini Cir Compass 15 −60
Columba Columbae Col Dove 6 −35
Coma Berenices Comae Berenices Com Berenice’s Hair 13 +20
Corona Australis Coronae Australis CrA Southern Crown 19 −40
Corona Borealis Coronae Borealis CrB Northern Crown 16 +30
Corvus Corvi Crv Crow 12 −20
Crater Crateris Crt Cup 11 −15
Crux Crucis Cru Southern Cross 12 −60
Cygnus Cygni Cyg Swan 21 +40
Delphinus Delphini Del Dolphin, Porpoise 21 +10
Dorado Doradus Dor Swordfish 5 −65
Draco Draconis Dra Dragon 17 +65
Equuleus Equulei Equ Little Horse 21 +10
Eridanus Eridani Eri River Eridanus 3 −20
Fornax Fornacis For Furnace 3 −30
Gemini Geminorum Gem Twins 7 +20
Grus Gruis Gru Crane 22 −45
Hercules Herculis Her Son of Zeus 17 +30

From Appendix D o f An Introduction to Modern Astrophysic Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.by 

s, 



R. A. Dec.
Latin Name Genitive Abbrev. Translation h deg
Horologium Horologii Hor Clock 3 −60
Hydra Hydrae Hya Water Snake 10 −20
Hydrus Hydri Hyi Sea Serpent 2 −75
Indus Indi Ind Indian 21 −55
Lacerta Lacertae Lac Lizard 22 +45
Leo Leonis Leo Lion 11 +15
Leo Minor Leonis Minoris LMi Little Lion 10 +35
Lepus Leporis Lep Hare 6 −20
Libra Librae Lib Balance, Scales 15 −15
Lupus Lupi Lup Wolf 15 −45
Lynx Lyncis Lyn Lynx 8 +45
Lyra Lyrae Lyr Lyre, Harp 19 +40
Mensa Mensae Men Table, Mountain 5 −80
Microscopium Microscopii Mic Microscope 21 −35
Monoceros Monocerotis Mon Unicorn 7 −5
Musca Muscae Mus Fly 12 −70
Norma Normae Nor Square, Level 16 −50
Octans Octantis Oct Octant 22 −85
Ophiuchus Ophiuchi Oph Serpent-bearer 17 0
Orion Orionis Ori Hunter 5 +5
Pavo Pavonis Pav Peacock 20 −65
Pegasus Pegasi Peg Winged Horse 22 +20
Perseus Persei Per Rescuer of Andromeda 3 +45
Phoenix Phoenicis Phe Phoenix 1 −50
Pictor Pictoris Pic Painter, Easel 6 −55
Pisces Piscium Psc Fish 1 +15
Piscis Austrinus Piscis Austrini PsA Southern Fish 22 −30
Puppis Puppis Pup Ship’s Stern 8 −40
Pyxis Pyxidis Pyx Ship’s Compass 9 −30
Reticulum Reticuli Ret Net 4 −60
Sagitta Sagittae Sge Arrow 20 +10
Sagittarius Sagittarii Sgr Archer 19 −25
Scorpius Scorpii Sco Scorpion 17 −40
Sculptor Sculptoris Scl Sculptor 0 −30
Scutum Scuti Sct Shield 19 −10
Serpens Serpentis Ser Serpent 17 0
Sextans Sextantis Sex Sextant 10 0
Taurus Tauri Tau Bull 4 +15
Telescopium Telescopii Tel Telescope 19 −50
Triangulum Trianguli Tri Triangle 2 +30
Triangulum Australe Trianguli Australis TrA Southern Triangle 16 −65
Tucana Tucanae Tuc Toucan 0 −65
Ursa Major Ursae Majoris UMa Big Bear 11 +50
Ursa Minor Ursae Minoris UMi Little Bear 15 +70
Vela Velorum Vel Ship’s Sai 9 −50
Virgo Virginis Vir Maiden, Virgin 13 0
Volans Volantis Vol Flying Fish 8 −70
Vulpecula Vulpeculae Vul Little Fox 20 +25
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APPENDIX

The Brightest Stars

Spectral Class V a MV

Name Star A B A B A B

Sirius α CMa A1 V wdb −1.44 +8.7 +1.45 +11.6
Canopus α Car F0 Ib −0.62 −5.53
Arcturus α Boo K2 II Ip −0.05 −0.31
Rigel Kentaurus α Cen G2 V K0 V −0.01 +1.3 +4.34 +5.7
Vega α Lyr A0 V +0.03 +0.58
Capellac α Aur M1 III M1 V +0.08 +10.2 −0.48 +9.5
Rigel β Ori B8 Ia B9 +0.18 +6.6 −6.69 −0.4
Procyon α CMi F5 IV–V wdb +0.40 +10.7 +2.68 +13.0
Betelgeuse α Ori M2Ib +0.45v −5.14
Achernar α Eri B3 Vp +0.45 −2.77
Hadar β Cen B1 III ? +0.61 +4 −5.42 −0.8
Altair α Aql A7 IV–V +0.76 +2.20
Acrux α Cru B0.5 IV B3 +0.77 +1.9 −4.19 −3.5
Aldebaran α Tau K5 III M2V +0.87 +13 −0.63 +12
Spica α Vir B1 V +0.98v −3.55
Antares α Sco M1 Ib B4eV +1.06v +5.1 −5.58 −0.3
Pollux β Gem K0 III +1.16 +1.09
Fomalhaut α PsA A3 V K4V +1.17 +6.5 +1.74 +7.3
Deneb α Cyg A2 Ia +1.25 −8.73
Mimosa β Cru B0.5 III B2 V +1.25v −3.92
a Values labeled v designate variable stars.
b wd represents a white dwarf star.
c Capella has a third member of spectral class M5 V, V = +13.7, and MV = +13.
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Proper Radial
R. A.a Dec.a Parallaxb Distancec Motiond Velocity

Name (h m s) (◦ ′ ′′) (′′) (pc)
(′′ yr−1)

(

km s−1
)

Sirius 06 45 08.92 −16 41 58.0 0.37921(158) 2.64 1.33942 −7.7
Canopus 06 23 57.11 −52 41 44.4 0.01043(53) 95.88 0.03098 +20.5
Arcturus 14 15 39.67 +19 10 56.7 0.08885(74) 11.26 2.27887 −5.2
Rigel Kentaurus 14 39 36.50 −60 50 02.3 0.74212(140) 1.35 3.70962 −24.6
Vega 18 36 56.34 +38 47 01.3 0.12893(55) 7.76 0.35077 −13.9
Capella 05 16 41.36 +45 59 52.8 0.07729(89) 12.94 0.43375 +30.2
Rigel 05 14 32.27 −08 12 05.9 0.00422(81) 237 0.00195 +20.7
Procyon 07 39 18.12 +05 13 30.0 0.28593(88) 3.50 1.25850 −3.2
Betelgeuse 05 55 10.31 +07 24 25.4 0.00763(164) 131 0.02941 +21.0
Achernar 01 37 42.85 −57 14 12.3 0.02268(57) 44.09 0.09672 +19
Hadar 14 03 49.40 −60 22 22.9 0.00621(56) 161 0.04221 −12
Altair 19 50 47.0 +08 52 06.0 0.19444(94) 5.14 0.66092 −26.3
Acrux 12 26 35.90 −63 05 56.7 0.01017(67) 98.33 0.03831 −11.2
Aldebaran 04 35 55.24 +16 30 33.5 0.05009(95) 19.96 0.19950 +54.1
Spica 13 25 11.58 −11 09 40.8 0.01244(86) 80.39 0.05304 +1.0
Antares 16 29 24.46 −26 25 55.2 0.00540(168) 185 0.02534 −3.2
Pollux 07 45 18.95 +28 01 34.3 0.09674(87) 10.34 0.62737 +3.3
Fomalhaut 22 57 39.05 −29 37 20.1 0.13008(92) 7.69 0.36790 +6.5
Deneb 20 41 25.91 +45 16 49.2 0.00101(57) 990 0.00220 −4.6
Mimosa 12 47 43.26 −59 41 19.5 0.00925(61) 108 0.04991 +10.3
a Right ascension and declination are given in epoch J2000.0.
b Parallax data are from the Hipparcos Space Astrometry Mission. Uncertainties are in parentheses;

for instance, the parallax of Sirius is 0.37921′′ ± 0.00158′′.
c Distance was calculated from the parallax measurement.
d Proper motion data are from the Hipparcos Space Astrometry Mission.
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Lang, Kenneth R., Astrophysical Data: Planets and Stars, Springer-Verlag, New York,
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APPENDIX

The Nearest Stars

Spectral Parallaxc Distanced

Name HIPa Class V b MV B − V (′′) (pc)

Proxima Centauri (α Cen C) 70890 M5 Ve 11.01 15.45 +1.81 0.77233(242) 1.29
α Cen B 71681 K1 V 1.35 5.70 +0.88 0.74212(140) 1.35
α Cen A 71683 G2 V −0.01 4.34 +0.71 0.74212(140) 1.35
Barnard’s Star 87937 M5 V 9.54 13.24 +1.57 0.54901(158) 1.82
Gl 411 54035 M2 Ve 7.49 10.46 +1.50 0.39240(91) 2.55
Sirius A (α CMa) 32349 A1 V −1.44 1.45 +0.01 0.37921(158) 2.64
Sirius B (α CMa) wd (DA) 8.44 11.33 −0.03 0.37921(158)e 2.64e

Gl 729 92403 M4.5 Ve 10.37 13.00 +1.51 0.33648(182) 2.97
ϵ Eri 16537 K2 V 3.72 6.18 +0.88 0.31075(85) 3.22
Gl 887 114046 M2 Ve 7.35 9.76 +1.48 0.30390(87) 3.29
Ross 128 (Gl 447) 57548 M4.5 V 11.12 13.50 +1.75 0.29958(220) 3.34
6l Cyg A (Gl 820) 104214 K5 Ve 5.20 7.49 +1.07 0.28713(151) 3.48
Procyon A (α CMi) 37279 F5 IV–V 0.40 2.68 +0.43 0.28593(88) 3.50
Procyon B (α CMi) wd 10.7 13.0 +0.00 0.28593(88)e 3.50e

61 Cyg B (Gl 820B) 104217 K7 Ve 6.05 8.33 +1.31 0.28542(72) 3.50
Gl 725B 91772 M5 V 9.70 11.97 +1.56 0.28448(501) 3.52
Gl 725A 91768 M4 V 8.94 11.18 +1.50 0.28028(257) 3.57
GX And 1475 M2 V 8.09 10.33 +1.56 0.28027(105) 3.57
ϵ Ind 108870 K5 Ve 4.69 6.89 +1.06 0.27576(69) 3.63
τ Cet 8102 G8 Vp 3.49 5.68 +0.73 0.27417(80) 3.65
Gl 54.1 5643 M5.5 Ve 12.10 14.25 +1.85 0.26905(757) 3.72
Luyten’s Star (Gl 237) 36208 M3.5 9.84 11.94 +1.57 0.26326(143) 3.80
Kapteyn’s Star 24186 M0 V 8.86 10.89 +1.55 0.25526(86) 3.92
AX Mic 105090 M0 Ve 6.69 8.71 +1.40 0.25337(113) 3.95
Kruger 60 110893 M2 V 9.59 11.58 +1.61 0.24952(303) 4.01
Ross 614 (GL 234A) 30920 M4.5 Ve 11.12 13.05 +1.69 0.24289(264) 4.12
a HIP designates the Hipparcos catalog number.
b Values labeled v designate variable stars.
c Parallax data are from the Hipparcos Space Astrometry Mission. Uncertainties are in parentheses;

for instance, the parallax of Proxima Centauri is 0.77233′′ ± 0.00242′′.
d Distances were calculated from the Hipparcos parallax data.
e Parallax and distance taken to be that of bright companion.
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Proper Motion Radial.
R. A.a dec.a R. A.b dec.b Velocity.

Name (h m s) (◦ ′ ′′) (′′ yr−1) (′′ yr−1) (km s−1)

Proxima Centauri 14 29 42.95 −62 40 46.1 −3.77564(152) 0.76816(182) −33.4
α Cen B 14 39 35.08 −60 50 13.8 −3.60035(2610) 0.95211(1975) −23.4
α Cen A 14 39 36.50 −60 50 02.3 −3.67819(151) 0.48184(124) −23.4
Barnard’s Star 17 57 48.50 +04 41 36.2 −0.79784(161) 10.32693(129) −112.3
Gl 411 11 03 20.19 +35 58 11.6 −0.58020(77) −4.76709(77) −85.
Sirius A 06 45 08.92 −16 41 58.0 −0.54601(133) −1.22308(124) −7.7
Gl 729 18 49 49.36 −23 50 10.4 0.63755(222) −0.19247(145) −7.0
ϵ Eri 03 32 55.84 −09 27 29.7 −0.97644(98) 0.01797(91) +13.
Gl 887 23 05 52.04 −35 51 11.1 6.76726(70) 1.32666(74) −6.4
Ross 128 11 47 44.40 +00 48 16.4 0.60562(214) −1.21923(186) −31.
61 Cyg A 21 06 53.94 +38 44 57.9 4.15510(95) 3.25890(119) −65.
Procyon A 07 39 18.12 +05 13 30.0 −0.71657(88) −1.03458(38) −3.2
61 Cyg B 21 06 55.26 +38 44 31.4 4.10740(43) 3.14372(59) −65.
Gl 725B 18 42 46.90 +59 37 36.6 −1.39320(1150) 1.84573(1202) +1.
Gl 725A 18 42 46.69 +59 37 49.4 −1.32688(310) 1.80212(358) −1.
GX And 00 18 22.89 +44 01 22.6 2.88892(75) 0.41058(63) +13.5
ϵ Ind 22 03 21.66 −56 47 09.5 3.95997(55) −2.53884(42) −40.4
τ Cet 01 44 04.08 −15 56 14.9 −1.72182(83) 0.85407(80) −16.4
Gl 54.1 01 12 30.64 −16 59 56.3 1.21009(521) 0.64695(391) +37.0
Luyten’s Star 07 27 24.50 +05 13 32.8 0.57127(141) −3.69425(90) +18.
Kapteyn’s Star 05 11 40.58 −45 01 06.3 6.50605(95) −5.73139(90) +242.8
AX Mic 21 17 15.27 −38 52 02.5 −3.25900(128) −1.14699(56) +23.
Kruger 60 22 27 59.47 +57 41 45.1 −0.87023(300) −0.47110(297) −34.
Ross 614 06 29 23.40 −02 48 50.3 0.69473(300) −0.61862(248) +23.2
a Right ascension and declination are given in epoch J2000.0.
b Proper-motion data are from the Hipparcos Space Astrometry Mission. Uncertainties are

in parentheses; for instance, the proper motion of Proxima Centauri in right ascension is
−3.77564′′ yr−1 ± 0.00152′′ yr−1.

SUGGESTED READING

Technical

Cox, Arthur N. (ed.), Allen’s Astrophysical Quantities, Fourth Edition, Springer-Verlag,
New York, 2000.

Hipparcos Space Astrometry Mission, European Space Agency,
http://astro.estec.esa.nl/Hipparcos/.

Lang, Kenneth R., Astrophysical Data: Planets and Stars, Springer-Verlag, New York,
1992.

SIMBAD Astronomical Database, http://simbad.u-strasbg.fr/Simbad/.



APPENDIX

Stellar Data

Main-Sequence Stars (Luminosity Class V)

Sp. Te

Type (K) L/L⊙ R/R⊙ M/M⊙ Mbol BC MV U − B B − V

O5 42000 499000 13.4 60 −9.51 −4.40 −5.1 −1.19 −0.33
O6 39500 324000 12.2 37 −9.04 −3.93 −5.1 −1.17 −0.33
O7 37500 216000 11.0 — −8.60 −3.68 −4.9 −1.15 −0.32
O8 35800 147000 10.0 23 −8.18 −3.54 −4.6 −1.14 −0.32

B0 30000 32500 6.7 17.5 −6.54 −3.16 −3.4 −1.08 −0.30
B1 25400 9950 5.2 — −5.26 −2.70 −2.6 −0.95 −0.26
B2 20900 2920 4.1 — −3.92 −2.35 −1.6 −0.84 −0.24
B3 18800 1580 3.8 7.6 −3.26 −1.94 −1.3 −0.71 −0.20
B5 15200 480 3.2 5.9 −1.96 −1.46 −0.5 −0.58 −0.17
B6 13700 272 2.9 — −1.35 −1.21 −0.1 −0.50 −0.15
B7 12500 160 2.7 — −0.77 −1.02 +0.3 −0.43 −0.13
B8 11400 96.7 2.5 3.8 −0.22 −0.80 +0.6 −0.34 −0.11
B9 10500 60.7 2.3 — +0.28 −0.51 +0.8 −0.20 −0.07

A0 9800 39.4 2.2 2.9 +0.75 −0.30 +1.1 −0.02 −0.02
A1 9400 30.3 2.1 — +1.04 −0.23 +1.3 +0.02 +0.01
A2 9020 23.6 2.0 — +1.31 −0.20 +1.5 +0.05 +0.05
A5 8190 12.3 1.8 2.0 +2.02 −0.15 +2.2 +0.10 +0.15
A8 7600 7.13 1.5 — +2.61 −0.10 +2.7 +0.09 +0.25

F0 7300 5.21 1.4 1.6 +2.95 −0.09 +3.0 +0.03 +0.30
F2 7050 3.89 1.3 — +3.27 −0.11 +3.4 +0.00 +0.35
F5 6650 2.56 1.2 1.4 +3.72 −0.14 +3.9 −0.02 +0.44
F8 6250 1.68 1.1 — +4.18 −0.16 +4.3 +0.02 +0.52
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Main-Sequence Stars (Luminosity Class V)

Sp. Te

Type (K) L/L⊙ R/R⊙ M/M⊙ Mbol BC MV U − B B − V

G0 5940 1.25 1.06 1.05 +4.50 −0.18 +4.7 +0.06 +0.58
G2 5790 1.07 1.03 — +4.66 −0.20 +4.9 +0.12 +0.63

Suna 5777 1.00 1.00 1.00 +4.74 −0.08 +4.82 +0.195 +0.650
G8 5310 0.656 0.96 — +5.20 −0.40 +5.6 +0.30 +0.74

K0 5150 0.552 0.93 0.79 +5.39 −0.31 +5.7 +0.45 +0.81
K1 4990 0.461 0.91 — +5.58 −0.37 +6.0 +0.54 +0.86
K3 4690 0.318 0.86 — +5.98 −0.50 +6.5 +0.80 +0.96
K4 4540 0.263 0.83 — +6.19 −0.55 +6.7 — +1.05
K5 4410 0.216 0.80 0.67 +6.40 −0.72 +7.1 +0.98 +1.15
K7 4150 0.145 0.74 — +6.84 −1.01 +7.8 +1.21 +1.33

M0 3840 0.077 0.63 0.51 +7.52 −1.38 +8.9 +1.22 +1.40
M1 3660 0.050 0.56 — +7.99 −1.62 +9.6 +1.21 +1.46
M2 3520 0.032 0.48 0.40 +8.47 −1.89 +10.4 +1.18 +1.49
M3 3400 0.020 0.41 — +8.97 −2.15 +11.1 +1.16 +1.51
M4 3290 0.013 0.35 — +9.49 −2.38 +11.9 +1.15 +1.54
M5 3170 0.0076 0.29 0.21 +10.1 −2.73 +12.8 +1.24 +1.64
M6 3030 0.0044 0.24 — +10.6 −3.21 +13.8 +1.32 +1.73
M7 2860 0.0025 0.20 — +11.3 −3.46 +14.7 +1.40 +1.80

aValues adopted in this text.
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Giant Stars (Luminosity Class III)

Sp. Te

Type (K) L/L⊙ R/R⊙ M/M⊙ Mbol BC MV U − B B − V

O5 39400 741000 18.5 — −9.94 −4.05 −5.9 −1.18 −0.32
O6 37800 519000 16.8 — −9.55 −3.80 −5.7 −1.17 −0.32
O7 36500 375000 15.4 — −9.20 −3.58 −5.6 −1.14 −0.32
O8 35000 277000 14.3 — −8.87 −3.39 −5.5 −1.13 −0.31

B0 29200 84700 11.4 20 −7.58 −2.88 −4.7 −1.08 −0.29
B1 24500 32200 10.0 — −6.53 −2.43 −4.1 −0.97 −0.26
B2 20200 11100 8.6 — −5.38 −2.02 −3.4 −0.91 −0.24
B3 18300 6400 8.0 — −4.78 −1.60 −3.2 −0.74 −0.20
B5 15100 2080 6.7 7 −3.56 −1.30 −2.3 −0.58 −0.17
B6 13800 1200 6.1 — −2.96 −1.13 −1.8 −0.51 −0.15
B7 12700 710 5.5 — −2.38 −0.97 −1.4 −0.44 −0.13
B8 11700 425 5.0 — −1.83 −0.82 −1.0 −0.37 −0.11
B9 10900 263 4.5 — −1.31 −0.71 −0.6 −0.20 −0.07

A0 10200 169 4.1 4 −0.83 −0.42 −0.4 −0.07 −0.03
A1 9820 129 3.9 — −0.53 −0.29 −0.2 +0.07 +0.01
A2 9460 100 3.7 — −0.26 −0.20 −0.1 +0.06 +0.05
A5 8550 52 3.3 — +0.44 −0.14 +0.6 +0.11 +0.15
A8 7830 33 3.1 — +0.95 −0.10 +1.0 +0.10 +0.25

F0 7400 27 3.2 — +1.17 −0.11 +1.3 +0.08 +0.30
F2 7000 24 3.3 — +1.31 −0.11 +1.4 +0.08 +0.35
F5 6410 22 3.8 — +1.37 −0.14 +1.5 +0.09 +0.43

G0 5470 29 6.0 1.0 +1.10 −0.20 +1.3 +0.21 +0.65
G2 5300 31 6.7 — +1.00 −0.27 +1.3 +0.39 +0.77
G8 4800 44 9.6 — +0.63 −0.42 +1.0 +0.70 +0.94

K0 4660 50 10.9 1.1 +0.48 −0.50 +1.0 +0.84 +1.00
K1 4510 58 12.5 — +0.32 −0.55 +0.9 +1.01 +1.07
K3 4260 79 16.4 — −0.01 −0.76 +0.8 +1.39 +1.27
K4 4150 93 18.7 — −0.18 −0.94 +0.8 — +1.38
K5 4050 110 21.4 1.2 −0.36 −1.02 +0.7 +1.81 +1.50
K7 3870 154 27.6 — −0.73 −1.17 +0.4 +1.83 +1.53

M0 3690 256 39.3 1.2 −1.28 −1.25 +0.0 +1.87 +1.56
M1 3600 355 48.6 — −1.64 −1.44 −0.2 +1.88 +1.58
M2 3540 483 58.5 1.3 −1.97 −1.62 −0.4 +1.89 +1.60
M3 3480 643 69.7 — −2.28 −1.87 −0.4 +1.88 +1.61
M4 3440 841 82.0 — −2.57 −2.22 −0.4 +1.73 +1.62
M5 3380 1100 96.7 — −2.86 −2.48 −0.4 +1.58 +1.63
M6 3330 1470 116 — −3.18 −2.73 −0.4 +1.16 +1.52
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Supergiant Stars (Luminosity Class Approximately Iab)

Sp. Te

Type (K) L/L⊙ R/R⊙ M/M⊙ Mbol BC MV U − B B − V

O5 40900 1140000 21.2 70 −10.40 −3.87 −6.5 −1.17 −0.31
O6 38500 998000 22.4 40 −10.26 −3.74 −6.5 −1.16 −0.31
O7 36200 877000 23.8 — −10.12 −3.48 −6.6 −1.14 −0.31
O8 34000 769000 25.3 28 −9.98 −3.35 −6.6 −1.13 −0.29

B0 26200 429000 31.7 25 −9.34 −2.49 −6.9 −1.06 −0.23
B1 21400 261000 37.3 — −8.80 −1.87 −6.9 −1.00 −0.19
B2 17600 157000 42.8 — −8.25 −1.58 −6.7 −0.94 −0.17
B3 16000 123000 45.8 — −7.99 −1.26 −6.7 −0.83 −0.13
B5 13600 79100 51.1 20 −7.51 −0.95 −6.6 −0.72 −0.10
B6 12600 65200 53.8 — −7.30 −0.88 −6.4 −0.69 −0.08
B7 11800 54800 56.4 — −7.11 −0.78 −6.3 −0.64 −0.05
B8 11100 47200 58.9 — −6.95 −0.66 −6.3 −0.56 −0.03
B9 10500 41600 61.8 — −6.81 −0.52 −6.3 −0.50 −0.02

A0 9980 37500 64.9 16 −6.70 −0.41 −6.3 −0.38 −0.01
A1 9660 35400 67.3 — −6.63 −0.32 −6.3 −0.29 +0.02
A2 9380 33700 69.7 — −6.58 −0.28 −6.3 −0.25 +0.03
A5 8610 30500 78.6 13 −6.47 −0.13 −6.3 −0.07 +0.09
A8 7910 29100 91.1 — −6.42 −0.03 −6.4 +0.11 +0.14

F0 7460 28800 102 12 −6.41 −0.01 −6.4 +0.15 +0.17
F2 7030 28700 114 — −6.41 0.00 −6.4 +0.18 +0.23
F5 6370 29100 140 10 −6.42 −0.03 −6.4 +0.27 +0.32
F8 5750 29700 174 — −6.44 −0.09 −6.4 +0.41 +0.56

G0 5370 30300 202 10 −6.47 −0.15 −6.3 +0.52 +0.76
G2 5190 30800 218 — −6.48 −0.21 −6.3 +0.63 +0.87
G8 4700 32400 272 — −6.54 −0.42 −6.1 +1.07 +1.15

K0 4550 33100 293 13 −6.56 −0.50 −6.1 +1.17 +1.24
K1 4430 34000 314 — −6.59 −0.56 −6.0 +1.28 +1.30
K3 4190 36100 362 — −6.66 −0.75 −5.9 +1.60 +1.46
K4 4090 37500 386 — −6.70 −0.90 −5.8 — +1.53
K5 3990 39200 415 13 −6.74 −1.01 −5.7 +1.80 +1.60
K7 3830 43200 473 — −6.85 −1.20 −5.6 +1.84 +1.63

M0 3620 51900 579 13 −7.05 −1.29 −5.8 +1.90 +1.67
M1 3490 60300 672 — −7.21 −1.38 −5.8 +1.90 +1.69
M2 3370 72100 791 19 −7.41 −1.62 −5.8 +1.95 +1.71
M3 3210 89500 967 — −7.64 −2.13 −5.5 +1.95 +1.69
M4 3060 117000 1220 — −7.93 −2.75 −5.2 +2.00 +1.76
M5 2880 165000 1640 24 −8.31 −3.47 −4.8 +1.60 +1.80
M6 2710 264000 2340 — −8.82 −3.90 −4.9 — —
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APPENDIX

The Messier Catalog

R. A.b Dec.b

M NGC Name Const. mV
a h m ◦ ′ Typec

1 1952 Crab Tau 8.4: 5 34.5 +22 01 SNR
2 7089 Aqr 6.5 21 33.5 −0 49 GC
3 5272 CVn 6.4 13 42.2 +28 23 GC
4 6121 Sco 5.9 16 23.6 −26 32 GC
5 5904 Ser 5.8 15 18.6 +2 05 GC
6 6405 Sco 4.2 17 40.1 −32 13 OC
7 6475 Sco 3.3 17 53.9 −34 49 OC
8 6523 Lagoon Sgr 5.8: 18 03.8 −24 23 N
9 6333 Oph 7.9: 17 19.2 −18 31 GC

10 6254 Oph 6.6 16 57.1 −4 06 GC
11 6705 Sct 5.8 18 51.1 −6 16 OC
12 6218 Oph 6.6 16 47.2 −1 57 GC
13 6205 Her 5.9 16 41.7 +36 28 GC
14 6402 Oph 7.6 17 37.6 −3 15 GC
15 7078 Peg 6.4 21 30.0 +12 10 GC
16 6611 Ser 6.0 18 18.8 −13 47 OC
17 6618 Swand Sgr 7: 18 20.8 −16 11 N
18 6613 Sgr 6.9 18 19.9 −17 08 OC
19 6273 Oph 7.2 17 02.6 −26 16 GC
20 6514 Trifid Sgr 8.5: 18 02.6 −23 02 N
21 6531 Sgr 5.9 18 04.6 −22 30 OC
22 6656 Sgr 5.1 18 36.4 −23 54 GC
23 6494 Sgr 5.5 17 56.8 −19 01 OC
24 6603 Sgr 4.5: 18 16.9 −18 29 OC
25 Sgr 4.6 18 31.6 −19 15 OC
26 6694 Sct 8.0 18 45.2 −9 24 OC
27 6853 Dumbbell Vul 8.1: 19 59.6 +22 43 PN
28 6626 Sgr 6.9: 18 24.5 −24 52 GC
29 6913 Cyg 6.6 20 23.9 +38 32 OC
30 7099 Cap 7.5 21 40.4 −23 11 GC
31 224 Andromeda And 3.4 0 42.7 +41 16 SbI–II
32 221 And 8.2 0 42.7 +40 52 cE2
33 598 Triangulum Tri 5.7 1 33.9 +30 39 Sc(s)II–III
34 1039 Per 5.2 2 42.0 +42 47 OC
35 2168 Gem 5.1 6 08.9 +24 20 OC
36 1960 Aur 6.0 5 36.1 +34 08 OC
37 2099 Aur 5.6 5 52.4 +32 33 OC
38 1912 Aur 6.4 5 28.7 +35 50 OC
39 7092 Cyg 4.6 21 32.2 +48 26 OC
40 UMa 8: 12 22.4 +58 05 DS
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R. A.b Dec.b

M NGC Name Const. mV
a h m ◦ ′ Typec

41 2287 CMa 4.5 6 47.0 −20 44 OC
42 1976 Orione Ori 4: 5 35.3 −5 23 N
43 1982 Ori 9: 5 35.6 −5 16 N
44 2632 Praesepe Cnc 3.1 8 40.1 +19 59 OC
45 Pleiades Tau 1.2 3 47.0 +24 07 OC
46 2437 Pup 6.1 7 41.8 −14 49 OC
47 2422 Pup 4.4 7 36.6 −14 30 OC
48 2548 Hya 5.8 8 13.8 −5 48 OC
49 4472 Vir 8.4 12 29.8 +8 00 E2
50 2323 Mon 5.9 7 03.2 −8 20 OC
51 5194 Whirlpoolf CVn 8.1 13 29.9 +47 12 Sbc(s)I–II
52 7654 Cas 6.9 23 24.2 +61 35 OC
53 5024 Com 7.7 13 12.9 +18 10 GC
54 6715 Sgr 7.7 18 55.1 −30 29 GC
55 6809 Sgr 7.0 19 40.0 −30 58 GC
56 6779 Lyr 8.2 19 16.6 +30 11 GC
57 6720 Ring Lyr 9.0: 18 53.6 +33 02 PN
58 4579 Vir 9.8 12 37.7 +11 49 Sab(s)II
59 4621 Vir 9.8 12 42.0 +11 39 E5
60 4649 Vir 8.8 12 43.7 +11 33 E2
61 4303 Vir 9.7 12 21.9 +4 28 Sc(s)I
62 6266 Oph 6.6 17 01.2 −30 07 GC
63 5055 Sunflower CVn 8.6 13 15.8 +42 02 Sbc(s)II–III
64 4826 Evil Eye Com 8.5 12 56.7 +21 41 Sab(s)II
65 3623 Leo 9.3 11 18.9 +13 05 Sa(s)I
66 3627 Leo 9.0 11 20.2 +12 59 Sb(s)II
67 2682 Cnc 6.9 8 50.4 +11 49 OC
68 4590 Hya 8.2 12 39.5 −26 45 GC
69 6637 Sgr 7.7 18 31.4 −32 21 GC
70 6681 Sgr 8.1 18 43.2 −32 18 GC
71 6838 Sge 8.3 19 53.8 +18 47 GC
72 6981 Aqr 9.4 20 53.5 −12 32 GC
73 6994 Aqr 9.1 20 58.9 −12 38 OC
74 628 Psc 9.2 1 36.7 +15 47 Sc(s)I
75 6864 Sgr 8.6 20 06.1 −21 55 GC
76 650/651 Per 11.5: 1 42.3 +51 34 PN
77 1068 Cet 8.8 2 42.7 −0 01 Sb(rs)II
78 2068 Ori 8: 5 46.7 +0 03 N
79 1904 Lep 8.0 5 24.5 −24 33 GC
80 6093 Sco 7.2 16 17.0 −22 59 GC
81 3031 UMa 6.8 9 55.6 +69 04 Sb(r)I–II
82 3034 UMa 8.4 9 55.8 +69 41 Amorph
83 5236 Hya 7.6: 13 37.0 −29 52 SBc(s)II
84 4374 Vir 9.3 12 25.1 +12 53 E1
85 4382 Com 9.2 12 25.4 +18 11 S0 pec
86 4406 Vir 9.2 12 26.2 +12 57 S0/E3
87 4486 Virgo A Vir 8.6 12 30.8 +12 24 E0
88 4501 Com 9.5 12 32.0 +14 25 Sbc(s)II
89 4552 Vir 9.8 12 35.7 +12 33 S0
90 4569 Vir 9.5 12 36.8 +13 10 Sab(s)I–II
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R. A.b Dec.b

M NGC Name Const. mV
a h m ◦ ′ Typec

91 4548 Com 10.2 12 35.4 +14 30 SBb(rs)I–II
92 6341 Her 6.5 17 17.1 +43 08 GC
93 2447 Pup 6.2: 7 44.6 −23 52 OC
94 4736 CVn 8.1 12 50.9 +41 07 RSab(s)
95 3351 Leo 9.7 10 44.0 +11 42 SBb(r)II
96 3368 Leo 9.2 10 46.8 +11 49 Sab(s)II
97 3587 Owl UMa 11.2: 11 14.8 +55 01 PN
98 4192 Com 10.1 12 13.8 +14 54 SbII
99 4254 Com 9.8 12 18.8 +14 25 Sc(s)I

100 4321 Com 9.4 12 22.9 +15 49 Sc(s)I
101 5457 Pinwheel UMa 7.7 14 03.2 +54 21 Sc(s)I
102 5866 UMa 10.5 15 06.5 +55 46 S0
103 581 Cas 7.4: 1 33.2 +60 42 OC
104 4594 Sombrero Vir 8.3 12 40.0 −11 37 Sa/Sb
105 3379 Leo 9.3 10 47.8 +12 35 E0
106 4258 CVn 8.3 12 19.0 +47 18 Sb(s)II
107 6171 Oph 8.1 16 32.5 −13 03 GC
108 3556 UMa 10.0 11 11.5 +55 40 Sc(s)III
109 3992 UMa 9.8 11 57.6 +53 23 SBb(rs)I
110 205 And 8.0 0 40.4 +41 41 S0/E pec
a : indicates approximate apparent visual magnitude.
b Right ascension and declination are given in epoch 2000.0.
c Type abbreviations correspond to: SNR = supernova remnant, GC = globular cluster,

OC = open cluster, N = diffuse nebula, PN = planetary nebula, DS = double star.
Galaxies are indicated by their morphological Hubble types.

d M17, the Swan nebula, is also known as the Omega nebula.
e M42 also corresponds to the Trapezium H II region.
f M51 also includes NGC 5195, the satellite to the Whirlpool galaxy.
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APPENDIX

Constants, A Programming Module
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Constants is a Fortran 95 module implementation of the astronomical and physical con-
stants data (a C++ header file version is also available). Constants also includes high-
precision values of mathematical constants (π , e) and conversion factors between degrees
and radians. In addition, Constants provides various machine constants characteristic
of the particular platform that a code is running on. For example, in the Fortran 95
implementation, Constants includes machine-queried KIND designations for single,
double, and quadruple precision, the smallest and largest numbers that can be rep-
resented by the computer for a specific precision, and the number of significant figures that
can be represented for each level of precision.

The source code is available for download from the companion website at
http://www.aw-bc.com/astrophysics.





APPENDIX

Orbit, A Planetary Orbit Code

Orbit is a computer program designed to calculate the position of a planet orbiting a
massive star (or, alternatively, the orbit of the reduced mass about the center of mass of the
system). The program is based on Kepler’s laws of planetary motion.
References to the relevant equations are given in the comment sections of the code.

The user is asked to enter the mass of the parent star (in solar masses), the semimajor
axis of the orbit (in AU), and the eccentricity of the orbit. The user is also asked to enter
the number of time steps desired for the calculation (perhaps 1000 to 100,000) and the
frequency with which the time steps are to be printed to the output file (Orbit.txt). If
1000 time steps are specified with a frequency of 10, then 100 evenly spaced (in time) time
steps will be printed.

The output file can be imported directly into a graphics or spreadsheet program in order to
generate a graph of the orbit. Note that it may be necessary to delete the header information
in Orbit.txt prior to importing the data columns into the graphics or spreadsheet program.

The source code is available in both Fortran 95 and C++ versions. Compiled versions of
the code are also available.

The code may be downloaded from the companion website at
http://www.aw-bc.com/astrophysics.
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APPENDIX

TwoStars, A Binary Star Code

.A simple binary star code is developed in this appendix that incorporates a number of
the basic features of more sophisticated codes. TwoStars is designed to provide position,
radial-velocity, and binary light curve information that can be used to determine masses (m1

and m2 from determination of the semimajor axes and periods of the orbits), radii (R1 and
R2 by measuring eclipse times), effective temperature ratios (from the relative depths of the
primary and secondary minima), limb darkening, orbital eccentricity (e), orbital inclination
(i), and orientation of periastron (φ). However, in order to greatly simplify the code, it is
assumed that the two stars are strictly spherically symmetric, that they do not collide with
one another, and that their surface fluxes vary only with stellar radius (i.e., there are no
anomalous star spots or localized heating).

To begin, assume that the orbits of the two stars lie in the x–y plane with the center of
mass of the system located at the origin of the coordinate system, as shown in Fig. 1
(the z-axis is out of the page). In order to generalize the orientation of the orbit, periastron
for Star 1 (the point in the orbit closest to the center of mass) is at an angle φ measured
counterclockwise from the positive x-axis and in the direction of the orbital motion. It is
also assumed that the orbital plane is inclined an angle i with respect to the plane of the
sky (the y ′–z′ plane) as shown in Fig. 2. The line of sight from the observer to the center
of mass is along the x ′-axis, and the center of mass is located at the origin of the primed
coordinate system. Finally, the y ′-axis is directed out of the page and is aligned with the
y-axis of Fig. 1.

It is a straightforward process to show that the transformation between the two coordinate
systems is given by

x ′ = z cos i + x sin i (1)

y ′ = y (2)

z′ = z sin i − x cos i, (3)

which of course simplifies significantly for the case where the centers of mass lie along the
x–y plane (i.e., z = 0).
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Binary star systems play a very important role in determining various stellar properties, 
including masses and radii. In addition, analyses using sophisticated binary-star modeling 
codes can provide information about variations in surface flux such as limb darkening and 
the presence of star spots or reflective heating. Advanced codes can also detail the effects of 
gravitational tidal interactions and centrifugal forces that result in stars that deviate (some-
times significantly) from spherical symmetry. 
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FIGURE 1 The orbits of the stars in the binary system lie in the x–y plane, with the z-axis
directed out of the page. The center of mass of the system is located at the origin of the coordinate
system. In this example m2/m1 = 0.68, e = 0.4, and φ = 35◦. The two positions of Stars 1 and 2 are
separated by P/4, where P is the orbital period.
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FIGURE 2 The plane of the orbit is inclined an angle i with respect to the plane of the sky (the
y ′–z′ plane). The line of sight from the observer to the center of mass is along the x ′-axis, and the
center of mass is located at the origin of the primed coordinate system. The y ′-axis is aligned with
the y-axis of Fig. 1, and both are directed out of the page. The foreground star in this illustration is
the smaller star.

A careful reading of the code available on the companion website will identify several
explicit instances of plus and minus signs associated with the variables vr, v1r, v2r, x1, y1,
x2, and y2. The choice of minus signs corresponds to the choice of the coordinate system
and its relationship to the observer. For instance, if the inclination angle is i = 90◦, then

Appendix: TwoStars, A Binary Star Code

The motions of the stars in the x–y plane are determined directly by using Kepler’s laws
and invoking the concept of the reduced mass. The approach is similar to what was used in
Orbit, except that no assumption is made about the relative masses of the two objects in
the system [in Orbit it was assumed that one object (a planet) was much less massive
than the other object (the parent star)].
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FIGURE 3 The disks of the two stars projected onto the plane of the sky. The foreground star
(assumed in this illustration to be the larger star) has x ′

c > 0, where x ′
c is the x ′ coordinate of its center

of mass. The angle between the y ′-axis and the line connecting the centers of the disks of the two
stars projected onto the plane of the sky is θ ′

0.

the x and x ′ axes are aligned and motion in the positive x direction corresponds to motion
toward the observer (a negative radial velocity).

In order to compute the light curve for the eclipse, it is necessary to integrate the luminous
flux over the portion of each star’s surface that is visible to the observer. This is done by first
determining which star is in front of the other. Given that the plane of the sky corresponds to
the y ′–z′ plane, the center of mass of the star that is closest to the observer has the coordinate
value x ′ > 0 (see Fig. 3).

If the star in front is partially or entirely eclipsing the background star, then the distances
between their centers of mass projected onto the y ′–z′ plane must be less than the sum of
their radii; or, for an eclipse to be taking place,

√

(

y ′
f c − y ′

bc

)2
+
(

z′
f c − z′

bc

)2
< Rf + Rb, (4)

where (y ′
f c, z

′
f c) and (y ′

bc, z
′
bc) are the locations of the centers of mass of the foreground

and background stars, respectively, as projected onto the plane of the sky.
To optimize the computation of the integrated luminous flux, it is appropriate to locate the

line of symmetry between the centers of mass of the two stars. Again referring to Fig. 3,
we see that the angle between the y ′-axis and the line connecting the projected centers of
mass is given by

θ ′
0 = tan−1

(

z′
f c − z′

bc

y ′
f c − y ′

bc

)

. (5)

Once the background star has been identified and the line of symmetry determined, the
decrease in the amount of light due to the eclipse can be computed by first finding out which
parts of the background star are behind the foreground star. If a point on the eclipsed disk is
within a distance Rf of the center of the foreground star’s disk as projected onto the y ′–z′
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FIGURE 4 The region of the background star being eclipsed is shown in dark gray. Numerical
integration of the flux over arcs of various radii r and thickness dr makes it possible to determine
how much light is blocked by the foreground star.

plane, then that point on the star’s surface is behind the foreground star. In other words, the
condition for a point (y ′

b, z
′
b) on the disk of the background star to be behind the disk of the

foreground star is
√

(

y ′
b − y ′

f c

)2
+
(

z′
b − z′

f c

)2
< Rf . (6)

The eclipsed region can then be mapped out by starting along the line of symmetry at
some distance r from the center of the disk of the background star and moving at increasing
angles of (θ ′ from θ ′

0 until the inequality of Eq. ( 6) is no longer satisfied or until (θ ′

exceeds 180◦. In the later case, this would imply that the entire disk within the radius r

of its center is eclipsed. Given the assumption of spherical symmetry, the region of the
background star’s disk between θ ′

min = −(θ ′ + θ ′
0 and θ ′

0 is identical to the region between
θ ′

0 and θ ′
max = (θ ′ + θ ′

0 for a fixed value of r (see Fig. 4). For an arc-shaped surface of
radius r and width dr , the area of the surface is given by

dA = r dr
(

θ ′
max − θ ′

min

)

= 2r dr (θ ′. (7)

Now, if the luminous flux at that radius from the center of the background star’s disk is
F(r), the amount of light in that arc that has been blocked is given by

dS = F(r) dA = 2F(r) r dr (θ ′. (8)

By subtracting the loss in light due to each eclipsed arc from the total light of the uneclipsed
star, we can determine the total amount of light received from the background star during a
partial or total eclipse. (Note that due to the effects of limb darkening, F(r) is not constant
across the entire disk.)

Finally, all that remains is to convert the total amount of light received to magnitudes.
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TwoStars implements each of the ideas described. An example of the input required for
TwoStars, along with the first ten lines of model output, is shown in Fig. 5.

The source code for (TwoStars), together with compiled versions of the program, is
available for download from the companion website at
http://www.aw-bc.com/astrophysics.

Specify the name of your output file: c:\YYSgr.txt

Enter the data for Star #1
Mass (solar masses): 5.9
Radius (solar radii): 3.2
Effective Temperature (K): 15200

Enter the data for Star #2
Mass (solar masses): 5.6
Radius (solar radii): 2.9
Effective Temperature (K): 13700

Enter the desired orbital parameters
Orbital Period (days): 2.6284734
Orbital Eccentricity: 0.1573
Orbital Inclination (deg): 88.89
Orientation of Periastron (deg): 214.6

Enter the x’, y’, and z’ components of the center of mass velocity vector:
Notes: (1) The plane of the sky is (y’,z’)

(2) If v_x’ < 0, then the center of mass is blueshifted

v_x’ (km/s) 0
v_y’ (km/s) 0
v_z’ (km/s) 0

The semimajor axis of the reduced mass is 0.084318 AU
a1 = 0.040971 AU
a2 = 0.043166 AU

t/P v1r (km/s) v2r (km/s) Mbol dS (W)
0.000000 112.824494 -118.868663 -2.457487 0.000000E+00
0.000999 114.247263 -120.367652 -2.457487 0.000000E+00
0.001998 115.660265 -121.856351 -2.457487 0.000000E+00
0.002997 117.063327 -123.334576 -2.457487 0.000000E+00
0.003996 118.456275 -124.802147 -2.457487 0.000000E+00
0.004995 119.838940 -126.258884 -2.457487 0.000000E+00
0.005994 121.211155 -127.704610 -2.457487 0.000000E+00
0.006993 122.572755 -129.139152 -2.457487 0.000000E+00
0.007992 123.923575 -130.562338 -2.457487 0.000000E+00
0.008991 125.263455 -131.973998 -2.457487 0.000000E+00

FIGURE 5 An example of the input required for the Fortran 95 command-line version of
TwoStars for the system YY Sgr. The first ten lines of model output to the screen are
also shown.
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SUGGESTED READING

Technical

Bradstreet, D. H., and Steelman, D. P., “Binary Maker 3.0—An Interactive Graphics-Based
Light Curve Synthesis Program Written in Java,” Bulletin of the American Astronomical
Society, January 2003.

Kallrath, Josef, and Milone, Eugene F., Eclipsing Binary Stars: Modeling and Analysis,
Springer-Verlag, New York, 1999.

Terrell, Dirk, “Eclipsing Binary Stars: Past, Present, and Future,” Journal of the American
Association of Variable Star Observers, 30, 1, 2001.

Van Hamme, W., “New Limb-Darkening Coefficients for Modeling Binary Star Light
Curves,” The Astronomical Journal, 106, 2096, 1993.

Wilson, R. E., “Binary-Star Light-Curve Models,” Publications of the Astronomical Society
of the Pacific, 106, 921, 1994.
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APPENDIX

StatStar, A Stellar Structure Code

StatStar is based on the equations of stellar structure and the constitutive relations.
An example of the output generated by StatStar is available on the companion website.

StatStar is designed to illustrate as clearly as possible many of the most important
aspects of numerical stellar astrophysics. To accomplish this goal, StatStar models are
restricted to a fixed composition throughout [in other words, they are homogeneous zero-age
main-sequence models (ZAMS)].

The four basic stellar structure equations are computed in the functions dPdr, dMdr,
dLdr, and dTdr

The density [ρ(r) = rho] is calculated directly from the ideal gas law and the radiation
pressure equation in FUNCTION Opacity, given local values for the pressure [P(r) = P],
temperature [T (r) = T], and mean molecular weight (µ = mu, assumed here to be for a
completely ionized gas only). Once the density is determined, both the opacity
[κ(r) = kappa] and the nuclear energy generation rate [ϵ(r) = epsilon] are calculated.
The opacity is determined in FUNCTION Opacity using the bound–bound and bound–free
opacity formulae, together with electron scattering and H− ion contributions. The energy
generation rate is calculated in Function Nuclear from the equations for the total pp chain
and the CNO

The program begins by asking the user to supply the desired stellar mass (Msolar, in
solar units), the trial effective temperature (Teff, in kelvins), the trial luminosity (Lsolar,
also in solar units), and the mass fractions of hydrogen (X) and metals (Z). Using the stellar
structure equations, the program proceeds to integrate from the surface of the star toward the
center, stopping when a problem is detected or when a satisfactory solution is obtained. If
the inward integration is not successful, a new trial luminosity and/or effective temperature
must be chosen. stellar structure exists for
a given mass and composition. Satisfying the central boundary conditions therefore
requires specific surface boundary conditions. It is for this reason that a well-defined main
sequence exists.

Since it is nearly impossible to satisfy the central boundary conditions exactly by the
crude shooting method employed by StatStar, the calculation is terminated when the
core is approached. The stopping criteria used here are that the interior mass Mr < Mmin

and the interior luminosity Lr < Lmin, when the radius r < Rmin, where Mmin, Lmin, and

1State-of-the-art research codes use much more sophisticated prescriptions for the equations of state.
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Rmin are specified as fractions of the surface mass (Ms), luminosity (Ls), and radius (Rs),
respectively. Once the criteria for halting the integration are detected, the conditions at the
center of the star are estimated by an extrapolation procedure.

StatStarmakes the simplifying assumptions that the pressure, temperature, and density
are all zero at the surface of the star. As a result, it is necessary to begin the calculation
with approximations to the basic stellar structure equations. This can be seen by noting
that the mass, pressure, luminosity, and temperature gradients are all proportional to the
density and are therefore exactly zero at the surface. Curiously, it would appear that applying
these gradients in their usual form implies that the fundamental physical parameters cannot
change from their initial values, since the density would remain zero at each step!

One way to overcome this problem is to assume that the interior mass and luminosity are
both constant through a small number of surface zones. In the case of the luminosity, this is
clearly a valid assumption since temperatures are not sufficient to produce nuclear reactions
near the surfaces of ZAMS stars; and furthermore, since ZAMS stars are static, changes
in gravitational potential energy are necessarily zero. For the interior mass, the assumption
is not quite as obvious. However, we will see that in realistic stellar models, the density is
so low near the surface that the approximation is indeed very reasonable. Of course, it is
important to verify that the assumptions are not being violated to within specified limits.

Given the surface values Mr = Ms and Lr = Ls , and assuming that the surface zone is
radiative, which leads to

dP

dT
= 16πac

3
GMs

Ls

T 3

κ
.

Since relatively few free electrons exist in the thin outer atmospheres of stars, electron
scattering and H− ion contributions to the opacity will be neglected in the surface zone
approximation. In this case κ may be replaced by the bound–free and free–free Kramers
opacity laws, expressed in the forms κbf = Abf ρ/T 3.5 and κ ff = Aff ρ/T 3.5, respectively.
Defining A ≡ Abf + Aff to express the density in terms of the pressure and temperature
through the ideal gas law (assuming that radiation pressure may be neglected), we get

dP

dT
= 16π

3
GMs

Ls

ack

AµmH

T 7.5

P
.

Integrating with respect to temperature and solving for the pressure, we find that

P =
(

1
4.25

16π
3

GMs

Ls

ack

AµmH

)1/2

T 4.25. (1)

It is now possible to write T in terms of the independent variable r, again using the ideal
gas law and Kramers opacity laws, along with Eq. ( 1) to eliminate the dependence on
pressure. Integrating yields

T = GMs

(µmH

4.25k

)

(

1
r

− 1
Rs

)

. (2)
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Equation ( 2) is first used to obtain a value for T (r); then Eq. ( 1) gives P(r). At this
point it is possible to calculate ρ, κ , and ϵ from the usual equation-of-state routines.

Avery similar procedure is used in the case that the surface is convective. This gives

T = GMs

(

γ − 1
γ

)

(µmH

k

)

(

1
r

− 1
Rs

)

. (3)

Now, since convection is assumed to be adiabatic in the interior of our simple model, the
pressure may be found. The routine Surface computes Eqs. (1), (2), and (3).

The conditions at the center of the star are estimated by extrapolating from the last
zone that was calculated by direct numerical integration. Mr = 4πρ0r

3/3,
where ρ0 is taken to be the average density of the central ball (the region inside the last
zone calculated by the usual procedure),2 we get

dP

dr
= −G

Mrρ0

r2
= −4π

3
Gρ2

0 r.

Integrating yields

∫ P

P0

dP = −4π
3

Gρ2
0

∫ r

0
r dr,

and solving for the central pressure results in

P0 = P + 2π
3

Gρ2
0r2.

Other central quantities can now be found more directly. Specifically, the central density
is estimated to be ρ0 = Mr/(4πr3/3), where Mr and r are the values of the last zone
calculated. T0 is determined from the ideal gas law and radiation pressure using an iterative
procedure (the Newton–Raphson method). Finally, the central value for the nuclear energy
generation rate is computed using ϵ0 = Lr/Mr .

The numerical integration technique employed here is a Runge–Kutta algorithm. The
Runge–Kutta algorithm evaluates derivatives at several intermediate points between mass
shell boundaries to significantly increase the accuracy of the numerical integration. Details
of the algorithm will not be discussed further here; you are encouraged to consult Press,
Teukolsky, Vetterling, and Flannery (1996), for details of the implementation.

The source code, together with compiled versions of the program, is available for down-
load from the companion website at http://www.aw-bc.com/astrophysics.

2You might notice that dP/dr goes to zero as the center is approached. This behavior is indicative of the smooth
nature of the solution. The first derivatives of many physical quantities go to zero at the center.
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Technical
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New York, 1968.
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York, 1994.

Fowler, William A., Caughlan, Georgeanne R., and Zimmerman, Barbara A., “Thermonu-
clear Reaction Rates, II,” Annual Review of Astronomy and Astrophysics, 13, 69, 1975.
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ture, and Evolution, Second Edition, Springer-Verlag, New York, 2004.

Kippenhahn, Rudolf, and Weigert, Alfred, Stellar Structure and Evolution, Springer-Verlag,
Berlin, 1990.

Novotny, Eva, Introduction to Stellar Atmospheres and Interiors, Oxford University Press,
New York, 1973.
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APPENDIX

Galaxy, A Tidal Interaction Code

Galaxy is a program that calculates the gravitational effect of the close passage of two
galactic nuclei on a disk of stars. It is adapted from a program written by M. C. Schroeder
and Neil F. Comins and published in Astronomy magazine. This program is very similar to
the one used by Alar and Juri Toomre in 1972 to perform their ground-breaking studies of
the effect of violent tides between galaxies.

In the program there are two galactic nuclei of masses M1 and M2. They are treated as
point masses, and they move under the influence of their mutual gravitational attraction. To
speed the calculations, only M1 is surrounded by a disk of stars, with the stars initially in
circular Keplerian orbits. The gravitational influence of the stars is neglected, meaning that
they do not affect the motions of the nuclei or one another. There is no dynamical friction,
and so the nuclei follow the simple two-body trajectories. One advantage of a non-
self-gravitating disk is that results do not depend on the number of stars in the disk. You
can experiment, changing the initial conditions by using just a few stars for a faster running
time and then increasing the number of stars to see more detail. The stars respond only to
the gravitational pull of the two nuclei.

The goal is to calculate the positions of the nuclei and stars through a number of time
steps separated by a time interval (t . Let the positions of the nuclei at time step i be

[X1(i), Y1(i), Z1(i)] and [X2(i), Y2(i), Z2(i)],

and let the position of a star be1

[x(i), y(i), z(i)].

Also, let the velocities of the nuclei and the star be

[V1,x(i − 1/2), V1,y(i − 1/2), V1,z(i − 1/2)],
[V2,x(i − 1/2), V2,y(i − 1/2), V2,z(i − 1/2)],

and

[vx(i − 1/2), vy(i − 1/2), vz(i − 1/2)].

1The results do not change with the number of stars used, so one star is enough to illustrate the procedure.
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The velocities are the average velocities between the present (i) and the previous (i − 1)
time steps, so

vx

(

i − 1
2

)

= x(i) − x(i − 1)

(t
(1)

is the x component of the star’s velocity. In a similar manner, the x component of the star’s
acceleration is

ax(i) = vx(i + 1/2) − vx(i − 1/2)

(t
. (2)

Thus the positions and accelerations, which are determined at each time step, “leapfrog”
over the velocities, which are determined between time steps.

Given these values of the positions and velocities, the program calculates the x compo-
nents of the positions and velocities for the next time step in the following way:

1. Find the star’s acceleration at the present time step i, using Newton’s law of gravity,

ax(i) = GM1

r3
1 (i)

[X1(i) − x(i)] + GM2

r3
2 (i)

[X2(i) − x(i)], (3)

where r1(i) is the distance between the star and M1 at time step i,

r1(i) =
√

[X1(i) − x(i)]2 + [Y1(i) − y(i)]2 + [Z1(i) − z(i)]2 + s2
f , (4)

and similarly for r2(i).
Note that because the nuclei and stars are treated as points, their separations could

become very small, even zero (although the conservation of angular momentum
makes this rather unlikely). As a result, arbitrarily large values of 1/r3

1 and 1/r3
2 could

cause a numerical overflow and bring a lengthy calculation to an abrupt halt. To avoid
this numerical disaster, a softening factor, sf , has been included in the calculations
of all separations. This is the smallest separation permitted by the program. Its value
is large enough to prevent an overflow, but small enough to have little effect on the
overall results.

2. Find the star’s average velocity at i + 1/2,

vx

(

i + 1
2

)

= vx

(

i − 1
2

)

+ ax(i)(t. (5)

3. Find the star’s position at the next time step i + 1, using

x(i + 1) = x(i) + vx

(

i + 1
2

)

(t. (6)
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4. Find the acceleration of the nuclei at the present time step i, using Newton’s law of
gravity,

A1,x(i) = GM2

s3(i)
[X2(i) − X1(i)] (7)

and

A2,x(i) = GM1

s3(i)
[X1(i) − X2(i)], (8)

where s(i) is the separation of the nuclei at time step i,

s(i) =
√

[X1(i) − X2(i)]2 + [Y1(i) − Y2(i)]2 + [Z1(i) − Z2(i)]2 + s2
f . (9)

5. Find the velocity of the nuclei at i + 1/2,

V1,x

(

i + 1
2

)

= V1,x

(

i − 1
2

)

+ A1,x(i)(t, (10)

and similarly for V2,x(i + 1/2).
6. Find the position of the nuclei at the next time step i + 1, using

X1(i + 1) = X1(i) + V1,x

(

i + 1
2

)

(t, (11)

and similarly for X2(i + 1).

The procedure is the same for the y and z components. By repeatedly applying this pre-
scription, it is possible to follow the motions of the nuclei and star(s).

The target galaxy (M1) is initially placed at rest at the origin. You will be asked to
provide the initial position and velocity of the intruder galaxy (M2), its mass (as a fraction
of M1), and the number of stars around the target galaxy. After each time step, the results
are displayed as two graphs showing the positions of the nuclei and stars on the x–y and
x–z planes.

You will note in the source code that the program uses a special system of units to speed
the calculations. The masses are in units of 2 × 1010 M⊙. When the program assigns the
target galaxy a mass of 5 in these units, its mass is 1011 M⊙. The unit of time is 1.2 million
years. This is also the value used for the time interval, (t , so (in these units) (t = 1. As
a result, (t does not appear explicitly in the program. (It would just multiply the term
involved by 1 and waste computer time.) The unit of distance is 500 pc, and so the unit
of velocity is (500 pc)/(1.2 million years) ≃ 400 km s−1. By design, in these units the
gravitational constant G = 1; thus G does not appear explicitly in the program either.

The source code for Galaxy, along with executable versions, is available for download
from the companion website at http://www.aw-bc.com/astrophysics.
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SUGGESTED READING

General

Schroeder, Michael C., and Comins, Neil F., “Galactic Collisions on Your Computer,”
Astronomy, December 1988.

Toomre, Alar, and Toomre, Juri, “Violent Tide between Galaxies,” Scientific American,
December 1973.

Technical

Toomre, Alar, and Toomre, Juri, “Galactic Bridges and Tails,” The Astrophysical Journal,
178, 623, 1972.

Appendix: Galaxy, A Tidal Interaction Code



APPENDIX

WMAP Data

“Best” Cosmological Parametersa

Description Text Symbol Value + uncertainty − uncertainty

Total density ,0 1.02 0.02 0.02
Equation of state of quintessenceb w < −0.78 95% CL
Dark energy density ,-,0 0.73 0.04 0.04
Baryon density ,b,0h

2 0.0224 0.0009 0.0009
Baryon density ,b,0 0.044 0.004 0.004
Baryon density (m−3) nb,0 0.25 0.01 0.01
Matter density ,m,0h

2 0.135 0.008 0.009
Matter density ,m,0 0.27 0.04 0.04
Light neutrino density (m−3) ,ν,0h

2 < 7600 95% CL
CMB temperature (K)c T0 2.725 0.002 0.002
CMB photon density (m−3)d nγ ,0 4.104 × 108 0.009 × 108 0.009 × 108

Baryon-to-photon ratio η0 6.1 × 10−10 0.3 × 10−10 0.2 × 10−10

Baryon-to-matter ratio ,b,0,
−1
m,0 0.17 0.01 0.01

Redshift at decoupling zdec 1089 1 1
Thickness of decoupling (FWHM) (zdec 195 2 2
Hubble constant h 0.71 0.04 0.03
Age of universe (Gyr) t0 13.7 0.2 0.2
Age at decoupling (kyr) tdec 379 8 7
Age at reionization (Myr, 95% CL) tr 180 220 80
Decoupling time interval (kyr) (tdec 118 3 2
Redshift of matter–energy equality zr,m 3233 194 210
Reionization optical depth τ 0.17 0.04 0.04
Redshift at reionization (95% CL) zr 20 10 9
Sound horizon at decoupling (deg) θA 0.598 0.002 0.002
Angular size distance (Gpc) dA 14.0 0.2 0.3
Acoustic scalee ℓA 301 1 1
Sound horizon at decoupling (Mpc)f rs 147 2 2
a All data from Bennett et al., Ap. J. S., 148, 1, 2003.
b CL means “confidence level.”
c From COBE (Mather et al., Ap. J., 512, 511, 1999).
d Derived from COBE (Mather et al., Ap. J., 512, 511, 1999).
e ℓA = πθ−1

A for θA in radians.
f θA = rsd

−1
A for θA in radians.
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